1
|
Iqbal H, Fernandes Q, Idoudi S, Basineni R, Billa N. Status of Polymer Fused Deposition Modeling (FDM)-Based Three-Dimensional Printing (3DP) in the Pharmaceutical Industry. Polymers (Basel) 2024; 16:386. [PMID: 38337275 DOI: 10.3390/polym16030386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Additive manufacturing (AM) or 3D printing (3DP) is arguably a versatile and more efficient way for the production of solid dosage forms such as tablets. Of the various 3DP technologies currently available, fused deposition modeling (FDM) includes unique characteristics that offer a range of options in the production of various types of tablets. For example, amorphous solid dispersions (ASDs), enteric-coated tablets or poly pills can be produced using an appropriate drug/polymer combination during FDM 3DP. The technology offers the possibility of evolving personalized medicines into cost-effective production schemes at pharmacies and hospital dispensaries. In this review, we highlight key FDM features that may be exploited for the production of tablets and improvement of therapy, with emphasis on gastrointestinal delivery. We also highlight current constraints that must be surmounted to visualize the deployment of this technology in the pharmaceutical and healthcare industries.
Collapse
Affiliation(s)
- Heba Iqbal
- Pharmaceutical Sciences Department, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Queenie Fernandes
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Sourour Idoudi
- Pharmaceutical Sciences Department, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Renuka Basineni
- Pharmaceutical Sciences Department, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Nashiru Billa
- Pharmaceutical Sciences Department, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
2
|
Wang D, Jiang Q, Dong Z, Meng T, Hu F, Wang J, Yuan H. Nanocarriers transport across the gastrointestinal barriers: The contribution to oral bioavailability via blood circulation and lymphatic pathway. Adv Drug Deliv Rev 2023; 203:115130. [PMID: 37913890 DOI: 10.1016/j.addr.2023.115130] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/27/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Oral administration is the preferred route of drug delivery in clinical practice due to its noninvasiveness, safety, convenience, and high patient compliance. The gastrointestinal tract (GIT) plays a crucial role in facilitating the targeted delivery of oral drugs. However, the GIT presents multiple barriers that impede drug absorption, including the gastric barrier in the stomach and the mucus and epithelial barriers in the intestine. In recent decades, nanotechnology has emerged as a promising approach for overcoming these challenges by utilizing nanocarrier-based drug delivery systems such as liposomes, micelles, polymeric nanoparticles, solid lipid nanoparticles, and inorganic nanoparticles. Encapsulating drugs within nanocarriers not only protects them from degradation but also enhances their transport and absorption across the GIT, ultimately improving oral bioavailability. The aim of this review is to elucidate the mechanisms underlying nanocarrier-mediated transportation across the GIT into systemic circulation via both the blood circulation and lymphatic pathway.
Collapse
Affiliation(s)
- Ding Wang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Qi Jiang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Zhefan Dong
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Tingting Meng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Fuqiang Hu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Jianwei Wang
- The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China; China Jinhua Institute of Zhejiang University, Jinhua 321299, PR China.
| |
Collapse
|
3
|
Reppas C, Kuentz M, Bauer-Brandl A, Carlert S, Dallmann A, Dietrich S, Dressman J, Ejskjaer L, Frechen S, Guidetti M, Holm R, Holzem FL, Karlsson Ε, Kostewicz E, Panbachi S, Paulus F, Senniksen MB, Stillhart C, Turner DB, Vertzoni M, Vrenken P, Zöller L, Griffin BT, O'Dwyer PJ. Leveraging the use of in vitro and computational methods to support the development of enabling oral drug products: An InPharma commentary. Eur J Pharm Sci 2023; 188:106505. [PMID: 37343604 DOI: 10.1016/j.ejps.2023.106505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/23/2023]
Abstract
Due to the strong tendency towards poorly soluble drugs in modern development pipelines, enabling drug formulations such as amorphous solid dispersions, cyclodextrins, co-crystals and lipid-based formulations are frequently applied to solubilize or generate supersaturation in gastrointestinal fluids, thus enhancing oral drug absorption. Although many innovative in vitro and in silico tools have been introduced in recent years to aid development of enabling formulations, significant knowledge gaps still exist with respect to how best to implement them. As a result, the development strategy for enabling formulations varies considerably within the industry and many elements of empiricism remain. The InPharma network aims to advance a mechanistic, animal-free approach to the assessment of drug developability. This commentary focuses current status and next steps that will be taken in InPharma to identify and fully utilize 'best practice' in vitro and in silico tools for use in physiologically based biopharmaceutic models.
Collapse
Affiliation(s)
- Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Martin Kuentz
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz CH 4132, Switzerland
| | - Annette Bauer-Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | | | - André Dallmann
- Pharmacometrics/Modeling and Simulation, Research and Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany
| | - Shirin Dietrich
- Department of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Jennifer Dressman
- Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Lotte Ejskjaer
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Sebastian Frechen
- Pharmacometrics/Modeling and Simulation, Research and Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany
| | - Matteo Guidetti
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark; Solvias AG, Department for Solid-State Development, Römerpark 2, 4303 Kaiseraugst, Switzerland
| | - René Holm
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Florentin Lukas Holzem
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark; Pharmaceutical R&D, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | | | - Edmund Kostewicz
- Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Shaida Panbachi
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz CH 4132, Switzerland
| | - Felix Paulus
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Malte Bøgh Senniksen
- Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt am Main, Germany; Pharmaceutical R&D, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Cordula Stillhart
- Pharmaceutical R&D, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | | | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Paul Vrenken
- Department of Pharmacy, National and Kapodistrian University of Athens, Greece; Pharmacometrics/Modeling and Simulation, Research and Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany
| | - Laurin Zöller
- AstraZeneca R&D, Gothenburg, Sweden; Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | | | | |
Collapse
|
4
|
Rathod V, Gajera B, Pinninti A, Mohammed IA, Dave RH. Strategizing Spray Drying Process Optimization for the Manufacture of Redispersible Indomethacin Nanoparticles Using Quality-by-Design Principles. AAPS PharmSciTech 2023; 24:133. [PMID: 37291469 DOI: 10.1208/s12249-023-02589-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023] Open
Abstract
The present study adopted a Quality by Design (QbD) approach to spray dry indomethacin nanosuspension (IMC-NS) consisting of HPC-SL, poloxamer 407, and lactose monohydrate. The Box-Behnken Design was used to systematically evaluate the effects of inlet temperature, aspiration rate, and feed rate on the critical quality attributes (CQAs) [redispersibility index (RDI; minimize), % yield (maximize), and % release at 15 min (maximize)] of the indomethacin spray dried nanosuspension (IMC-SD-NS). To identify significant main and quadratic effects, two-way interactions, and create a predictive model for the spray drying process, regression analysis and ANOVA were utilized. Following optimization, the IMC-SD-NS was analyzed for its physicochemical properties using X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR), and in vitro dissolution studies. Statistical analysis revealed significant independent variables, including inlet temperature, feed rate, and aspiration rate, that critically impacted the solidified end product's RDI, % yield, and % release at 15 min. The models developed for critical quality attributes (CQAs) were significant at a p-value of 0.05. The crystalline state of IMC was maintained in the solidified product, as confirmed by XRPD, and no interactions were observed between IMC and the excipients as evaluated by FTIR. In vitro dissolution studies showed improved dissolution rate for the IMC-SD-NS (3.82-fold increase in overall drug release), which may be attributed to the readily redispersible nanosized drug particles. The implementation of a well-designed study, utilizing Design of Experiments (DoE) methodology, played a crucial role in the development of a highly effective spray drying process.
