1
|
Chen H, Wang R, McElderry JD. Discriminative Dissolution Method Development Through an aQbD Approach. AAPS PharmSciTech 2023; 24:255. [PMID: 38066324 DOI: 10.1208/s12249-023-02692-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Using a one-factor-at-a-time approach for dissolution method and discrimination analysis can be time-consuming and may not yield the optimal and discriminative method. To address this, we have developed a two-stage workflow for the dissolution method development followed by demonstration of discrimination power through an analytical Quality by Design (aQbD) approach. In the first stage, an optimal dissolution method was achieved by determining the method operable design region (MODR) through a design of experiment study of the high-risk method-related parameters. In the second stage, we established a Formulation-Discrimination Correlation Diagram strategy to examine the method discrimination capability, through which one can determine the method discriminative design region (MDDR) and visualize the impact of each formulation parameter and their interactions on dissolution. The application of aQbD principles into a workflow provides a scientific-driven guidance for robust method development and demonstrating discrimination power for dissolution methods.
Collapse
Affiliation(s)
- Hongbo Chen
- Analytical Development, Biogen Inc., Cambridge, Massachusetts, 02142, USA.
| | - Rui Wang
- College of Pharmacy, The University of Tennessee Health Science Center, Memphis, Tennessee, 38163, USA
| | | |
Collapse
|
2
|
Yang R, Zhang GGZ, Zemlyanov DY, Purohit HS, Taylor LS. Drug Release from Surfactant-Containing Amorphous Solid Dispersions: Mechanism and Role of Surfactant in Release Enhancement. Pharm Res 2023; 40:2817-2845. [PMID: 37052841 DOI: 10.1007/s11095-023-03502-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023]
Abstract
PURPOSE To understand how surfactants affect drug release from ternary amorphous solid dispersions (ASDs), and to investigate different mechanisms of release enhancement. METHODS Ternary ASDs containing ritonavir (RTV), polyvinylpyrrolidone/vinyl acetate (PVPVA) and a surfactant (sodium dodecyl sulfate (SDS), Tween 80, Span 20 or Span 85) were prepared with rotary evaporation. Release profiles of ternary ASDs were measured with surface normalized dissolution. Phase separation morphologies of ASD compacts during hydration/dissolution were examined in real-time with a newly developed confocal fluorescence microscopy method. The water ingress rate of different formulations was measured with dynamic vapor sorption. Microscopy was employed to check for matrix crystallization during release studies. RESULTS All surfactants improved drug release at 30% DL, while only SDS and Tween 80 improved drug release at higher DLs, although SDS promoted matrix crystallization. The dissolution rate of neat polymer increased when SDS and Tween 80 were present. The water ingress rate also increased in the presence of all surfactants. Surfactant-incorporation affected both the kinetic and thermodynamics factors governing phase separation of RTV-PVPVA-water system, modifying the phase morphology during ASD dissolution. Importantly, SDS increased the miscibility of RTV-PVPVA-water system, whereas other surfactants mainly affected the phase separation kinetics/drug-rich barrier persistence. CONCLUSION Incorporation of surfactants enhanced drug release from RTV-PVPVA ASDs compared to the binary system. Increased drug-polymer-water miscibility and disruption of the drug-rich barrier at the gel-solvent interface via plasticization are highlighted as two key mechanisms underlying surfactant impacts based on direct visualization of the phase separation process upon hydration and release.
Collapse
Affiliation(s)
- Ruochen Yang
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Geoff G Z Zhang
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, IL, 60064, USA
| | - Dmitry Y Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Hitesh S Purohit
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, IL, 60064, USA.
