1
|
Feng J, Zhang Y. The potential benefits of polyphenols for corneal diseases. Biomed Pharmacother 2023; 169:115862. [PMID: 37979379 DOI: 10.1016/j.biopha.2023.115862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023] Open
Abstract
The cornea functions as the primary barrier of the ocular surface, regulating temperature and humidity while providing protection against oxidative stress, harmful stimuli and pathogenic microorganisms. Corneal diseases can affect the biomechanical and optical properties of the eye, resulting in visual impairment or even blindness. Due to their diverse origins and potent biological activities, plant secondary metabolites known as polyphenols offer potential advantages for treating corneal diseases owing to their anti-inflammatory, antioxidant, and antibacterial properties. Various polyphenols and their derivatives have demonstrated diverse mechanisms of action in vitro and in vivo, exhibiting efficacy against a range of corneal diseases including repair of tissue damage, treatment of keratitis, inhibition of neovascularization, alleviation of dry eye syndrome, among others. Therefore, this article presents a concise overview of corneal and related diseases, along with an update on the research progress of natural polyphenols in safeguarding corneal health. A more comprehensive understanding of natural polyphenols provides a novel perspective for secure treatment of corneal diseases.
Collapse
Affiliation(s)
- Jing Feng
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Yangyang Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China.
| |
Collapse
|
2
|
Jin L, Li X, Chen X, Chen X, Liu Y, Xu H, Wang Q, Tang Z. A study on puerarin in situ gel eye drops: Formulation optimization and pharmacokinetics on rabbits by microdialysis. Int J Pharm 2023:123176. [PMID: 37364779 DOI: 10.1016/j.ijpharm.2023.123176] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/02/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Puerarin (PUE), an isoflavonoid isolated from Pueraria lobata (Willd) Ohwi root, is a β-adrenergic receptor inhibitor used in treating glaucoma. The concentration range of gellan gum was determined based on the formulation viscosity and gelling capacity. PVP-K30 and gellan gum were used as variables, with the viscosity of formulation: STF = 40: 21, the 4 h permeation rate of rabbit isolated sclera, and 2 h in vitro release rate as response values. The JMP software was used to optimize the results, presenting that gellan gum was the main factor influencing viscosity. The in vitro release and permeation rate were primarily influenced by PVP-K30. The optimal prescription was 0.45% gellan gum and 6.0% PVP-K30. The in vitro release and permeation characteristics of puerarin in situ gel (PUE-ISG) were investigated using PUE solution as a control. The dialysis bag method results indicated that the release of the solution group leveled off after 4 h, while the PUE-ISG group had been continuously releasing. However, the cumulative release rates of the two were no longer significantly different at 10 h. The cumulative permeation rates of the ISG and solution groups were not significantly different (P > 0.05) in the rabbit isolated sclera. The apparent permeability Papp and steady-state flux Jss of PUE-ISG were 0.950 ± 0.059 cm·h-1 and 9.504 ± 0.587 mg·cm-2·h-1, respectively. A sensitive and stable HPLC-MS/MS analytical method for quantifying aqueous humor concentrations of PUE was validated. A microdialysis technique was successfully used in the aqueous humor pharmacokinetics study to sample aqueous humor from rabbit eye continuously. The results revealed that PUE-ISG significantly increased the drug concentration in the aqueous humor, with Cmax and AUC(0-t) 3.77 and 4.40 times higher than those of the solution group, respectively. Tmax was also significantly prolonged, indicating good prospects for clinical application. The developed PUE-ISG preparation has the characteristics of rapid drug release and sustained permeation, and increase the drug concentration in aqueous humor, with all inactive ingredients remaining within the maximum allowable limits recommended by the FDA guideline.
Collapse
Affiliation(s)
- Lu Jin
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiumin Li
- Dezhou Food and Drug Inspection Center, Dezhou, Shandong, China
| | - Xu Chen
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xinghao Chen
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ye Liu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haonan Xu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qiao Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, PR China.
| | - Zhan Tang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, PR China.
| |
Collapse
|
3
|
An H, Deng X, Wang F, Xu P, Wang N. Dendrimers as Nanocarriers for the Delivery of Drugs Obtained from Natural Products. Polymers (Basel) 2023; 15:polym15102292. [PMID: 37242865 DOI: 10.3390/polym15102292] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Natural products have proven their value as drugs that can be therapeutically beneficial in the treatment of various diseases. However, most natural products have low solubility and poor bioavailability, which pose significant challenges. To solve these issues, several drug nanocarriers have been developed. Among these methods, dendrimers have emerged as vectors for natural products due to their superior advantages, such as a controlled molecular structure, narrow polydispersity index, and the availability of multiple functional groups. This review summarizes current knowledge on the structures of dendrimer-based nanocarriers for natural compounds, with a particular focus on applications in alkaloids and polyphenols. Additionally, it highlights the challenges and perspectives for future development in clinical therapy.
Collapse
Affiliation(s)
- Huan An
- Department of TCM Literature, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Xuehui Deng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310007, China
| | - Fang Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310007, China
| | - Pingcui Xu
- Department of TCM Literature, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Nani Wang
- Department of TCM Literature, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| |
Collapse
|
4
|
Patel C, Pande S, Sagathia V, Ranch K, Beladiya J, Boddu SHS, Jacob S, Al-Tabakha MM, Hassan N, Shahwan M. Nanocarriers for the Delivery of Neuroprotective Agents in the Treatment of Ocular Neurodegenerative Diseases. Pharmaceutics 2023; 15:837. [PMID: 36986699 PMCID: PMC10052766 DOI: 10.3390/pharmaceutics15030837] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Retinal neurodegeneration is considered an early event in the pathogenesis of several ocular diseases, such as diabetic retinopathy, age-related macular degeneration, and glaucoma. At present, there is no definitive treatment to prevent the progression or reversal of vision loss caused by photoreceptor degeneration and the death of retinal ganglion cells. Neuroprotective approaches are being developed to increase the life expectancy of neurons by maintaining their shape/function and thus prevent the loss of vision and blindness. A successful neuroprotective approach could prolong patients' vision functioning and quality of life. Conventional pharmaceutical technologies have been investigated for delivering ocular medications; however, the distinctive structural characteristics of the eye and the physiological ocular barriers restrict the efficient delivery of drugs. Recent developments in bio-adhesive in situ gelling systems and nanotechnology-based targeted/sustained drug delivery systems are receiving a lot of attention. This review summarizes the putative mechanism, pharmacokinetics, and mode of administration of neuroprotective drugs used to treat ocular disorders. Additionally, this review focuses on cutting-edge nanocarriers that demonstrated promising results in treating ocular neurodegenerative diseases.