Collapse
Affiliation(s)
- Vishal Rathod
- Division of Pharmaceutics Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, The Long Island University, Brooklyn, New York, 11201, USA
- Blueprint Medicines, Cambridge, Massachusetts, 02139, USA
| | - Bhavin Gajera
- Division of Pharmaceutics Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, The Long Island University, Brooklyn, New York, 11201, USA
| | - Anusha Pinninti
- Division of Pharmaceutics Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, The Long Island University, Brooklyn, New York, 11201, USA
| | | | - Rutesh H Dave
- Division of Pharmaceutics Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, The Long Island University, Brooklyn, New York, 11201, USA.
| |
Collapse
|
5
|
Mohamed EM, Dharani S, Nutan MTH, Cook P, Arunagiri R, Khan MA, Rahman Z. Application of Sucrose Acetate Isobutyrate in Development of Co-Amorphous Formulations of Tacrolimus for Bioavailability Enhancement. Pharmaceutics 2023; 15:pharmaceutics15051442. [PMID: 37242683 DOI: 10.3390/pharmaceutics15051442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
The focus of the present work was to develop co-amorphous dispersion (CAD) formulations of tacrolimus (TAC) using sucrose acetate isobutyrate as a carrier, evaluate by in vitro and in vivo methods and compare its performance with hydroxypropyl methylcellulose (HPMC) based amorphous solid dispersion (ASD) formulation. CAD and ASD formulations were prepared by solvent evaporation method followed by characterization by Fourier transformed infrared spectroscopy, X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), dissolution, stability, and pharmacokinetics. XRPD and DSC indicated amorphous phase transformation of the drug in the CAD and ASD formulations, and dissolved more than 85% of the drug in 90 min. No drug crystallization was observed in the thermogram and diffractogram of the formulations after storage at 25 °C/60% RH and 40 °C/75% RH. No significant change in the dissolution profile was observed after and before storage. SAIB-based CAD and HPMC-based ASD formulations were bioequivalent as they met 90% confidence of 90-11.1% for Cmax and AUC. The CAD and ASD formulations exhibited Cmax and AUC 1.7-1.8 and 1.5-1.8 folds of tablet formulations containing the drug's crystalline phase. In conclusion, the stability, dissolution, and pharmacokinetic performance of SAIB-based CAD and HPMC-based ASD formulations were similar, and thus clinical performance would be similar.
Collapse
Affiliation(s)
- Eman M Mohamed
- Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA
- Department of Pharmaceutics, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Sathish Dharani
- Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA
| | - Mohammad T H Nutan
- Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, Kingsville, TX 78363, USA
| | - Phillip Cook
- Eastman Chemical Company, Kingsport, TN 37662, USA
| | | | - Mansoor A Khan
- Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA
| | - Ziyaur Rahman
- Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
6
|
Flexible polymeric patch based nanotherapeutics against non-cancer therapy. Bioact Mater 2022; 18:471-491. [PMID: 35415299 PMCID: PMC8971585 DOI: 10.1016/j.bioactmat.2022.03.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/16/2022] Open
Abstract
Flexible polymeric patches find widespread applications in biomedicine because of their biological and tunable features including excellent patient compliance, superior biocompatibility and biodegradation, as well as high loading capability and permeability of drug. Such polymeric patches are classified into microneedles (MNs), hydrogel, microcapsule, microsphere and fiber depending on the formed morphology. The combination of nanomaterials with polymeric patches allows for improved advantages of increased curative efficacy and lowered systemic toxicity, promoting on-demand and regulated drug administration, thus providing the great potential to their clinic translation. In this review, the category of flexible polymeric patches that are utilized to integrate with nanomaterials is briefly presented and their advantages in bioapplications are further discussed. The applications of nanomaterials embedded polymeric patches in non-cancerous diseases were also systematically reviewed, including diabetes therapy, wound healing, dermatological disease therapy, bone regeneration, cardiac repair, hair repair, obesity therapy and some immune disease therapy. Alternatively, the limitations, latest challenges and future perspectives of such biomedical therapeutic devices are addressed. The most explored polymeric patches, such as microneedle, hydrogel, microsphere, microcapsule, and fiber are summarized. Polymeric patches integrated with a diversity of nanomaterials are systematically overviewed in non-cancer therapy. The future prospective for the development of polymeric patch based nanotherapeutics is discussed.
Collapse
|
7
|
Liu X, Sun S, Wang N, Kang R, Xie L, Liu X. Therapeutic application of hydrogels for bone-related diseases. Front Bioeng Biotechnol 2022; 10:998988. [PMID: 36172014 PMCID: PMC9510597 DOI: 10.3389/fbioe.2022.998988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 01/15/2023] Open
Abstract
Bone-related diseases caused by trauma, infection, and aging affect people’s health and quality of life. The prevalence of bone-related diseases has been increasing yearly in recent years. Mild bone diseases can still be treated with conservative drugs and can be cured confidently. However, serious bone injuries caused by large-scale trauma, fractures, bone tumors, and other diseases are challenging to heal on their own. Open surgery must be used for intervention. The treatment method also faces the problems of a long cycle, high cost, and serious side effects. Studies have found that hydrogels have attracted much attention due to their good biocompatibility and biodegradability and show great potential in treating bone-related diseases. This paper mainly introduces the properties and preparation methods of hydrogels, reviews the application of hydrogels in bone-related diseases (including bone defects, bone fracture, cartilage injuries, and osteosarcoma) in recent years. We also put forward suggestions according to the current development status, pointing out a new direction for developing high-performance hydrogels more suitable for bone-related diseases.
Collapse
Affiliation(s)
- Xiyu Liu
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Shuoshuo Sun
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Nan Wang
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Ran Kang
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China
- *Correspondence: Ran Kang, ; Lin Xie, ; Xin Liu,
| | - Lin Xie
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
- *Correspondence: Ran Kang, ; Lin Xie, ; Xin Liu,
| | - Xin Liu
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China
- *Correspondence: Ran Kang, ; Lin Xie, ; Xin Liu,
| |
Collapse
|
8
|
Huang Z, Staufenbiel S, Bodmeier R. Combination of co-crystal and nanocrystal techniques to improve the solubility and dissolution rate of poorly soluble drugs. Pharm Res 2022; 39:949-961. [PMID: 35552985 PMCID: PMC9160134 DOI: 10.1007/s11095-022-03243-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/21/2022] [Indexed: 11/24/2022]
Abstract
Purpose Solubility and dissolution rate are essential for the oral absorption and bioavailability of poorly soluble drugs. The aim of this study was to prepare nano-co-crystals by combination of nanocrystal and co-crystal technologies, and investigate its effect, in situ, on increased kinetic solubility and dissolution rate. Methods Co-crystals of itraconazole-fumaric acid, itraconazole-succinic acid, indomethacin-saccharin and indomethacin-nicotinamide were prepared and nano-sized by wet milling. The particle size and solid state of the co-crystals were characterized by optical microscope, LD, PCS, DSC and XRPD before and after milling. Results 300-450 nm sized nano-co-crystals with a stable physical solid state were successfully prepared. Nano-co-crystals exhibited a lower crystallinity reduction than nanocrystals after wet milling. The particle size effect on the kinetic solubility of co-crystals was analysed for macro-, micro- and nano-co-crystals with in situ kinetic solubility studies. The maximum kinetic solubility of nano-co-crystals increased with excess conditions until a plateau. The highest increase was obtained with itraconazole-succinic acid nano-co-crystals with a kinetic solubility of 263.5 ± 3.9 μg/mL which was 51.5 and 6.6 times higher than the solubility of raw itraconazole and itraconazole-succinic acid co-crystal. Conclusions The synergistic effect of nanocrystals and co-crystals with regard to increased kinetic solubility and dissolution rate was proven. The combination of the advantages of nanocrystals and co-crystals is a promising formulation strategy to increase both the solubility and dissolution rate of poorly soluble drugs. Supplementary Information The online version contains supplementary material available at 10.1007/s11095-022-03243-9.
Collapse
Affiliation(s)
- Zun Huang
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169, Berlin, Germany
| | - Sven Staufenbiel
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169, Berlin, Germany
| | - Roland Bodmeier
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169, Berlin, Germany.
| |
Collapse
|
9
|
Synergistic Interaction and Binding Efficiency of Tetracaine Hydrochloride (Anesthetic Drug) with Anionic Surfactants in the Presence of NaCl Solution Using Surface Tension and UV–Visible Spectroscopic Methods. Gels 2022; 8:gels8040234. [PMID: 35448135 PMCID: PMC9025005 DOI: 10.3390/gels8040234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Surfactants are ubiquitous materials that are used in diverse formulations of various products. For instance, they improve the formulation of gel by improving its wetting and rheological properties. Here, we describe the effects of anionic surfactants on an anesthetic drug, tetracaine hydrochloride (TCH), in NaCl solution with tensiometry and UV–visible techniques. Various micellar, interfacial, and thermodynamic parameters were estimated. The outputs were examined by using different theoretical models to attain a profound knowledge of drug–surfactant mixtures. The presence of attractive interactions among drug and surfactant monomers (synergism) in mixed micelle was inferred. However, it was found that sodium dodecyl sulfate (SDS) showed greater interactions with the drug in comparison to sodium lauryl sarcosine (SLS). The binding of the drug with surfactants was monitored with a spectroscopic technique (UV–visible spectra). The results of this study could help optimize the compositions of these mixed aggregates and find the synergism between monomers of different used amphiphiles.