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
3
|
Role of surfactants in improving release from higher drug loading amorphous solid dispersions. Int J Pharm 2022; 625:122120. [PMID: 35987321 DOI: 10.1016/j.ijpharm.2022.122120] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022]
Abstract
Amorphous solid dispersion formulations (ASD) are increasingly being used as a formulation strategy to improve bioavailability of poorly soluble drugs. One of the limitations of ASDs, in particular for high glass transition temperature (Tg) compounds, is the drug loading threshold (termed the limit of congruency, LoC) below which rapid, complete and congruent release of drug and polymer is achieved. In this study, several ionic and non-ionic surfactants were added to atazanavir-copovidone ASDs with the main goal of increasing the limit of congruency. Atazanavir (ATZ) is a relatively high Tg compound with a LoC of 5 % drug loading (DL). Surface normalized dissolution studies revealed that addition of 5 % w/w of surfactant, sodium dodecyl sulfate (SDS) or cetrimonium bromide (CTAB), to the binary copovidone-based ASD doubled the LoC (from 5 to 10 % DL), resulting in a more than 30-fold increase in total release compared to the corresponding binary ASD. Moreover, addition of 5 % of Span®80 increased the LoC to 15 % DL. ASD Tg was found to decrease upon addition of surfactants and water sorption extent was found to increase. We speculate that surfactants act as plasticizers, which may facilitate polymer release from ASDs containing a high Tg drug, providing a possible explanation for the observed enhancement in drug release from ternary ASDs and the increase in LoC.
Collapse
|
4
|
Mahboobian MM, Dadashzadeh S, Rezaei M, Mohammadi M, Bolourchian N. Simvastatin in ternary solid dispersion formulations: Improved In vitro dissolution and anti-hyperlipidemia efficiency. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Miyazawa T, Itaya M, Burdeos GC, Nakagawa K, Miyazawa T. A Critical Review of the Use of Surfactant-Coated Nanoparticles in Nanomedicine and Food Nanotechnology. Int J Nanomedicine 2021; 16:3937-3999. [PMID: 34140768 PMCID: PMC8203100 DOI: 10.2147/ijn.s298606] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Surfactants, whose existence has been recognized as early as 2800 BC, have had a long history with the development of human civilization. With the rapid development of nanotechnology in the latter half of the 20th century, breakthroughs in nanomedicine and food nanotechnology using nanoparticles have been remarkable, and new applications have been developed. The technology of surfactant-coated nanoparticles, which provides new functions to nanoparticles for use in the fields of nanomedicine and food nanotechnology, is attracting a lot of attention in the fields of basic research and industry. This review systematically describes these "surfactant-coated nanoparticles" through various sections in order: 1) surfactants, 2) surfactant-coated nanoparticles, application of surfactant-coated nanoparticles to 3) nanomedicine, and 4) food nanotechnology. Furthermore, current progress and problems of the technology using surfactant-coated nanoparticles through recent research reports have been discussed.
Collapse
Affiliation(s)
- Taiki Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| | - Mayuko Itaya
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Gregor C Burdeos
- Institute for Animal Nutrition and Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
6
|
Spray-Dried Amorphous Solid Dispersions of Griseofulvin in HPC/Soluplus/SDS: Elucidating the Multifaceted Impact of SDS as a Minor Component. Pharmaceutics 2020; 12:pharmaceutics12030197. [PMID: 32106495 PMCID: PMC7150901 DOI: 10.3390/pharmaceutics12030197] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 02/02/2023] Open
Abstract
This study aimed to elucidate the impact of a common anionic surfactant, sodium dodecyl sulfate (SDS), along with hydroxypropyl cellulose (HPC) and Soluplus (Sol) on the release of griseofulvin (GF), a poorly soluble drug, from amorphous solid dispersions (ASDs). Solutions of 2.5% GF and 2.5%–12.5% HPC/Sol with 0.125% SDS/without SDS were prepared in acetone–water and spray-dried. The solid-state characterization of the ASDs suggests that GF–Sol had better miscibility and stronger interactions than GF–HPC and formed XRPD-amorphous GF, whereas HPC-based ASDs, especially the ones with a lower HPC loading, had crystalline GF. The dissolution tests show that without SDS, ASDs provided limited GF supersaturation (max. 250%) due to poor wettability of Sol-based ASDs and extensive GF recrystallization in HPC-based ASDs (max. 50%). Sol-based ASDs with SDS exhibited a dramatic increase in supersaturation (max. 570%), especially at a higher Sol loading, whereas HPC-based ASDs with SDS did not. SDS did not interfere with Sol’s ability to inhibit GF recrystallization, as confirmed by the precipitation from the supersaturated state and PLM imaging. The favorable use of SDS in a ternary ASD was attributed to both the wettability enhancement and its inability to promote GF recrystallization when used as a minor component along with Sol.