Collapse
Affiliation(s)
- Chirag Patel
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Sonal Pande
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Vrunda Sagathia
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Ketan Ranch
- Department of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Jayesh Beladiya
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates
| | - Moawia M. Al-Tabakha
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Nageeb Hassan
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy & Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Moyad Shahwan
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy & Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| |
Collapse
|
5
|
Rastogi V, Yadav P, Porwal M, Sur S, Verma A. Dendrimer as nanocarrier for drug delivery and drug targeting therapeutics: a fundamental to advanced systematic review. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2158334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Vaibhav Rastogi
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, India
| | - Pragya Yadav
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Mayur Porwal
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, India
| | - Souvik Sur
- Research and Development Center, Teerthanker Mahaveer University, Moradabad, India
| | - Anurag Verma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, India
| |
Collapse
|
6
|
Teja PK, Mithiya J, Kate AS, Bairwa K, Chauthe SK. Herbal nanomedicines: Recent advancements, challenges, opportunities and regulatory overview. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153890. [PMID: 35026510 DOI: 10.1016/j.phymed.2021.153890] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 11/14/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Herbal Nano Medicines (HNMs) are nano-sized medicine containing herbal drugs as extracts, enriched fractions or biomarker constituents. HNMs have certain advantages because of their increased bioavailability and reduced toxicities. There are very few literature reports that address the common challenges of herbal nanoformulations, such as selecting the type/class of nanoformulation for an extract or a phytochemical, selection and optimisation of preparation method and physicochemical parameters. Although researchers have shown more interest in this field in the last decade, there is still an urgent need for systematic analysis of HNMs. PURPOSE This review aims to provide the recent advancement in various herbal nanomedicines like polymeric herbal nanoparticles, solid lipid nanoparticles, phytosomes, nano-micelles, self-nano emulsifying drug delivery system, nanofibers, liposomes, dendrimers, ethosomes, nanoemulsion, nanosuspension, and carbon nanotube; their evaluation parameters, challenges, and opportunities. Additionally, regulatory aspects and future perspectives of herbal nanomedicines are also being covered to some extent. METHODS The scientific data provided in this review article are retrieved by a thorough analysis of numerous research and review articles, textbooks, and patents searched using the electronic search tools like Sci-Finder, ScienceDirect, PubMed, Elsevier, Google Scholar, ACS, Medline Plus and Web of Science. RESULTS In this review, the authors suggested the suitability of nanoformulation for a particular type of extracts or enriched fraction of phytoconstituents based on their solubility and permeability profile (similar to the BCS class of drugs). This review focuses on different strategies for optimising preparation methods for various HNMs to ensure reproducibility in context with all the physicochemical parameters like particle size, surface area, zeta potential, polydispersity index, entrapment efficiency, drug loading, and drug release, along with the consistent therapeutic index. CONCLUSION A combination of herbal medicine with nanotechnology can be an essential tool for the advancement of herbal medicine research with enhanced bioavailability and fewer toxicities. Despite the challenges related to traditional medicine's safe and effective use, there is huge scope for nanotechnology-based herbal medicines. Overall, it is well stabilized that herbal nanomedicines are safer, have higher bioavailability, and have enhanced therapeutic value than conventional herbal and synthetic drugs.
Collapse
Affiliation(s)
- Parusu Kavya Teja
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Jinal Mithiya
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Abhijeet S Kate
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Khemraj Bairwa
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India..
| | - Siddheshwar K Chauthe
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India..
| |
Collapse
|
7
|
Herbal medicine for ocular diseases: An age old therapy and its future perspective. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Silva B, São Braz B, Delgado E, Gonçalves L. Colloidal nanosystems with mucoadhesive properties designed for ocular topical delivery. Int J Pharm 2021; 606:120873. [PMID: 34246741 DOI: 10.1016/j.ijpharm.2021.120873] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
Over the last years, the scientific interest about topical ocular delivery targeting the posterior segment of the eye has been increasing. This is probably due to the fact that this is a non-invasive administration route, well tolerated by patients and with fewer local and systemic side effects. However, it is a challenging task due to the external ocular barriers, tear film clearance, blood flow in the conjunctiva and choriocapillaris and due to the blood-retinal barriers, amongst other features. An enhanced intraocular bioavailability of drugs can be achieved by either improving corneal permeability or by improving precorneal retention time. Regarding this last option, increasing residence time in the precorneal area can be achieved using mucoadhesive polymers such as xyloglucan, poly(acrylate), hyaluronic acid, chitosan, and carbomers. On the other hand, colloidal particles can interact with the ocular mucosa and enhance corneal and conjunctival permeability. These nanosystems are able to deliver a wide range of drugs, including macromolecules, providing stability and improving ocular bioavailability. New pharmaceutical approaches based on nanotechnology associated to bioadhesive compounds have emerged as strategies for a more efficient treatment of ocular diseases. Bearing this in mind, this review provides an overview of the current mucoadhesive colloidal nanosystems developed for ocular topical administration, focusing on their advantages and limitations.
Collapse
Affiliation(s)
- Beatriz Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Berta São Braz
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Esmeralda Delgado
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| |
Collapse
|
9
|
Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102487] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Ultra-small nanocomplexes based on polyvinylpyrrolidone K-17PF: A potential nanoplatform for the ocular delivery of kaempferol. Eur J Pharm Sci 2020; 147:105289. [DOI: 10.1016/j.ejps.2020.105289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/07/2020] [Accepted: 03/01/2020] [Indexed: 02/06/2023]
|
11
|
Zhang L. Pharmacokinetics and drug delivery systems for puerarin, a bioactive flavone from traditional Chinese medicine. Drug Deliv 2019; 26:860-869. [PMID: 31524010 PMCID: PMC6758605 DOI: 10.1080/10717544.2019.1660732] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
Pueraria lobata (Willd.) Ohwi is a medicinal and edible homologous plant with a long history in China. Puerarin, the main component isolated from the root of Pueraria lobata, possesses a wide range of pharmacological properties. Daidzein and glucuronides are the main metabolites of puerarin and are excreted in the urine and feces. As active substrates of P-gp, multidrug resistance-associated protein and multiple metabolic enzymes, the pharmacokinetics of puerarin can be influenced by different pathological conditions and drug-drug interactions. Due to the poor water-solubility and liposolubility, the applications of puerarin are limited. So far, only puerarin injections and eye drops are on the market. Recent years, researches on improving the bioavailability of puerarin are developing rapidly, various nanotechnologies and preparation technologies including microemulsions and SMEDDS, dendrimers, nanoparticles and nanocrystals have been researched to improve the bioavailability of puerarin. In order to achieve biocompatibility and desired activity, more effective quality evaluations of nanocarriers are required. In this review, we summarize the pharmacokinetics and drug delivery systems of puerarin up to date.