Collapse
|
10
|
Anane-Adjei AB, Jacobs E, Nash SC, Askin S, Soundararajan R, Kyobula M, Booth J, Campbell A. Amorphous Solid Dispersions: Utilization and Challenges in Preclinical Drug Development within AstraZeneca. Int J Pharm 2021; 614:121387. [PMID: 34933082 DOI: 10.1016/j.ijpharm.2021.121387] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/23/2021] [Accepted: 12/12/2021] [Indexed: 01/04/2023]
Abstract
The poor aqueous solubility of many active pharmaceutical ingredients (APIs) dominates much of the early drug development portfolio and poses a major challenge in pharmaceutical development. Polymer-based amorphous solid dispersions (ASDs) are becoming increasingly common and offer a promising formulation strategy to tackle the solubility and oral absorption issues of these APIs. This review discusses the design, manufacture, and utilisation of ASD formulations in preclinical drug development, with a key focus on the pre-formulation assessments and workflows employed at AstraZeneca.
Collapse
Affiliation(s)
- Akosua B Anane-Adjei
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK
| | - Esther Jacobs
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK
| | - Samuel C Nash
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK
| | - Sean Askin
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK
| | - Ramesh Soundararajan
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK
| | - Mary Kyobula
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK
| | - Jonathan Booth
- Pharmaceutical Technology & Development, AstraZeneca, Charter Way, Macclesfield, SK10 2NA, UK
| | - Andrew Campbell
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK.
| |
Collapse
|
11
|
De Capua A, Palladino A, Chino M, Attanasio C, Lombardi A, Vecchione R, Netti PA. Active targeting of cancer cells by CD44 binding peptide-functionalized oil core-based nanocapsules. RSC Adv 2021; 11:24487-24499. [PMID: 35481036 PMCID: PMC9036919 DOI: 10.1039/d1ra03322k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/01/2021] [Indexed: 01/08/2023] Open
Abstract
Selectivity in tumor targeting is one of the major issues in cancer treatment. Therefore, surface functionalization of drug delivery systems with active moieties, able to selectively target tumors, has become a worldwide-recognized strategy. The CD44 receptor is largely used as a biomarker, being overexpressed in several tumors, and consequently as a target thanks to the identification of the CD44 binding peptide. Here we implemented the CD44 binding peptide logic onto an oil core–polymer multilayer shell, taking into account and optimizing all relevant features of drug delivery systems, such as small size (down to 100 nm), narrow size distribution, drug loading capability, antifouling and biodegradability. Besides promoting active targeting, the oil core-based system enables the delivery of natural and synthetic therapeutic compounds. Biological tests, using curcumin as a bioactive compound and fluorescent tag, demonstrated that CD44 binding peptide-functionalized nanocapsules selectively accumulate and internalize in cancer cells, compared to the control, thanks to ligand–receptor binding. CD44 binding peptide was implemented onto an oil core–polymer multilayer shell of 100 nm size and completely biodegradable. Biological tests, demonstrated that the proposed nanocarrier selectively accumulates and internalizes in cancer cells.![]()
Collapse
Affiliation(s)
- A De Capua
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia Largo Barsanti e Matteucci 53 Napoli 80125 Italy .,Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II Naples 80125 Italy
| | - A Palladino
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II Via F. Delpino 1 80137 Naples Italy
| | - M Chino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo Via Cintia 45 80126 Naples Italy
| | - C Attanasio
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia Largo Barsanti e Matteucci 53 Napoli 80125 Italy .,Department of Veterinary Medicine and Animal Productions, University of Naples Federico II Via F. Delpino 1 80137 Naples Italy
| | - A Lombardi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo Via Cintia 45 80126 Naples Italy
| | - R Vecchione
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia Largo Barsanti e Matteucci 53 Napoli 80125 Italy
| | - P A Netti
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia Largo Barsanti e Matteucci 53 Napoli 80125 Italy .,Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II Naples 80125 Italy.,Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II P. le Tecchio 80 80125 Naples Italy
| |
Collapse
|
12
|
Li H, Li M, Fu J, Ao H, Wang W, Wang X. Enhancement of oral bioavailability of quercetin by metabolic inhibitory nanosuspensions compared to conventional nanosuspensions. Drug Deliv 2021; 28:1226-1236. [PMID: 34142631 PMCID: PMC8218931 DOI: 10.1080/10717544.2021.1927244] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Quercetin-loaded nanosuspensions (Que-NSps) added metabolic inhibitors were evaluated as drug delivery system to promote the oral bioavailability of quercetin. Que-NSps were prepared respectively using d-alpha tocopherol acid polyethylene glycol succinate (TPGS) or Soybean Lecithin (SPC) as stabilizer. On the basis, Piperine (Pip) or sodium oleate (SO) was, respectively, encapsulated in Que-NSps as phase II metabolic inhibitors. The resulting Que-NSps all displayed a mean particle size of about 200 nm and drug loading content was in the range of 22.3–27.8%. The release of quercetin from Que-NSps was slow and sustained. After oral administration of 50 mg/kg different Que-NSps, the levels of free quercetin in plasma were significantly promoted, the concentration of quercetin metabolites (isorhamnetin and quercetin 3-O-β-d-Glucuronide) were decreased. The absolute bioavailability was, respectively 15.55%, 6.93%, 12.38%, and 23.58% for TPGS-Que-NSps, TPGS-SO-Que-NSps, SPC-Que-NSps, and SPC-Pip-Que-NSps, and 3.61% for quercetin water suspension. SPC-Pip-Que-NSps turned out to an ideal nanocarrier combined nano drug delivery system together with metabolic inhibitor to promote oral absorption of quercetin.
Collapse
Affiliation(s)
- Haowen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing, PR China
| | - Manzhen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing, PR China
| | - Jingxin Fu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing, PR China
| | - Hui Ao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing, PR China
| | - Weihua Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing, PR China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing, PR China
| |
Collapse
|
13
|
Salah E, Abouelfetouh MM, Pan Y, Chen D, Xie S. Solid lipid nanoparticles for enhanced oral absorption: A review. Colloids Surf B Biointerfaces 2020; 196:111305. [DOI: 10.1016/j.colsurfb.2020.111305] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/24/2020] [Accepted: 08/01/2020] [Indexed: 12/26/2022]
|
14
|
Dahlgren D, Sjögren E, Lennernäs H. Intestinal absorption of BCS class II drugs administered as nanoparticles: A review based on in vivo data from intestinal perfusion models. ADMET AND DMPK 2020; 8:375-390. [PMID: 35300192 PMCID: PMC8915587 DOI: 10.5599/admet.881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/10/2020] [Indexed: 12/24/2022] Open
Abstract
An established pharmaceutical strategy to increase oral drug absorption of low solubility–high permeability drugs is to create nanoparticles of them. Reducing the size of the solid-state particles increases their dissolution and transport rate across the mucus barrier and the aqueous boundary layer. Suspensions of nanoparticles also sometimes behave differently than those of larger particles in the fed state. This review compares the absorption mechanisms of nano- and larger particles in the lumen at different prandial states, with an emphasis on data derived from in vivo models. Four BSC class II drugs—aprepitant, cyclosporine, danazol and fenofibrate—are discussed in detail based on information from preclinical intestinal perfusion models.