Collapse
|
7
|
Potharaju S, Mutyam SK, Liu M, Green C, Frueh L, Nilsen A, Pou S, Winter R, Riscoe MK, Shankar G. Improving solubility and oral bioavailability of a novel antimalarial prodrug: comparing spray-dried dispersions with self-emulsifying drug delivery systems. Pharm Dev Technol 2020; 25:625-639. [PMID: 32031478 DOI: 10.1080/10837450.2020.1725893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
To improve the solubility and oral bioavailability of a novel antimalarial agent ELQ-331(a prodrug of ELQ-300), spray-dried dispersions (SDD) and a self-emulsifying drug delivery system (SEDDS) were developed. SDD were prepared with polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus®) polymer carrier and Aeroperl® 300 Pharma and characterized by differential scanning calorimetry, powder X-ray diffraction. For SEDDS, solubility in oils, surfactants, and co-surfactants was determined and ternary phase diagram was constructed to show self-emulsifying area. SEDDS were characterized for spontaneous emulsification and droplet size distribution. The amorphous ELQ-331 SDD improved the solubility to 10× in fast-state simulated intestinal fluid and addition of sodium lauryl sulphate externally to SDDs further improved the solubility to ∼28.5× versus non-formulated drug. SEDDS had good self-emulsifying characteristics with small emulsion droplet sizes and narrow particle distribution. Oral pharmacokinetic studies for SDD and SEDDS formulations were performed in rats. The ELQ-331 rapidly converted to ELQ-300 soon after oral administration in rats. Exposure levels of ELQ-300 were about 1.4-fold higher (based on AUC) in SEDDS than SDD formulations. Poorly soluble drugs like ELQ-331 can be formulated using SDD or SEDDS to improve solubility and oral bioavailability.
Collapse
Affiliation(s)
- Suresh Potharaju
- Biosciences Division, Pharmaceutical Sciences Laboratories, SRI International, Menlo Park, CA, USA
| | - Shravan Kumar Mutyam
- Biosciences Division, Pharmaceutical Sciences Laboratories, SRI International, Menlo Park, CA, USA
| | - Mingtao Liu
- Biosciences Division, Pharmaceutical Sciences Laboratories, SRI International, Menlo Park, CA, USA
| | - Carol Green
- Biosciences Division, Pharmaceutical Sciences Laboratories, SRI International, Menlo Park, CA, USA
| | - Lisa Frueh
- Experimental Chemotherapy Lab, VA Medical Center, Portland, OR, USA
| | - Aaron Nilsen
- Experimental Chemotherapy Lab, VA Medical Center, Portland, OR, USA
| | - Sovitj Pou
- Experimental Chemotherapy Lab, VA Medical Center, Portland, OR, USA
| | - Rolf Winter
- Experimental Chemotherapy Lab, VA Medical Center, Portland, OR, USA
| | - Michael K Riscoe
- Experimental Chemotherapy Lab, VA Medical Center, Portland, OR, USA
| | - Gita Shankar
- Biosciences Division, Pharmaceutical Sciences Laboratories, SRI International, Menlo Park, CA, USA
| |
Collapse
|
8
|
Han R, Huang T, Liu X, Yin X, Li H, Lu J, Ji Y, Sun H, Ouyang D. Insight into the Dissolution Molecular Mechanism of Ternary Solid Dispersions by Combined Experiments and Molecular Simulations. AAPS PharmSciTech 2019; 20:274. [PMID: 31385095 DOI: 10.1208/s12249-019-1486-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/18/2019] [Indexed: 11/30/2022] Open
Abstract
With the increase concern of solubilization for insoluble drug, ternary solid dispersion (SD) formulations developed more rapidly than binary systems. However, rational formulation design of ternary systems and their dissolution molecular mechanism were still under development. Current research aimed to develop the effective ternary formulations and investigate their molecular mechanism by integrated experimental and modeling techniques. Glipizide (GLI) was selected as the model drug and PEG was used as the solubilizing polymer, while surfactants (e.g., SDS or Tween80) were the third components. SD samples were prepared at different weight ratio by melting method. In the dissolution tests, the solubilization effect of ternary system with very small amount of surfactant (drug/PEG/surfactant 1/1/0.02) was similar with that of binary systems with high polymer ratios (drug/PEG 1/3 and 1/9). The molecular structure of ternary systems was characterized by differential scanning calorimetry (DSC), infrared absorption spectroscopy (IR), X-ray diffraction (XRD), and scanning electron microscope (SEM). Moreover, molecular dynamic (MD) simulations mimicked the preparation process of SDs, and molecular motion in solvent revealed the dissolution mechanism of SD. As the Gordon-Taylor equation described, the experimental and calculated values of Tg were compared for ternary and binary systems, which confirmed good miscibility of GLI with other components. In summary, ternary SD systems could significantly decrease the usage of polymers than binary system. Molecular mechanism of dissolution for both binary and ternary solid dispersions was revealed by combined experiments and molecular modeling techniques. Our research provides a novel pathway for the further research of ternary solid dispersion formulations.