Collapse
Affiliation(s)
- Liang Zhang
- College of Animal Pharmaceutical Sciences, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, PR China
| |
Collapse
|
12
|
Lancina MG, Wang J, Williamson GS, Yang H. DenTimol as A Dendrimeric Timolol Analogue for Glaucoma Therapy: Synthesis and Preliminary Efficacy and Safety Assessment. Mol Pharm 2018; 15:2883-2889. [PMID: 29767982 DOI: 10.1021/acs.molpharmaceut.8b00401] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this work, we report the synthesis and characterization of DenTimol, a dendrimer-based polymeric timolol analog, as a glaucoma medication. A timolol precursor ( S)-4-[4-(oxiranylmethoxy)-1,2,5-thiadiazol-3-yl]morpholine (OTM) was reacted with the heterobifunctional amine polyethylene glycol acetic acid (amine-PEG-acetic acid, Mn = 2000 g/mol) via a ring opening reaction of an epoxide by an amine to form the OTM-PEG conjugate. OTM-PEG was then coupled to an ethylenediamine (EDA) core polyamidoamine (PAMAM) dendrimer G3 to generate DenTimol using the N-(3-(dimethylamino)propyl)- N'-ethylcarbodiimide hydrochloride (EDC)/ N-hydroxysuccinimide (NHS) coupling reaction. MALDI mass spectrometry, 1H NMR spectroscopy, and HPLC were applied to characterize the intermediate and final products. Ex vivo corneal permeation of DenTimol was assessed using the Franz diffusion cell system mounted with freshly extracted rabbit cornea. The cytotoxicity of DenTimol was assessed using the WST-1 assay. Our results show that DenTimol is nontoxic up to an OTM equivalent concentration of 100 μM. DenTimol is efficient at crossing the cornea. About 8% of the dendrimeric drug permeated through the cornea in 4 h. Its IOP-lowering effect was observed in normotensive adult Brown Norway male rats. Compared to the undosed eye, an IOP reduction by an average of 7.3 mmHg (∼30% reduction from baseline) was observed in the eye topically treated with DenTimol (2 × 5 μL, 0.5% w/v timolol equivalent) in less than 30 min. Daily dosing of DenTimol for a week did not cause any irritation or toxicity as confirmed by the histological examination of ocular tissues, including the cornea, ciliary body, and retina.
Collapse
Affiliation(s)
- Michael G Lancina
- Department of Biomedical Engineering , Virginia Commonwealth University , Richmond , Virginia 23284 , United States
| | - Juan Wang
- Department of Chemical & Life Science Engineering , Virginia Commonwealth University , Richmond , Virginia 23219 , United States
| | - Geoffrey S Williamson
- Department of Biomedical Engineering , Virginia Commonwealth University , Richmond , Virginia 23284 , United States
| | - Hu Yang
- Department of Chemical & Life Science Engineering , Virginia Commonwealth University , Richmond , Virginia 23219 , United States.,Department of Pharmaceutics , Virginia Commonwealth University , Richmond , Virginia 23298 , United States.,Massey Cancer Center , Virginia Commonwealth University , Richmond , Virginia 23298 , United States
| |
Collapse
|
13
|
Bhattacharjee A, Das PJ, Adhikari P, Marbaniang D, Pal P, Ray S, Mazumder B. Novel drug delivery systems for ocular therapy: With special reference to liposomal ocular delivery. Eur J Ophthalmol 2018; 29:113-126. [PMID: 29756507 DOI: 10.1177/1120672118769776] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Delivery of drugs to eyes is a great challenge to researchers because of a number of barriers in the eye preventing the actual dose from reaching the site. A number of ophthalmic delivery systems have been developed in the past couple of years that are not only new but also safe and reliable and help to overcome all those barriers in the eye which are responsible for the very less bioavailability of drugs. In this review, we tried to focus on current research in ocular delivery of drug substances giving special emphasis to liposomal delivery system. A brief analysis of other novel ocular delivery systems, ocular physiology, and microbial sources of disease are also highlighted herein. We analyzed the various research findings for churning a general idea for novel ocular delivery system and its future use. The novel formulations may overcome the addressed problems of ophthalmic medication and comply with the quality assurance issues. The liposomal delivery is advantageous as they have the ability to entrap both hydrophobic and hydrophilic drugs and are suitable for delivery to both the anterior and posterior segment of the eye. Therefore, the use of this alternative approach is quite a necessity.
Collapse
Affiliation(s)
| | - Pranab J Das
- 1 Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Piya Adhikari
- 1 Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Daphisha Marbaniang
- 1 Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Paulami Pal
- 1 Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Subhabrata Ray
- 2 Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, India
| | - Bhaskar Mazumder
- 1 Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| |
Collapse
|
14
|
Awwad S, Mohamed Ahmed AHA, Sharma G, Heng JS, Khaw PT, Brocchini S, Lockwood A. Principles of pharmacology in the eye. Br J Pharmacol 2017; 174:4205-4223. [PMID: 28865239 PMCID: PMC5715579 DOI: 10.1111/bph.14024] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022] Open
Abstract
The eye is a highly specialized organ that is subject to a huge range of pathology. Both local and systemic disease may affect different anatomical regions of the eye. The least invasive routes for ocular drug administration are topical (e.g. eye drops) and systemic (e.g. tablets) formulations. Barriers that subserve as protection against pathogen entry also restrict drug permeation. Topically administered drugs often display limited bioavailability due to many physical and biochemical barriers including the pre-corneal tear film, the structure and biophysiological properties of the cornea, the limited volume that can be accommodated by the cul-de-sac, the lacrimal drainage system and reflex tearing. The tissue layers of the cornea and conjunctiva are further key factors that act to restrict drug delivery. Using carriers that enhance viscosity or bind to the ocular surface increases bioavailability. Matching the pH and polarity of drug molecules to the tissue layers allows greater penetration. Drug delivery to the posterior segment is a greater challenge and, currently, the standard route is via intravitreal injection, notwithstanding the risks of endophthalmitis and retinal detachment with frequent injections. Intraocular implants that allow sustained drug release are at different stages of development. Novel exciting therapeutic approaches include methods for promoting transscleral delivery, sustained release devices, nanotechnology and gene therapy.