Collapse
Affiliation(s)
- David Dahlgren
- Department of Pharmaceutical Biosciences, Translational Drug Discovery and Development, Uppsala University, Sweden
| | - Erik Sjögren
- Department of Pharmaceutical Biosciences, Translational Drug Discovery and Development, Uppsala University, Sweden
| | - Hans Lennernäs
- Department of Pharmaceutical Biosciences, Translational Drug Discovery and Development, Uppsala University, Sweden
| |
Collapse
|
15
|
Ubeyitogullari A, Ciftci ON. A novel and green nanoparticle formation approach to forming low-crystallinity curcumin nanoparticles to improve curcumin's bioaccessibility. Sci Rep 2019; 9:19112. [PMID: 31836788 PMCID: PMC6911079 DOI: 10.1038/s41598-019-55619-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/18/2019] [Indexed: 01/01/2023] Open
Abstract
Health-promoting effects of curcumin are well-known; however, curcumin has a very low bioavailability due to its crystalline structure. The main objective of this study was to develop a novel green nanoparticle formation method to generate low-crystallinity curcumin nanoparticles to enhance the bioavailability of curcumin. Nanoporous starch aerogels (NSAs) (surface area of 60 m2/g, pore size of 20 nm, density of 0.11 g/cm3, and porosity of 93%) were employed as a mold to produce curcumin nanoparticles with the help of supercritical carbon dioxide (SC-CO2). The average particle size of the curcumin nanoparticles was 66 nm. Impregnation into NSAs decreased the crystallinity of curcumin and did not create any chemical bonding between curcumin nanoparticles and the NSA matrix. The highest impregnation capacity was 224.2 mg curcumin/g NSA. Curcumin nanoparticles significantly enhanced the bioaccessibility of curcumin by 173-fold when compared to the original curcumin. The concentration of curcumin in the bioaccessible fraction was improved from 0.003 to 0.125 mg/mL by impregnation of curcumin into NSAs (42-fold). This is a novel approach to produce food grade curcumin nanoparticles with reduced crystallinity and maximize the utilization of curcumin due to increased bioaccessibility.
Collapse
Affiliation(s)
- Ali Ubeyitogullari
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588-6205, USA
| | - Ozan N Ciftci
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588-6205, USA.
| |
Collapse
|
16
|
Kotter LN, Groven LJ. Milling of Energetic Crystals with the LabRAM. PROPELLANTS EXPLOSIVES PYROTECHNICS 2019. [DOI: 10.1002/prep.201800327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lance N. Kotter
- Department of Chemical and Biological EngineeringSouth Dakota School of Mines and Technology 501 E St. Joseph St Rapid City SD 57701 USA
| | - Lori J. Groven
- Department of Chemical and Biological EngineeringSouth Dakota School of Mines and Technology 501 E St. Joseph St Rapid City SD 57701 USA
| |
Collapse
|
17
|
Mixed micelles of the antihistaminic cationic drug diphenhydramine hydrochloride with anionic and non-ionic surfactants show improved solubility, drug release and cytotoxicity of ethenzamide. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.12.070] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
State of the Art of Pharmaceutical Solid Forms: from Crystal Property Issues to Nanocrystals Formulation. ChemMedChem 2018; 14:8-23. [DOI: 10.1002/cmdc.201800612] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/09/2018] [Indexed: 12/11/2022]
|
19
|
Li F, Li L, Wang S, Yang Y, Li J, Liu D, Zhang S, Wang S, Xu H. Improved dissolution and oral absorption by co-grinding active drug probucol and ternary stabilizers mixtures with planetary beads-milling method. Asian J Pharm Sci 2018; 14:649-657. [PMID: 32104491 PMCID: PMC7032176 DOI: 10.1016/j.ajps.2018.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 10/09/2018] [Accepted: 12/09/2018] [Indexed: 12/12/2022] Open
Abstract
The objective of this work is to construct a nanosuspension drug delivery system of probucol, a BCS II drug, in order to improve its dissolution and oral bioavailability. The wet milling procedure using planetary beads-milling equipment was utilized to grind the raw probucol to ultrafine nanoparticle/nanocrystal aqueous suspension that was further solidified by freeze-drying process. Cellulose derivatives of different substitution groups and molecular weights, including HPMC, HPC, and MC, were evaluated as the primary stabilizer of probucol nanosuspension. Ternary stabilizers system composed of a primary stabilizer (cellulose derivative, i.e. HPC), a nonionic surfactant (Pluronic® F68), and an anionic surfactant (SDS) was employed to obtain probucol nanosuspension of finer particle size and enhanced dissolution in aqueous media. The probucol nanosuspension with good physical stability showed no obvious change of particle size even after storing over 7 d at 4 °C or 25 °C. The solidified probucol nanosuspension with trehalose as the cryoprotectant showed the highest dissolution rate (> 60% at 2 h) compared to other cryoprotectant. The in vivo pharmacokinetic evaluation indicated about 15-folds higher AUC value of the probucol nanosuspension compared to that of coarse probucol suspension after oral administration to rats. The probucol nanosuspension prepared by wet-milling and ternary stabilizers system may find wide applications for improving the dissolution and oral absorption of water-insoluble drugs.
Collapse
Affiliation(s)
- Fang Li
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Linsen Li
- Shenyang Medical College, Shenyang 110031, China
| | - Shaoning Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Yan Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Jia Li
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Dongchun Liu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Sijie Zhang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Siling Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Hui Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi 117004, China
| |
Collapse
|
20
|
Mechanistic modelling of intestinal drug absorption – The in vivo effects of nanoparticles, hydrodynamics, and colloidal structures. Eur J Pharm Biopharm 2018; 133:70-76. [DOI: 10.1016/j.ejpb.2018.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/24/2018] [Accepted: 10/05/2018] [Indexed: 11/21/2022]
|
21
|
Jejunal absorption of aprepitant from nanosuspensions: Role of particle size, prandial state and mucus layer. Eur J Pharm Biopharm 2018; 132:222-230. [DOI: 10.1016/j.ejpb.2018.09.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/23/2018] [Accepted: 09/24/2018] [Indexed: 02/06/2023]
|
22
|
Letchmanan K, Shen SC, Ng WK, Tan RB. Application of transglycosylated stevia and hesperidin as drug carriers to enhance biopharmaceutical properties of poorly-soluble artemisinin. Colloids Surf B Biointerfaces 2018; 161:83-93. [DOI: 10.1016/j.colsurfb.2017.10.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/26/2017] [Accepted: 10/06/2017] [Indexed: 12/17/2022]
|
23
|
Roos C, Dahlgren D, Berg S, Westergren J, Abrahamsson B, Tannergren C, Sjögren E, Lennernäs H. In Vivo Mechanisms of Intestinal Drug Absorption from Aprepitant Nanoformulations. Mol Pharm 2017; 14:4233-4242. [DOI: 10.1021/acs.molpharmaceut.7b00294] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carl Roos
- Department
of Pharmacy, Uppsala University, 752 36 Uppsala, Sweden
| | - David Dahlgren
- Department
of Pharmacy, Uppsala University, 752 36 Uppsala, Sweden
| | | | - Jan Westergren
- Wendelsbergs beräkningskemi AB, Kyrkvägen 7B, 435 35 Mölnlycke, Sweden
| | | | | | - Erik Sjögren
- Department
of Pharmacy, Uppsala University, 752 36 Uppsala, Sweden
| | - Hans Lennernäs
- Department
of Pharmacy, Uppsala University, 752 36 Uppsala, Sweden
| |
Collapse
|
24
|
Kumarasingha R, Karpe AV, Preston S, Yeo TC, Lim DSL, Tu CL, Luu J, Simpson KJ, Shaw JM, Gasser RB, Beale DJ, Morrison PD, Palombo EA, Boag PR. Metabolic profiling and in vitro assessment of anthelmintic fractions of Picria fel-terrae Lour. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2016; 6:171-178. [PMID: 27639945 PMCID: PMC5030326 DOI: 10.1016/j.ijpddr.2016.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 12/31/2022]
Abstract
Anthelmintic resistance is widespread in gastrointestinal nematode populations, such that there is a consistent need to search for new anthelmintics. However, the cost of screening for new compounds is high and has a very low success rate. Using the knowledge of traditional healers from Borneo Rainforests (Sarawak, Malaysia), we have previously shown that some traditional medicinal plants are a rich source of potential new anthelmintic drug candidates. In this study, Picria fel-terrae Lour. plant extract, which has previously shown promising anthelmintic activities, was fractionated via the use of a solid phase extraction cartridge and each isolated fraction was then tested on free-living nematode Caenorhabditis elegans and the parasitic nematode Haemonchus contortus. We found that a single fraction was enriched for nematocidal activity, killing ≥90% of C. elegans adults and inhibiting the motility of exsheathed L3 of H. contortus, while having minimal cytotoxic activity in mammalian cell culture. Metabolic profiling and chemometric analysis of the effective fraction indicated medium chained fatty acids and phenolic acids were highly represented. Chemical fractionation of Picria fel-terrae Lour. plant extract. Anthelmintic activity against Caenorhabditis elegans and Haemonchus contortus. Metabolic profiling and chemometric analysis of active fraction. Active fraction has minimal mammalian cytotoxicity.