Collapse
Affiliation(s)
- Sahar Awwad
- UCL School of PharmacyLondonUK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | - Abeer H A Mohamed Ahmed
- UCL School of PharmacyLondonUK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | - Garima Sharma
- UCL School of PharmacyLondonUK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | - Jacob S Heng
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | - Peng T Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | - Steve Brocchini
- UCL School of PharmacyLondonUK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | | |
Collapse
|
15
|
Andrés-Guerrero V, Bravo-Osuna I, Pastoriza P, Molina-Martinez IT, Herrero-Vanrell R. Novel technologies for the delivery of ocular therapeutics in glaucoma. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
16
|
Pharmaceutical microscale and nanoscale approaches for efficient treatment of ocular diseases. Drug Deliv Transl Res 2017; 6:686-707. [PMID: 27766598 DOI: 10.1007/s13346-016-0336-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Efficient treatment of ocular diseases can be achieved thanks to the proper use of ophthalmic formulations based on emerging pharmaceutical approaches. Among them, microtechnology and nanotechnology strategies are of great interest in the development of novel drug delivery systems to be used for ocular therapy. The location of the target site in the eye as well as the ophthalmic disease will determine the route of administration (topical, intraocular, periocular, and suprachoroidal administration) and the most adequate device. In this review, we discuss the use of colloidal pharmaceutical systems (nanoparticles, liposomes, niosomes, dendrimers, and microemulsions), microparticles (microcapsules and microspheres), and hybrid systems (combination of different strategies) in the treatment of ophthalmic diseases. Emphasis has been placed in the therapeutic significance of each drug delivery system for clinical translation.
Collapse
|
17
|
Function Oriented Molecular Design: Dendrimers as Novel Antimicrobials. Molecules 2017; 22:molecules22101581. [PMID: 28934169 PMCID: PMC6151464 DOI: 10.3390/molecules22101581] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 12/03/2022] Open
Abstract
In recent years innovative nanostructures are attracting increasing interest and, among them, dendrimers have shown several fields of application. Dendrimers can be designed and modified in plentiful ways giving rise to hundreds of different molecules with specific characteristics and functionalities. Biomedicine is probably the field where these molecules find extraordinary applicability, and this is probably due to their multi-valency and to the fact that several other chemicals can be coupled to them to obtain desired compounds. In this review we will describe the different production strategies and the tools and technologies for the study of their characteristics. Finally, we provide a panoramic overview of their applications to meet biomedical needs, especially their use as novel antimicrobials.
Collapse
|
18
|
Abstract
Existing methods of administering ocular drugs are limited in either their safety or efficiency. Nanomedicine therapies have the potential to address this deficiency by creating vehicles that can control drug biodistribution. Dendrimers are synthetic polymeric nanoparticles with a unique highly organized branching structure. In recent years, promising results using dendrimer vehicles to deliver ocular drugs through different routes of administration have been reported. In this review, we briefly summarize these results with emphasis on the dendrimer modifications used to target different ocular structures.
Collapse
Affiliation(s)
- Michael G. Lancina
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Hu Yang
- Department of Chemical & Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23219, United States
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
| |
Collapse
|
19
|
Shetty PK, Manikkath J, Tupally K, Kokil G, Hegde AR, Raut SY, Parekh HS, Mutalik S. Skin Delivery of EGCG and Silibinin: Potential of Peptide Dendrimers for Enhanced Skin Permeation and Deposition. AAPS PharmSciTech 2017; 18:2346-2357. [PMID: 28124212 DOI: 10.1208/s12249-017-0718-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/10/2017] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to evaluate the ability of the peptide dendrimers to facilitate transdermal delivery of antioxidants, silibinin, and epigallocatechin-3-gallate (EGCG). Drug-peptide dendrimer complexes were prepared and evaluated for their ability to permeate across the skin. The data revealed the ready formation of complexes between drug and peptide dendrimer in a molar ratio of 1:1. In vitro permeation studies using excised rat skin and drug-peptide dendrimer complexes showed highest values for cumulative drug permeation at the end of 12 h (Q12), with corresponding permeability coefficient (Kp) and enhancement ratio values also determined at this time point. With silibinin, 3.96-, 1.81-, and 1.06-fold increase in skin permeation was observed from silibinin-peptide dendrimer complex, simultaneous application of silibinin + peptide dendrimer, and pretreatment of skin with peptide dendrimer, respectively, in comparison with passive diffusion. With EGCG, 9.82-, 2.04-, and 1.72-fold increase in skin permeation was observed from EGCG-peptide dendrimer complex, simultaneous application of EGCG + peptide dendrimer, and pretreatment of skin with peptide dendrimer, respectively, in comparison with passive diffusion. The present study demonstrates the application of peptide dendrimers in effectively delivering antioxidants such as EGCG and silibinin into the skin, thus offering the potential to provide antioxidant effects when delivered via appropriately formulated topical preparations.
Collapse
|
20
|
Lancina MG, Singh S, Kompella UB, Husain S, Yang H. Fast Dissolving Dendrimer Nanofiber Mats as Alternative to Eye Drops for More Efficient Antiglaucoma Drug Delivery. ACS Biomater Sci Eng 2017; 3:1861-1868. [PMID: 29152562 DOI: 10.1021/acsbiomaterials.7b00319] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyamidoamine (PAMAM) dendrimers have been investigated as a potential platform for a number of ocular drugs, but only in aqueous solution. In this work we have developed fast dissolving dendrimer-based nanofibers (DNF) as a topical delivery vehicle for the glaucoma drug brimonidine tartrate (BT). The safety and drug release kinetics of these nanofiber mats were evaluated in vitro and in vivo. DNF caused no toxicity at therapeutic levels in cultured cells or ocular irritation in animal tests using a normotensive rat model. Intra-ocular pressure response was equivalent between DNF and BT solution in a single dose test, but DNF showed improved efficacy with daily dosing over a 3-week test period. This study indicates electrospun dendrimer nanofibers are a viable alternative to aqueous solutions as a more efficient method of administering antiglaucoma drug topically.
Collapse
Affiliation(s)
- Michael G Lancina
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, Virginia 23284, United States
| | - Sudha Singh
- Department of Ophthalmology, Medical University of South Carolina, 167 Ashley Avenue, Charleston, South Carolina 29425, United States
| | - Uday B Kompella
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12700 East 19 Avenue, Aurora, Colorado 80045, United States
| | - Shahid Husain
- Department of Ophthalmology, Medical University of South Carolina, 167 Ashley Avenue, Charleston, South Carolina 29425, United States
| | - Hu Yang
- Department of Chemical & Life Science Engineering, Virginia Commonwealth University, 737 North 5 Street, Richmond, Virginia 23219, United States.,Department of Pharmaceutics, Virginia Commonwealth University, 410 North 12 Street, Richmond, Virginia 23298, United States.,Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23298, United States
| |
Collapse
|
21
|
Tai L, Liu C, Jiang K, Chen X, Wei G, Lu W, Pan W. Noninvasive delivery of oligonucleotide by penetratin-modified polyplexes to inhibit protein expression of intraocular tumor. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2091-2100. [PMID: 28435135 DOI: 10.1016/j.nano.2017.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/08/2017] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
Abstract
Our present study aimed to develop an antisense oligonucleotide (ASO) delivery system to achieve gene silencing in intraocular tumor via topical instillation. ASO specific for luciferase was chosen as model drug, polyamidoamine (PG5) was employed to condense ASO, and penetratin (Pene) was used to enhance cellular uptake. Nanoscale PG5/ASO/Pene polyplex was stabilized via noncovalent bonding. In vitro evaluations indicated that PG5/ASO/Pene exhibited improved cell-penetrating and gene silencing ability compared with naked ASO and PG5/ASO. Subcutaneous and orthotopic tumor models expressing luciferase were established in nude mice. After treated by PG5/ASO/Pene, immunohistochemical results of subcutaneous tumors showed significant inhibition of luciferase expression via peritumoral injection, and bioluminescence from orthotopic tumor was obviously weakened via topical instillation. To date, few works were successful in noninvasive treatment of intraocular diseases using antisense strategy, this penetratin-modified polyplex could be a promising vector to inhibit protein expression by effectively delivering ASOs into the eye.
Collapse
Affiliation(s)
- Lingyu Tai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Chang Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Kuan Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Xishan Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Gang Wei
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China.
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
22
|
Liu C, Jiang K, Tai L, Liu Y, Wei G, Lu W, Pan W. Facile Noninvasive Retinal Gene Delivery Enabled by Penetratin. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19256-67. [PMID: 27400087 DOI: 10.1021/acsami.6b04551] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Gene delivery to the posterior segment of the eye is severely hindered by the impermeability of defensive barriers; therefore, in clinical settings, genomic medicines are mainly administered by intravitreal injection. We previously found that penetratin could transport the covalently conjugated fluorophore to the fundus oculi by topical instillation. In this study, gene delivery systems enabled by penetratin were designed based on electrostatic binding to target the retina via a noninvasive administration route and prepared with red fluorescent protein plasmid (pRFP) and/or poly(amidoamine) dendrimer of low molecular weight (G3 PAMAM). Formulation optimization, structure confirmation, and characterization were subsequently conducted. Penetratin alone showed limited ability to condense the plasmid but had powerful uptake and transfection by corneal and conjunctival cells. G3 PAMAM was nontoxic to the ocular cells, and when introduced into the penetratin-incorporated complex, the plasmid was condensed more compactly. Therefore, further improved cellular uptake and transfection were observed. After being instilled in the conjunctival sac of rats, the intact complexes penetrated rapidly from the ocular surface into the fundus and resided in the retina for more than 8 h, which resulted in efficient expression of RFP in the posterior segment. Intraocular distribution of the complexes suggested that the plasmids were absorbed into the eyes through a noncorneal pathway during which penetratin played a crucial role. This study provides a facile and friendly approach for intraocular gene delivery and is an important step toward the development of noninvasive gene therapy for posterior segment diseases.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Kuan Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Lingyu Tai
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University , Shanghai 201203, China
- School of Pharmacy, Shenyang Pharmaceutical University , Shenyang 110016, China
| | - Yu Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Gang Wei
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University , Shenyang 110016, China
| |
Collapse
|
23
|
Rodríguez Villanueva J, Navarro MG, Rodríguez Villanueva L. Dendrimers as a promising tool in ocular therapeutics: Latest advances and perspectives. Int J Pharm 2016; 511:359-366. [PMID: 27436708 DOI: 10.1016/j.ijpharm.2016.07.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/12/2016] [Accepted: 07/15/2016] [Indexed: 12/25/2022]
Abstract
Dendrimers have called the attention of scientists in the area of drug and gene delivery over the last two decades for their versatility, complexity and multibranching properties. Some strategies for optimizing drug pharmacokinetics and site-specific targeting using dendrimers have been proposed. Among them, those related to treating and managing ocular diseases are of special interest. Ocular therapies suffer from significant disadvantages, including frequent administration, poor penetration and/or rapid elimination. This review provides an overview of the recent and promising progress in the dendrimers field, focusing on both the anterior and posterior segments of the eye ocular targets, the use of dendrimers as a strategy for overcoming obstacles to the traditional treatment of ocular diseases and an outlook on future directions. Finally, a first approach to ocular safety with dendrimers is intended that accounts for the state-of-the-art science to date.