Collapse
Affiliation(s)
- Rasika Kumarasingha
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, 3800, Australia
| | - Avinash V Karpe
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, 3122, Victoria, Australia; Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), Ecosciences Precinct, Dutton Park, 4102, Queensland, Australia
| | - Sarah Preston
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Tiong-Chia Yeo
- Sarawak Biodiversity Centre (SBC), KM 20 Jalan Borneo Heights, Semengoh, Locked Bag No. 3032, 93990, Kuching, Sarawak, Malaysia
| | - Diana S L Lim
- Sarawak Biodiversity Centre (SBC), KM 20 Jalan Borneo Heights, Semengoh, Locked Bag No. 3032, 93990, Kuching, Sarawak, Malaysia
| | - Chu-Lee Tu
- Sarawak Biodiversity Centre (SBC), KM 20 Jalan Borneo Heights, Semengoh, Locked Bag No. 3032, 93990, Kuching, Sarawak, Malaysia
| | - Jennii Luu
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, East Melbourne, 3002, Victoria, Australia
| | - Kaylene J Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, East Melbourne, 3002, Victoria, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, 3052, Victoria, Australia
| | - Jillian M Shaw
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, 3122, Victoria, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - David J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), Ecosciences Precinct, Dutton Park, 4102, Queensland, Australia
| | - Paul D Morrison
- Australian Centre for Research on Separation Science (ACROSS), School of Applied Sciences, RMIT University, Melbourne, 3001, Victoria, Australia
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, 3122, Victoria, Australia
| | - Peter R Boag
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, 3800, Australia; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, 3010, Victoria, Australia.
| |
Collapse
|
25
|
Recent advances in the engineering of nanosized active pharmaceutical ingredients: Promises and challenges. Adv Colloid Interface Sci 2016; 228:71-91. [PMID: 26792017 DOI: 10.1016/j.cis.2015.11.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/28/2015] [Accepted: 11/18/2015] [Indexed: 11/22/2022]
Abstract
The advances in the field of nanotechnology have revolutionized the field of delivery of poorly soluble active pharmaceutical ingredients (APIs). Nanosized formulations have been extensively investigated to achieve a rapid dissolution and therefore pharmacokinetic properties similar to those observed in solutions. The present review outlines the recent advances, promises and challenges of the engineering nanosized APIs. The principles, merits, demerits and applications of the current 'bottom-up' and 'top-down' technologies by which the state of the art nanosized APIs can be produced were described. Although the number of research reports on the nanoparticle engineering topic has been growing in the last decade, the challenge is to take numerous research outcomes and convert them into strategies for the development of marketable products.
Collapse
|
26
|
Murdande SB, Shah DA, Dave RH. Impact of nanosizing on solubility and dissolution rate of poorly soluble pharmaceuticals. J Pharm Sci 2015; 104:2094-2102. [PMID: 25821105 DOI: 10.1002/jps.24426] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/02/2015] [Accepted: 02/26/2015] [Indexed: 11/10/2022]
Abstract
The quantitative determination of solubility and the initial dissolution rate enhancement of crystalline nanoparticles were critically investigated using a separation-based approach (ultracentrifugation and filtration). Four poorly soluble model compounds (griseofulvin, celecoxib, compound-X, and fenofibrate) were used in this investigation. The effect of the stabilizer concentration on the solubility of the unmilled compound was determined first to quantify its impact on the solubility and used for comparing solubility enhancement upon nanosizing. Methodologies were established for ultracentrifugation, ensuring satisfactory separation of crystalline nanoparticles. The data obtained using separation-based methodologies proved to be accurate, reproducible, and were in fair agreement with what would be predicted from the Ostwald-Freundlich equation. The dissolution studies under sink conditions were proved to be less efficient in quantifying the initial dissolution rate of crystalline nanoparticles. Nonsink dissolution experiments were able to reduce the high-dissolution velocity of nanoparticles and generated the best discriminative dissolution profile. The enhancement in initial dissolution rate was significantly less than that expected from the Noyes-Whitney equation based on surface area change. This discriminatory dissolution method can potentially be used further in the modeling of crystalline nanoparticles during drug development.
Collapse
Affiliation(s)
- Sharad B Murdande
- Drug Product Design, Pfizer Worldwide R&D, Groton, Connecticut 06340.
| | - Dhaval A Shah
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York 11201
| | - Rutesh H Dave
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York 11201
| |
Collapse
|
27
|
Yun JW, Kim SH, You JR, Kim WH, Jang JJ, Min SK, Kim HC, Chung DH, Jeong J, Kang BC, Che JH. Comparative toxicity of silicon dioxide, silver and iron oxide nanoparticles after repeated oral administration to rats. J Appl Toxicol 2015; 35:681-93. [DOI: 10.1002/jat.3125] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 12/14/2014] [Accepted: 12/23/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Jun-Won Yun
- Department of Experimental Animal Research, Biomedical Research Institute; Seoul National University Hospital; Seoul Republic of Korea
| | - Seung-Hyun Kim
- Department of Experimental Animal Research, Biomedical Research Institute; Seoul National University Hospital; Seoul Republic of Korea
| | - Ji-Ran You
- Department of Experimental Animal Research, Biomedical Research Institute; Seoul National University Hospital; Seoul Republic of Korea
| | - Woo Ho Kim
- Department of Pathology; Seoul National University College of Medicine; Seoul Republic of Korea
| | - Ja-June Jang
- Department of Pathology; Seoul National University College of Medicine; Seoul Republic of Korea
| | - Seung-Kee Min
- Department of Experimental Animal Research, Biomedical Research Institute; Seoul National University Hospital; Seoul Republic of Korea
- Department of Surgery; Seoul National University College of Medicine; Seoul Republic of Korea
| | - Hee Chan Kim
- Department of Biomedical Engineering, College of Medicine and Institute of Medical and Biological Engineering, Medical Research Center; Seoul National University; Seoul Republic of Korea
| | - Doo Hyun Chung
- Department of Pathology; Seoul National University College of Medicine; Seoul Republic of Korea
| | - Jayoung Jeong
- Division of Toxicological Research; National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety; Osong Republic of Korea
| | - Byeong-Cheol Kang
- Department of Experimental Animal Research, Biomedical Research Institute; Seoul National University Hospital; Seoul Republic of Korea
- Graduate School of Translational Medicine; Seoul National University College of Medicine; Seoul Republic of Korea
- Biomedical Center for Animal Resource and Development, N-BIO; Seoul National University; Seoul Republic of Korea
- Designed Animal and Transplantation Research Institute; Seoul National University; Pyeongchang-gun Gangwon-do Republic of Korea
| | - Jeong-Hwan Che
- Department of Experimental Animal Research, Biomedical Research Institute; Seoul National University Hospital; Seoul Republic of Korea
- Biomedical Center for Animal Resource and Development, N-BIO; Seoul National University; Seoul Republic of Korea
| |
Collapse
|
28
|
Cherniakov I, Domb AJ, Hoffman A. Self-nano-emulsifying drug delivery systems: an update of the biopharmaceutical aspects. Expert Opin Drug Deliv 2015; 12:1121-33. [DOI: 10.1517/17425247.2015.999038] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Nyankson E, Ober CA, DeCuir MJ, Gupta RB. Comparison of the Effectiveness of Solid and Solubilized Dioctyl Sodium Sulfosuccinate (DOSS) on Oil Dispersion Using the Baffled Flask Test, for Crude Oil Spill Applications. Ind Eng Chem Res 2014. [DOI: 10.1021/ie5017249] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emmanuel Nyankson
- Department
of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Courtney A. Ober
- Department
of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Matthew J. DeCuir
- Department
of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Ram B. Gupta
- Department
of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
30
|
Yao Y, Xie Y, Hong C, Li G, Shen H, Ji G. Development of a myricetin/hydroxypropyl-β-cyclodextrin inclusion complex: preparation, characterization, and evaluation. Carbohydr Polym 2014; 110:329-37. [PMID: 24906763 DOI: 10.1016/j.carbpol.2014.04.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/19/2014] [Accepted: 04/06/2014] [Indexed: 12/27/2022]
Abstract
Myricetin shows low oral bioavailability (<10%) in rats due to poor aqueous solubility, though it has various pharmacological activities. Complexation with cyclodextrins (CDs) is a potent pharmaceutical method to enhance the bioavailability of poorly soluble compounds. The myricetin/HP-β-CD inclusion complex was prepared and confirmed by DSC, PXRD, and SEM. Here, the inclusion mode is described in detail with regard to structural and energetic aspects using a phase solubility diagram and 1H NMR, NOESY, and FT-IR spectra. The water solubility and dissolution rate of myricetin were greatly enhanced by forming the myricetin/HP-β-CD inclusion complex. Consequently, the oral bioavailability of the myricetin/HP-β-CD inclusion complex in rats was effectively increased 9.4-fold over free myricetin, and its antioxidant activity was also improved. The present study provides useful information for the potential application of complexation with myricetin, a naturally occurring hydrophobic phenolic compound in herbal medicine.