Collapse
Affiliation(s)
- Javier Rodríguez Villanueva
- Biomedical Sciences Department, Pharmacy and Pharmaceutical Technology Unit, Faculty of Pharmacy, Ctra. Madrid-Barcelona (Autovía A-II) Km. 33,600, 28805, Alcalá de Henares, Madrid, Spain; Faculty of Pharmacy, University of Alcalá, Alcalá de Henares, Madrid, Spain.
| | - Manuel Guzmán Navarro
- Biomedical Sciences Department, Pharmacy and Pharmaceutical Technology Unit, Faculty of Pharmacy, Ctra. Madrid-Barcelona (Autovía A-II) Km. 33,600, 28805, Alcalá de Henares, Madrid, Spain; Faculty of Pharmacy, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | | |
Collapse
|
24
|
|
25
|
Agarwal P, Rupenthal ID. In vitro and ex vivo corneal penetration and absorption models. Drug Deliv Transl Res 2016; 6:634-647. [DOI: 10.1007/s13346-015-0275-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Qin F, Zeng L, Zhu Y, Cao J, Wang X, Liu W. Preparation and evaluation of a timolol maleate drug–resin ophthalmic suspension as a sustained-release formulation in vitro and in vivo. Drug Dev Ind Pharm 2015; 42:535-45. [PMID: 26368660 DOI: 10.3109/03639045.2015.1085872] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Fuhong Qin
- Department of Pharmacy, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Zeng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yongtao Zhu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jingjing Cao
- Department of Pharmacy, Henan Provincial People’s Hospital, Zhengzhou, Henan, China, and
| | - Xiaohui Wang
- Department of Pharmacy, Luohe Central Hospital, Luohe, Henan, China
| | - Wei Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
27
|
Yu M, Jie X, Xu L, Chen C, Shen W, Cao Y, Lian G, Qi R. Recent Advances in Dendrimer Research for Cardiovascular Diseases. Biomacromolecules 2015; 16:2588-98. [DOI: 10.1021/acs.biomac.5b00979] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Maomao Yu
- Peking
University Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xu Jie
- School
of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Lu Xu
- Peking
University Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Cong Chen
- Peking
University Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wanli Shen
- School
of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Yini Cao
- Peking
University Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Guan Lian
- School
of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Rong Qi
- Peking
University Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China
- School
of Pharmacy, Shihezi University, Shihezi 832000, China
| |
Collapse
|
28
|
Cui SQ, Wang Q, Zheng Y, Xiao B, Sun HW, Gu XL, Zhang YC, Fu CH, Dong PX, Wang XM. Puerarin protects against damage to spatial learning and memory ability in mice with chronic alcohol poisoning. ACTA ACUST UNITED AC 2015; 48:515-22. [PMID: 25831201 PMCID: PMC4470310 DOI: 10.1590/1414-431x20144250] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/06/2014] [Indexed: 01/08/2023]
Abstract
We evaluated the effect of puerarin on spatial learning and memory ability of mice with chronic alcohol poisoning. A total of 30 male C57BL/6 mice were randomly divided into model, puerarin, and control groups (n=10 each). The model group received 60% (v/v) ethanol by intragastric administration followed by intraperitoneal injection of normal saline 30 min later. The puerarin group received intragastric 60% ethanol followed by intraperitoneal puerarin 30 min later, and the control group received intragastric saline followed by intraperitoneal saline. Six weeks after treatment, the Morris water maze and Tru Scan behavioral tests and immunofluorescence staining of cerebral cortex and hippocampal neurons (by Neu-N) and microglia (by Ib1) were conducted. Glutamic acid (Glu) and gamma amino butyric acid (GABA) in the cortex and hippocampus were assayed by high-performance liquid chromatography (HPLC), and tumor necrosis factor (TNF)-α and interleukin (IL)-1β were determined by ELISA. Compared with mice in the control group, escape latency and distance were prolonged, and spontaneous movement distance was shortened (P<0.05) by puerarin. The number of microglia was increased in both the cortex and hippocampal dentate gyrus (P<0.01), and neurons were reduced only in the hippocampal dentate gyrus (P<0.01) in puerarin-treated mice. In the model group, Glu and GABA levels decreased (P<0.05), and Glu/GABA, TNF-α, and IL-1β increased (P<0.01) with puerarin treatment, returning to near normal levels. In conclusion, puerarin protected against the effects of chronic alcohol poisoning on spatial learning and memory ability primarily because of anti-inflammatory activity and regulation of the balance of Glu and GABA.
Collapse
Affiliation(s)
- S Q Cui
- China Shandong Provincial Engineering Laboratory of New Pharmaceutical Excipients, Sustained and Controlled Release Technology, College of Medicine and Nursing, Dezhou University, Dezhou, China
| | - Q Wang
- Department of Physiology, Capital Medical University, Beijing, China
| | - Y Zheng
- Department of Physiology, Capital Medical University, Beijing, China
| | - B Xiao
- Department of Physiology, Capital Medical University, Beijing, China
| | - H W Sun
- China Shandong Provincial Engineering Laboratory of New Pharmaceutical Excipients, Sustained and Controlled Release Technology, College of Medicine and Nursing, Dezhou University, Dezhou, China
| | - X L Gu
- China Shandong Provincial Engineering Laboratory of New Pharmaceutical Excipients, Sustained and Controlled Release Technology, College of Medicine and Nursing, Dezhou University, Dezhou, China
| | - Y C Zhang
- China Shandong Provincial Engineering Laboratory of New Pharmaceutical Excipients, Sustained and Controlled Release Technology, College of Medicine and Nursing, Dezhou University, Dezhou, China
| | - C H Fu
- China Shandong Provincial Engineering Laboratory of New Pharmaceutical Excipients, Sustained and Controlled Release Technology, College of Medicine and Nursing, Dezhou University, Dezhou, China
| | - P X Dong
- China Shandong Provincial Engineering Laboratory of New Pharmaceutical Excipients, Sustained and Controlled Release Technology, College of Medicine and Nursing, Dezhou University, Dezhou, China
| | - X M Wang
- Department of Physiology, Capital Medical University, Beijing, China
| |
Collapse
|
29
|
Souza JG, Dias K, Silva SAM, de Rezende LCD, Rocha EM, Emery FS, Lopez RFV. Transcorneal iontophoresis of dendrimers: PAMAM corneal penetration and dexamethasone delivery. J Control Release 2014; 200:115-24. [PMID: 25553828 DOI: 10.1016/j.jconrel.2014.12.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/19/2014] [Accepted: 12/24/2014] [Indexed: 12/30/2022]
Abstract