Collapse
Affiliation(s)
- Yashu Yao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Xie
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Chao Hong
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guowen Li
- Pharmacy Department, Shanghai TCM-Integrated Hospital, Shanghai, China.
| | - Hongyi Shen
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
31
|
Liu X, Wang S, Chai L, Zhang D, Sun Y, Xu L, Sun J. A two-step strategy to design high bioavailable controlled-release nimodipine tablets: the push-pull osmotic pump in combination with the micronization/solid dispersion techniques. Int J Pharm 2013; 461:529-39. [PMID: 24374219 DOI: 10.1016/j.ijpharm.2013.12.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 11/27/2013] [Accepted: 12/15/2013] [Indexed: 10/25/2022]
Abstract
In order to decrease the fluctuation of blood concentration and to increase the oral bioavailability of nimodipine (NMD), a two-step strategy including the push-pull osmotic pump (PPOP) method in combination with micronization and solid dispersion techniques, was used to prepare the controlled-release high-bioavailability solid dosages. The optimization of formulation and process was conducted by comparing effects of different solubilization methods on release behavior of NMD. The in vitro dissolution studies indicated that both the two strategies were able to deliver NMD in the predetermined zero-order manner from 2 to 12h, regardless of effects of release media and agitation rates. Although the Cmax values of two PPOP tablets were lower than that of the reference formulation, both the Tmax values were prolonged, demonstrating the prominent controlled release performance. In comparison with the commercial reference tables, the relative bioavailability of the two formulations was 67.0% and 121.1%, respectively, indicating the solid dispersion technique was more efficient than the micronization technique in terms of solubilization capability and absorption enhancement. In summary, the two-step strategy, combining the push-pull osmotic pump method with the solid dispersion technique, is a very effective method to prepare high bioavailable controlled-release formulations of the poorly soluble drugs, i.e. NMD, taking into account the therapeutical efficiency and safety.
Collapse
Affiliation(s)
- Xiaohong Liu
- Department of Biopharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Shang Wang
- Department of Biopharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Liqing Chai
- Department of Biopharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China; Shanxi Provincial People's Hospital, No. 29, Shuangta Street, Taiyuan, China
| | - Dong Zhang
- Department of Biopharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yinghua Sun
- Department of Biopharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Lu Xu
- Department of Physical Chemistry, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Jin Sun
- Department of Biopharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China; Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China.
| |
Collapse
|
32
|
Surfactants modify the release from tablets made of hydrophobically modified poly (acrylic acid). RESULTS IN PHARMA SCIENCES 2013; 3:7-14. [PMID: 25755999 PMCID: PMC3940118 DOI: 10.1016/j.rinphs.2013.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 12/12/2022]
Abstract
Many novel pharmaceutically active substances are characterized by a high hydrophobicity and a low water solubility, which present challenges for their delivery as drugs. Tablets made from cross-linked hydrophobically modified poly (acrylic acid) (CLHMPAA), commercially available as Pemulen™, have previously shown promising abilities to control the release of hydrophobic model substances. This study further investigates the possibility to use CLHMPAA in tablet formulations using ibuprofen as a model substance. Furthermore, surfactants were added to the dissolution medium in order to simulate the presence of bile salts in the intestine. The release of ibuprofen is strongly affected by the presence of surfactant and/or buffer in the dissolution medium, which affect both the behaviour of CLHMPAA and the swelling of the gel layer that surrounds the disintegrating tablets. Two mechanisms of tablet disintegration were observed under shear, namely conventional dissolution of a soluble tablet matrix and erosion of swollen insoluble gel particles from the tablet. The effects of surfactant in the surrounding medium can be circumvented by addition of surfactant to the tablet. With added surfactant, tablets that may be insusceptible to the differences in bile salt level between fasted or fed states have been produced, thus addressing a central problem in controlled delivery of hydrophobic drugs. In other words CLHMPAA is a potential candidate to be used in tablet formulations for controlled release with poorly soluble drugs.
Collapse
|
33
|
Ilevbare GA, Liu H, Pereira J, Edgar KJ, Taylor LS. Influence of Additives on the Properties of Nanodroplets Formed in Highly Supersaturated Aqueous Solutions of Ritonavir. Mol Pharm 2013; 10:3392-403. [DOI: 10.1021/mp400228x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Grace A. Ilevbare
- Department of Industrial and
Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette,
Indiana
| | - Haoyu Liu
- Department of Sustainable
Biomaterials,
College of Natural Resources and Environment, Virginia Tech, Blacksburg,
Virginia
| | - Junia Pereira
- Department of Sustainable
Biomaterials,
College of Natural Resources and Environment, Virginia Tech, Blacksburg,
Virginia
| | - Kevin J. Edgar
- Department of Sustainable
Biomaterials,
College of Natural Resources and Environment, Virginia Tech, Blacksburg,
Virginia
| | - Lynne S. Taylor
- Department of Industrial and
Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette,
Indiana
| |
Collapse
|
34
|
Elgart A, Cherniakov I, Aldouby Y, Domb AJ, Hoffman A. Improved oral bioavailability of BCS class 2 compounds by self nano-emulsifying drug delivery systems (SNEDDS): the underlying mechanisms for amiodarone and talinolol. Pharm Res 2013; 30:3029-44. [PMID: 23686373 DOI: 10.1007/s11095-013-1063-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/17/2013] [Indexed: 01/26/2023]
Abstract
PURPOSE Superior bioavailability of BCS Class 2 compounds incorporated into SNEDDS was previously reported. This study aims to elucidate the underlying mechanisms accountable for this phenomenon. METHODS SNEDDS of amiodarone (AM) and talinolol were developed. Pharmacokinetic parameters were assessed in vivo. Effect on intestinal permeability, P-gp efflux and toxicity was evaluated in vitro (Caco-2) and ex vivo (Ussing). Solubilization was assessed in vitro (Dynamic Lipolysis Model). Effect on intraenterocyte metabolism was evaluated using CYP3A4 microsomes. RESULTS Oral administration of AM-SNEDDS and talinolol-SNEDDS resulted in higher and less variable AUC and Cmax. In vitro, higher talinolol-SNEDDS Papp indicated Pgp inhibition. Lipolysis of AM-SNEDDS resulted in higher AM concentration in the fraction available for absorption. Incubation of AM-SNEDDS with CYP3A4 indicated CYP inhibition. SNEDDS didn't alter mannitol Papp and TEER. SNEDDS effect was transient. CONCLUSIONS Multiple mechanisms are accountable for improved bioavailability and reduced variability of Class-2 compounds by SNEDDS: increased solubilization, reduced intraenterocyte metabolism and reduced P-gp efflux. SNEDDS effect is reversible and doesn't cause intestinal tissue or cell damage. These comprehensive findings can be used for intelligent selection of drugs for which oral bioavailability will improve upon incorporation into SNEDDS, based on recognition of the drug's absorption barriers and the ability of SNEDDS to overcome them.
Collapse
Affiliation(s)
- Anna Elgart
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, P.O.Box 12065, Jerusalem, 91120, Israel
| | | | | | | | | |
Collapse
|
35
|
Cyclodextrin-water soluble polymer ternary complexes enhance the solubility and dissolution behaviour of poorly soluble drugs. Case example: Itraconazole. Eur J Pharm Biopharm 2013. [DOI: 10.1016/j.ejpb.2012.11.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Sigfridsson K, Lundqvist A, Strimfors M. Evaluation of exposure properties after injection of nanosuspensions and microsuspenions into the intraperitoneal space in rats. Drug Dev Ind Pharm 2012; 39:1832-9. [PMID: 23240709 DOI: 10.3109/03639045.2012.738684] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the present paper, BA99 and AC88 were used as model compounds for intraperitoneal (i.p.) administration to Sprague-Dawley rats. A major problem for the compounds, like many others newly developed pharmaceutical drugs, is the poor solubility in water. To solve solubility related problems, development of nanosuspensions is an attractive alternative. Both compounds are suitable for nanosuspensions, using the milling approach. After 2 weeks in freezer, the nanoparticles aggregated to form particles in the 400-2000 nm interval. However, following a 20 s ultrasonication step, the original particle sizes (about 200 nm) were obtained. Adding 5% mannitol before the samples were frozen abolished aggregation. It is also possible to freeze-dry the nanosuspension in the presence of 5% mannitol and re-disperse the formulation in water. Nanosuspensions of both compounds were injected i.p. to rats at 5 and 500 µmoL/kg. At the low dose, also a microsuspension was administered. I.p. administration resulted in overall improved C(max) for both AC88 and BA99 compared to s.c. and oral administration. I.p. is the preferred route of administration of tolerable drugs when a fast onset of action is desired and when a significant first passage metabolism occurs. The net charge of the active molecule appeared to affect the absorption kinetics. In the present work, the neutral molecule was favored over the negatively charged one.
Collapse
Affiliation(s)
- Kalle Sigfridsson
- Pharmaceutical Development, AstraZeneca R&D Mölndal , Mölndal , Sweden
| | | | | |
Collapse
|
37
|
Taupitz T, Dressman JB, Klein S. New formulation approaches to improve solubility and drug release from fixed dose combinations: case examples pioglitazone/glimepiride and ezetimibe/simvastatin. Eur J Pharm Biopharm 2012; 84:208-18. [PMID: 23246797 DOI: 10.1016/j.ejpb.2012.11.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 11/16/2012] [Accepted: 11/19/2012] [Indexed: 11/17/2022]
Abstract
Low aqueous solubility is often a limiting aspect to the bioavailability of poorly soluble, but highly permeable drugs (class II compounds according to the Biopharmaceutics Classification System - BCS) administered in single drug products or as fixed dose combinations. The aim of the present series of experiments was to improve the solubility and dissolution of two fixed dose combination formulations (FDC), each consisting of two BCS class II drugs. The first FDC contained a weak acid (glimepiride) and a weak base (pioglitazone), while the second FDC contained two compounds (simvastatin and ezetimibe) that are essentially non-ionised over the physiological pH range. The formulation approaches used were as follows: (a) an inclusion complex with hydroxypropyl-β-cyclodextrin (HP-β-CD), (b) a solid dispersion with Soluplus, a new highly water soluble polyvinyl caprolactam - polyvinyl acetate - polyethylene glycol graft copolymer and (c) a ternary inclusion complex with both HP-β-CD and Soluplus. Solid state analysis was performed for the pure drugs, and all formulations using powder X-ray diffraction (PXRD). The in vitro performance of the different formulation approaches, as gauged by solubility and dissolution experiments, was compared with that of the marketed products containing the respective fixed dose combinations, Tandemact 30 mg/4 mg tablets and Inegy 10 mg/40 mg tablets. The FDCs of the pure drugs and the marketed products showed very poor (and especially for pioglitazone, strongly pH-dependent) dissolution. By contrast, all binary and ternary inclusion complexes showed enhanced release for both drugs in the FDC. The ternary inclusion complex generated synergistic improvement in solubility and dissolution results for both FDCs. For example, in pH conditions of the fasted small intestine after a test duration of 240 min, we observed 100% dissolution of both drugs from the ternary pioglitazone/glimepiride (30 mg/4 mg) complex formulation, whereas from the marketed formulation less than 5% pioglitazone, and only 25% glimepiride dissolved. Using the same conditions, 60% ezetimibe and 85% simvastatin dissolved from the ternary ezetimibe/simvastatin (10 mg/40 mg) complex formulation, whereas with less than 5% ezetimibe and 10% simvastatin dissolved after 240 min, the marketed FDC formulation showed poor dissolution. Based on the results of the present study, the bioavailability of both drugs in the fixed dose combination is likely to be increased after oral administration of the new formulations, especially when the fixed dose combination is formulated as a ternary complex consisting of HP-β-CD and Soluplus.
Collapse
Affiliation(s)
- Thomas Taupitz
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt, Germany
| | | | | |
Collapse
|
38
|
Ghosh I, Schenck D, Bose S, Ruegger C. Optimization of formulation and process parameters for the production of nanosuspension by wet media milling technique: Effect of Vitamin E TPGS and nanocrystal particle size on oral absorption. Eur J Pharm Sci 2012; 47:718-28. [DOI: 10.1016/j.ejps.2012.08.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 08/01/2012] [Accepted: 08/15/2012] [Indexed: 10/28/2022]
|
39
|
Gao L, Liu G, Ma J, Wang X, Zhou L, Li X, Wang F. Application of drug nanocrystal technologies on oral drug delivery of poorly soluble drugs. Pharm Res 2012; 30:307-24. [PMID: 23073665 DOI: 10.1007/s11095-012-0889-z] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 09/12/2012] [Indexed: 12/31/2022]
Abstract
The limited solubility and dissolution rate exhibited by poorly soluble drugs is major challenges in the pharmaceutical process. Following oral administration, the poorly soluble drugs generally show a low and erratic bioavailability which may lead to therapeutic failure. Pure drug nanocrystals, generated by "bottom up" or "top down" technologies, facilitate a significant improvement on dissolution behavior of poorly soluble drugs due to their enormous surface area, which in turn lead to substantial improvement in oral absorption. This is the most distinguished achievement of drug nanocrystals among their performances in various administration routes, reflected by the fact that most of the marketed products based on the nanocrystals technology are for oral application. After detailed investigations on various technologies associated with production of drug nanocrystals and their in vitro physicochemical properties, during the last decade more attentions have been paid into their in vivo behaviors. This review mainly describes the in vivo performances of oral drug nanocrystals exhibited in animals related to the pharmacokinetic, efficacy and safety characteristics. The technologies and evaluation associated with the solidification process of the drug nanocrystals suspensions were also discussed in detail.
Collapse
Affiliation(s)
- Lei Gao
- Department of Pharmacy, The First Affiliated Hospital of General Hospital of PLA, No. 51 Fucheng Road, Beijing, 100048, China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Ghosh I, Schenck D, Bose S, Liu F, Motto M. Identification of critical process parameters and its interplay with nanosuspension formulation prepared by top down media milling technology--a QbD perspective. Pharm Dev Technol 2012; 18:719-29. [PMID: 23061898 DOI: 10.3109/10837450.2012.723720] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The purpose of this study was to optimize the process parameters of a poorly soluble drug by top down media milling process using different polymer systems. Process parameters including agitation rate (RPM), size of grinding media and drug content were studied through a Quality by Design (QbD) approach, using three different polymeric stabilizers (HPMC 3 cps, PVP K-30 and HPC-EXF) with the addition of Vitamin E TPGS as a surface active agent. From the statistical analysis, the RPM of the media milling was determined to be the most significant process parameter with respect to influence on particle size. The effects of varying the size of grinding media or drug content were not found to be as significant as the effects of RPM. Finally, the polymeric stabilizer played an important role in the production of nanoparticles. Among the different polymers, HPMC stabilized systems demonstrated superior results with regards to the consistency in producing successful nanoparticles and inhibition of crystal growth during storage. This study established the interplay among the formulation parameters in order to select the design space, which helped us in the identification and rank ordering of critical and noncritical variables related to the quality attributes of nanosuspension formulation during the early phase of product development.
Collapse
Affiliation(s)
- Indrajit Ghosh
- Pharmaceutical Development Unit, Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, NJ 07936, USA.
| | | | | | | | | |
Collapse
|
41
|
Möschwitzer JP. Drug nanocrystals in the commercial pharmaceutical development process. Int J Pharm 2012; 453:142-56. [PMID: 23000841 DOI: 10.1016/j.ijpharm.2012.09.034] [Citation(s) in RCA: 263] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 10/27/2022]
Abstract
Nanosizing is one of the most important drug delivery platform approaches for the commercial development of poorly soluble drug molecules. The research efforts of many industrial and academic groups have resulted in various particle size reduction techniques. From an industrial point of view, the two most advanced top-down processes used at the commercial scale are wet ball milling and high pressure homogenization. Initial issues such as abrasion, long milling times and other downstream-processing challenges have been solved. With the better understanding of the biopharmaceutical aspects of poorly water-soluble drugs, the in vivo success rate for drug nanocrystals has become more apparent. The clinical effectiveness of nanocrystals is proven by the fact that there are currently six FDA approved nanocrystal products on the market. Alternative approaches such as bottom-up processes or combination technologies have also gained considerable interest. Due to the versatility of nanosizing technology at the milligram scale up to production scale, nanosuspensions are currently used at all stages of commercial drug development, Today, all major pharmaceutical companies have realized the potential of drug nanocrystals and included this universal formulation approach into their decision trees.