Iontophoresis of nanocarriers in the eye has been proposed to sustain drug delivery and maintain therapeutic concentrations. Fourth generation polyamidoamine (PAMAM) dendrimers are semi-rigid nanoparticles with surface groups that are easily modified. These dendrimers are known to modulate tight junctions, increase paracellular transport of small molecules and be translocated across epithelial barriers, exhibiting high uptake by different cell lines. The first aim of this study was to investigate the effect of iontophoresis on PAMAM penetration and distribution into the cornea. The second aim was to evaluate, ex vivo and in vivo, the effect of these dendrimers in dexamethasone (Dex) transcorneal iontophoresis. Anionic (PAMAM G3.5) and cationic (PAMAM G4) dendrimers were labeled with fluorescein isothiocyanate (FITC), and their distribution in the cornea was investigated using confocal microscopy after ex vivo anodal and cathodal iontophoresis for various application times. The particle size distribution and zeta potential of the dendrimers in an isosmotic solution were determined using dynamic light scattering and Nanoparticle Tracking Analysis (NTA), where the movement of small particles and the formation of large aggregates, from 5 to 100 nm, could be observed. Transcorneal iontophoresis increased the intensity and depth of PAMAM-FITC fluorescence in the cornea, suggesting improved transport of the dendrimers across the epithelium toward the stroma. PAMAM complexes with Dex were characterized by (13)C-NMR, (1)H-NMR and DOSY. PAMAM G3.5 and PAMAM G4 increased the aqueous solubility of Dex by 10.3 and 3.9-fold, respectively; however, the particle size distribution and zeta potential remained unchanged. PAMAM G3.5 decreased the Dex diffusion coefficient 48-fold compared with PAMAM G4. The ex vivo studies showed that iontophoresis increased the amount of Dex that penetrated into the cornea by 2.9, 5.6 and 3.0-fold for Dex, Dex-PAMAM G4 and Dex-PAMAM G3.5, respectively. In vivo experiments, however, revealed that iontophoresis of Dex-PAMAM-G3.5 increased Dex concentration in the aqueous humor by 6.6-fold, while iontophoresis of Dex-PAMAM G4 and Dex increased it 2.5 and 2-fold, respectively. Therefore, iontophoresis targeted PAMAM to the cornea but it is the sustained delivery of the Dex from PAMAM that prevents its rapid elimination from the aqueous humor. In conclusion, iontophoresis of PAMAM complexes represents a promising strategy for targeted and sustained topical drug delivery to the eye.
Collapse
Affiliation(s)
- Joel G Souza
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Karina Dias
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Silas A M Silva
- Medicine Department, Federal University of São Paulo, SP, Brazil
| | - Lucas C D de Rezende
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Eduardo M Rocha
- Department of Ophthalmology, Otorhinolaryngology and Head & Neck Surgery, School of Medicine at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Flavio S Emery
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Renata F V Lopez
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
30
|
Yavuz B, Bozdağ Pehlivan S, Ünlü N. Dendrimeric systems and their applications in ocular drug delivery. ScientificWorldJournal 2013; 2013:732340. [PMID: 24396306 PMCID: PMC3874982 DOI: 10.1155/2013/732340] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/09/2013] [Indexed: 11/21/2022] Open
Abstract
Ophthalmic drug delivery is one of the most attractive and challenging research area for pharmaceutical scientists and ophthalmologists. Absorption of an ophthalmic drug in conventional dosage forms is seriously limited by physiological conditions. The use of nonionic or ionic biodegradable polymers in aqueous solutions and colloidal dosage forms such as liposomes, nanoparticles, nanocapsules, microspheres, microcapsules, microemulsions, and dendrimers has been studied to overcome the problems mentioned above. Dendrimers are a new class of polymeric materials. The unique nanostructured architecture of dendrimers has been studied to examine their role in delivery of therapeutics and imaging agents. Dendrimers can enhance drug's water solubility, bioavailability, and biocompatibility and can be applied for different routes of drug administration successfully. Permeability enhancer properties of dendrimers were also reported. The use of dendrimers can also reduce toxicity versus activity and following an appropriate application route they allow the delivery of the drug to the targeted site and provide desired pharmacokinetic parameters. Therefore, dendrimeric drug delivery systems are of interest in ocular drug delivery. In this review, the limitations related to eye's unique structure, the advantages of dendrimers, and the potential applications of dendrimeric systems to ophthalmology including imaging, drug, peptide, and gene delivery will be discussed.
Collapse
Affiliation(s)
- Burçin Yavuz
- Pharmaceutical Technology Department, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| | - Sibel Bozdağ Pehlivan
- Pharmaceutical Technology Department, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| | - Nurşen Ünlü
- Pharmaceutical Technology Department, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| |
Collapse
|
31
|
Kambhampati SP, Kannan RM. Dendrimer nanoparticles for ocular drug delivery. J Ocul Pharmacol Ther 2013; 29:151-65. [PMID: 23410062 DOI: 10.1089/jop.2012.0232] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Eye is a unique organ of perfection and complexity, and is a microcosm of the body in many ways. It represents a great opportunity for nanomedicine, since it is readily accessible-allowing for direct drug/gene delivery to maximize the therapeutic effect and minimize side effects. The development of appropriate delivery systems that can sustain and deliver therapeutics to the target tissues is a key challenge that can be addressed by nanotechnology. Dendrimers are tree-like, nanostructured polymers that have received significant attention as ocular drug delivery systems, due to their well-defined size, tailorable structure, and potentially favorable ocular biodistribution. In this review, we highlight recent developments in dendrimer-based ocular therapies for both anterior and posterior segment diseases.
Collapse
Affiliation(s)
- Siva P Kambhampati
- Department of Ophthalmology, Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | |
Collapse
|
32
|
Herrero-Vanrell R, Vicario de la Torre M, Andrés-Guerrero V, Barbosa-Alfaro D, Molina-Martínez I, Bravo-Osuna I. Nano and microtechnologies for ophthalmic administration, an overview. J Drug Deliv Sci Technol 2013. [DOI: 10.1016/s1773-2247(13)50016-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Karolczak K, Rozalska S, Wieczorek M, Labieniec-Watala M, Watala C. Poly(amido)amine dendrimers generation 4.0 (PAMAM G4) reduce blood hyperglycaemia and restore impaired blood–brain barrier permeability in streptozotocin diabetes in rats. Int J Pharm 2012; 436:508-18. [DOI: 10.1016/j.ijpharm.2012.06.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 06/09/2012] [Accepted: 06/11/2012] [Indexed: 01/03/2023]
|
34
|
Yu N, Dong G, Ge H, Jin D, Cui H, Liu P. The effects of sperminated pullulans on cornea permeability to puerarin and the toxicity. J Ocul Pharmacol Ther 2012; 28:497-501. [PMID: 22690870 DOI: 10.1089/jop.2011.0263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE To investigate the varied effects of sperminated pullulans (SP) with different amino residues on cornea permeability and its local toxicity. METHODS Three groups of rabbits were used: control, low-amino residue content SP (SP-L), and high-amino residue content SP (SP-H). The in vitro and in vivo spreading assays were combined with high performance liquid chromatography (HPLC) to measure the concentration of puerarin in the external medium or aqueous humor when 0% SP, 0.2% SP-L, and 0.2% SP-H were included. The toxicity of SP was determined by corneal hydration values, Draize score, aqueous humor protein concentration, corneal endothelial evaluation, as well as light microscopy and electron microscopy. RESULTS The application of 0.2% SP-L and 0.2% SP-H to the cornea in vitro increased puerarin apparent permeability coefficient by 1.96-fold (P<0.05) and 2.95-fold (P<0.01), respectively. SP-H showed stronger effect than SP-L (P<0.05). For the in vivo assay, those were 1.81-fold (P<0.05) and 3.71-fold (P<0.01), respectively. With the SP application, the corneal hydration values were <83% and Draize scores were <4, with no apparent changes in histological observations. CONCLUSION SP is one potential adjuvant promoting puerarin permeability to the cornea, and the high-content amino residue SP showed stronger effect, without ocular toxicity.
Collapse
Affiliation(s)
- Nannan Yu
- Eye Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | | | | | | | | | | |
Collapse
|
35
|
Liu S, Jones L, Gu FX. Nanomaterials for Ocular Drug Delivery. Macromol Biosci 2012; 12:608-20. [DOI: 10.1002/mabi.201100419] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 11/11/2011] [Indexed: 12/12/2022]
|
36
|
Yao C, Wang W, Zhou X, Qu T, Mu H, Liang R, Wang A, Sun K. Effects of poly(amidoamine) dendrimers on ocular absorption of puerarin using microdialysis. J Ocul Pharmacol Ther 2011; 27:565-9. [PMID: 21895496 DOI: 10.1089/jop.2010.0196] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PURPOSE The purpose of this study was to investigate the effects of poly(amidoamine) (PAMAM) dendrimers on ocular absorption of puerarin. METHODS The samples of rabbits' aqueous humor were collected by in vivo microdialysis. The ocular pharmacokinetic properties of puerarin were measured to evaluate the effects of PAMAM dendrimers on ocular absorption of puerarin. RESULTS In the pharmacokinetic studies, the AUC(0∼∞) values of puerarin solution with 0.2% (w/v) PAMAM dendrimers (G3.0, G4.0, G5.0) were greater than those in the control group by 2.3-, 3.5-, and 2.1-folds, respectively. The C(max) values of puerarin solution with 0.2% (w/v) PAMAM dendrimers were 1.5, 2.5, and 1.3 times the values of the control group and the t(1/2) values were significantly longer than that of control group. CONCLUSIONS Using PAMAM dendrimers might be a promising strategy to enhance the absorption of puerarin. The generation of PAMAM dendrimers may play a key role in increasing the ocular absorption of puerarin.
Collapse
Affiliation(s)
- Chen Yao
- School of Pharmacy, Yantai University, Yantai, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Wang WY, Yao C, Shao YF, Mu HJ, Sun KX. Determination of puerarin in rabbit aqueous humor by liquid chromatography tandem mass spectrometry using microdialysis sampling after topical administration of puerarin PAMAM dendrimer complex. J Pharm Biomed Anal 2011; 56:825-9. [PMID: 21831555 DOI: 10.1016/j.jpba.2011.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/11/2011] [Accepted: 07/14/2011] [Indexed: 11/17/2022]
Abstract
To study pharmacokinetic properties of puerarin poly(amido amine) (PAMAM) dendrimer complex, a sensitive liquid chromatography tandem mass spectrometry method (LC-MS/MS) was developed and validated to determine puerarin in rabbit aqueous humor using microdialysis sampling. Astilbin was used as the internal standard. The linear range for puerarin was from 2 to 1000ng/mL (r=0.9986) based on 20μL of aqueous humor. The coefficients of variations for intra-day and inter-day precisions were less than 10.0%, and the relative error of accuracy was within ±6.3%. The mean extraction recovery of puerarin varied from 80.4% to 85.5%. Microdialysis provides a complete concentration versus time profile. A significant difference was observed in main pharmacokinetic parameters of C(max), AUC and t(1/2) between puerarin solution and puerarin PAMAM dendrimer complex. Complex formation resulted in an obvious increase in bioavailability of puerarin after topical administration to rabbit according to the above LC-MS/MS assay method.
Collapse
Affiliation(s)
- Wen-Yan Wang
- School of Pharmacy, Yantai University, Yantai 264005, China; State Key Laboratory of Long-acting and Targeting Drug Delivery System, Yantai, China
| | | | | | | | | |
Collapse
|
38
|
Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 8:147-66. [PMID: 21703993 DOI: 10.1016/j.nano.2011.05.016] [Citation(s) in RCA: 804] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 04/12/2011] [Accepted: 05/29/2011] [Indexed: 11/29/2022]
Abstract
UNLABELLED Drug delivery is an interdisciplinary and independent field of research and is gaining the attention of pharmaceutical researchers, medical doctors and industry. A safe and targeted drug delivery could improve the performance of some classic medicines already on the market, and moreover, will have implications for the development and success of new therapeutic strategies such as anticancer drug delivery, peptide and protein delivery and gene therapy. In the last decade, several drug-delivery technologies have emerged and a fascinating part of this field is the development of nanoscale drug delivery devices. Nanoparticles (NPs) have been developed as an important strategy to deliver conventional drugs, recombinant proteins, vaccines and more recently, nucleotides. NPs and other colloidal drug-delivery systems modify the kinetics, body distribution and drug release of an associated drug. This review article focuses on the potential of nanotechnology in medicine and discusses different nanoparticulate drug-delivery systems including polymeric NPs, ceramic NPs, magnetic NPs, polymeric micelles and dendrimers as well as their applications in therapeutics, diagnostics and imaging. FROM THE CLINICAL EDITOR This comprehensive review focuses on different nanoparticulate drug-delivery systems including polymeric NPs, ceramic NPs, magnetic NPs, polymeric micelles and dendrimers as well as their applications in therapeutics, diagnostics and imaging.
Collapse
Affiliation(s)
- Suphiya Parveen
- Laboratory of Nanomedicine, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar, India
| | | | | |
Collapse
|