Collapse
Affiliation(s)
- Jan P Möschwitzer
- Pharmaceutical Development, Abbott GmbH & Co. KG, Knollstr. 50, 67061 Ludwigshafen am Rhein, Germany.
| |
Collapse
|
42
|
Burton L, Ying W, Gandhi R, West R, Huang C, Zhou S, Shah K, Chen J, Shen X. Development of a precipitation-resistant solution formulation to increase in vivo exposure of a poorly water-soluble compound. Int J Pharm 2012; 433:94-101. [DOI: 10.1016/j.ijpharm.2012.04.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 04/02/2012] [Accepted: 04/30/2012] [Indexed: 11/26/2022]
|
43
|
Kesisoglou F, Mitra A. Crystalline nanosuspensions as potential toxicology and clinical oral formulations for BCS II/IV compounds. AAPS JOURNAL 2012; 14:677-87. [PMID: 22736294 DOI: 10.1208/s12248-012-9383-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/08/2012] [Indexed: 11/30/2022]
Abstract
Nanosuspensions, formulations based on the reduction of the active pharmaceutical ingredient (API) particle size in the sub-micron range and most typically around 100-200 nm, represent a valuable option for formulators to facilitate oral absorption of Biopharmaceutics Classification System class II and IV compounds. Their ability to increase the API dissolution rate and subsequent absorption and thus oral bioavailability has been demonstrated in preclinical and clinical settings. This review summarizes the current experience in the biopharmaceutic field with the use of nanosuspensions as oral delivery formulations. The principles behind nanosuspensions as well as the in vitro and in silico evaluation are discussed, while examples are presented highlighting both successes as well as limitations in their application as either toxicology or clinical formulations.
Collapse
Affiliation(s)
- Filippos Kesisoglou
- Biopharmaceutics, Product Value Enhancement, Pharmaceutical Sciences and Clinical Supply, Merck & Co, Inc, WP75B-210, 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486-0004, USA.
| | | |
Collapse
|
44
|
Fischer SM, Parmentier J, Buckley ST, Reimold I, Brandl M, Fricker G. Oral bioavailability of ketoprofen in suspension and solution formulations in rats: the influence of poloxamer 188. J Pharm Pharmacol 2012; 64:1631-7. [DOI: 10.1111/j.2042-7158.2012.01541.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract
Objectives
The aim of the current study was to investigate the effect of poloxamer 188 (P-188) on the bioavailability of the BCS class 2 drug ketoprofen in vivo.
Methods
Aqueous suspension and solution formulations of ketoprofen with and without P-188 were orally administered to fasted male Wistar rats. The intrinsic dissolution rate and solubility of ketoprofen in simulated intestinal fluid, in both the presence and absence of P-188, was measured.
Key findings
The AUC and Cmax were found to be significantly enhanced when ketoprofen was administered as suspension and P-188 was present in the formulation (Susp P-188) as compared to the surfactant-free formulation (∼4-fold higher AUC, 7-fold higher Cmax). While drug solubility appeared to be almost unaffected by P-188, a significantly faster dissolution was observed. In addition, the influence of P-188 on the drug absorption process was investigated by comparison of solution formulations with and without P-188.
Conclusions
The in-vivo performance of these solutions, a pure buffer solution and a P-188-containing buffer solution showed no significant difference, suggesting that the increase in bioavailability for Susp P-188 was primarily a consequence of the dissolution rate-enhancing effect.
Collapse
Affiliation(s)
- Sarah Maud Fischer
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls University, Heidelberg, Germany
| | - Johannes Parmentier
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls University, Heidelberg, Germany
| | - Stephen Timothy Buckley
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Isolde Reimold
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls University, Heidelberg, Germany
| | - Martin Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls University, Heidelberg, Germany
| |
Collapse
|
45
|
Gao L, Liu G, Ma J, Wang X, Zhou L, Li X. Drug nanocrystals: In vivo performances. J Control Release 2012; 160:418-30. [DOI: 10.1016/j.jconrel.2012.03.013] [Citation(s) in RCA: 241] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/08/2012] [Indexed: 01/08/2023]
|
46
|
Lipospheres and pro-nano lipospheres for delivery of poorly water soluble compounds. Chem Phys Lipids 2012; 165:438-53. [DOI: 10.1016/j.chemphyslip.2012.01.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 01/24/2012] [Accepted: 01/24/2012] [Indexed: 12/20/2022]
|
47
|
Fu Q, Kou L, Gong C, Li M, Sun J, Zhang D, Liu M, Sui X, Liu K, Wang S, He Z. Relationship between dissolution and bioavailability for nimodipine colloidal dispersions: The critical size in improving bioavailability. Int J Pharm 2012; 427:358-64. [DOI: 10.1016/j.ijpharm.2012.02.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/07/2012] [Accepted: 02/10/2012] [Indexed: 12/11/2022]
|
48
|
Wang L, Hao Y, Liu N, Ma M, Yin Z, Zhang X. Enhance the dissolution rate and oral bioavailability of pranlukast by preparing nanosuspensions with high-pressure homogenizing method. Drug Dev Ind Pharm 2012; 38:1381-9. [PMID: 22300415 DOI: 10.3109/03639045.2011.652636] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Pranlukast, one of the potential therapeutic tools in the treatment of asthma, has limited clinical applications due to its poor water solubility. The study is aimed to provide a platform for better utilizing pranlukast with enhancement of the dissolution rate and, thus, the oral bioavailability of pranluka'st by preparing nanosuspensions through high-pressure homogenization method. METHOD Poloxamer407 and PEG200 were chosen as stabilizer and surfactant. The formulation was investigated systematically with the dissolution tests as predominant method. Nanosuspensions were prepared by programmed high-pressure homogenization method. The product was characterized by particle size analysis, TEM and XRD are evaluated by in vitro dissolution tests and in vivo absorption examination. In addition, nanosuspensions with only pranlukast were prepared and compared with formulated nanosuspensions. RESULTS The optimal values of formulation were 0.5% (w/v) pranlukast with 0.375% (w/v) Poloxamer407, 0.375% (w/v) PEG200 and the screened programming homogenizing procedure parameters were 680 bar for the first 15 circles, 1048 bar for the next 9 circles and 1500 bar for the last 9 circles. Nanosuspensions of 318.2 ± 7.3 nm, -29.3 ± 0.8 mV were obtained. The XRD analysis indicated no change of crystalline occurred in the process of homogenization. The in vitro dissolution behavior of nanosuspensions exhibited complete release in 30 min with a remarkable fast dissolution rate. The in vivo bioavailability of formulated pranlukast nanosuspensions demonstrated its enhancement of fast onset of therapeutic drug effects with 4.38-fold improved compared to that of raw crystals. CONCLUSION The study provides a feasible, practical thinking of industry development in the clinical use of pranlukast.
Collapse
Affiliation(s)
- Lan Wang
- Laboratory of Pharmaceutics, School of Medicine, Tsinghua University, Beijing, China
| | | | | | | | | | | |
Collapse
|
49
|
Tanaka Y, Inkyo M, Yumoto R, Nagai J, Takano M, Nagata S. Nanoparticulation of probucol, a poorly water-soluble drug, using a novel wet-milling process to improvein vitrodissolution andin vivooral absorption. Drug Dev Ind Pharm 2011; 38:1015-23. [DOI: 10.3109/03639045.2011.637051] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Tozuka Y, Imono M, Uchiyama H, Takeuchi H. A novel application of α-glucosyl hesperidin for nanoparticle formation of active pharmaceutical ingredients by dry grinding. Eur J Pharm Biopharm 2011; 79:559-65. [DOI: 10.1016/j.ejpb.2011.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/15/2011] [Accepted: 07/18/2011] [Indexed: 11/24/2022]
|