Collapse
|
9
|
Yang B, Wei C, Qian F, Li S. Surface Wettability Modulated by Surfactant and Its Effects on the Drug Release and Absorption of Fenofibrate Solid Dispersions. AAPS PharmSciTech 2019; 20:234. [PMID: 31236817 DOI: 10.1208/s12249-019-1446-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/01/2019] [Indexed: 12/29/2022] Open
Abstract
The objective of this study is to explore the surface wettability modulated by a surfactant and its effects on the drug release and absorption of fenofibrate solid dispersions (FF SDs). Both the polyvinylpyrrolidone/sodium lauryl sulfate (PVP/SLS) coprecipitate and FF SDs were prepared by solvent evaporation method. The contact angle of PVP/SLS coprecipitate with various PVP/SLS weight ratios was determined to screen out the suitable content of SLS incorporated in FF SDs. Scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) was used to analyze the surface composition of the PVP/SLS coprecipitate, suggesting that SLS molecules were prone to concentrate on the carrier surface. The physicochemical characteristics of FF, PVP, SLS, FF SDs, and FF physical mixtures (PMs) were evaluated by thermal analysis, XRD, FTIR, and SEM, which revealed that FF was molecularly dispersed in SDs. The interaction between SLS and PVP or FF confirmed by FTIR would affect the surface morphology of SDs. Finally, the contact angle of FF SDs was measured to explore the effects of surface wettability on the dissolution behavior and drug absorption of FF SDs. The interesting thing is that the wettability of the PVP/SLS coprecipitate was positively related to that of FF SDs. The improved wettability of FF SDs or the PVP/SLS coprecipitate by adding SLS contributed to the slight enhancement of initial drug release and absorption, which implied that wettability would be a promising tool in the formulation studies.
Collapse
|
10
|
Yang B, Wu L, Ke J, Zhou L, Chen M, Li S, Feng X. Effects of Polymer/Surfactant as Carriers on the Solubility and Dissolution of Fenofibrate Solid Dispersion. AAPS PharmSciTech 2019; 20:102. [PMID: 30723877 DOI: 10.1208/s12249-018-1273-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/12/2018] [Indexed: 01/04/2023] Open
Abstract
The purpose of this work is to investigate the effects of polymer/surfactant as carriers on the solubility and dissolution of fenofibrate solid dispersions (FF SDs) with the aid of systematic research on the physicochemical properties of the polymer/surfactant system and further highlight the importance of studying polymer/surfactant interaction in the preformulation. The critical micelle concentration (CMC) of sodium lauryl sulfate (SLS) and critical aggregation concentration (CAC) of polymer/SLS solutions were obtained through conductivity measurement. Meanwhile, surface tension, viscosity, morphology, and wettability of polymer/SLS with different weight ratios of SLS were analyzed to screen out the suitable content of SLS (weight%, 5% in carriers) incorporated in SDs. Polymer/SLS coprecipitate and FF SDs were prepared by the solvent evaporation method. The results from differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis showed that FF was molecularly dispersed in SDs. Compared to the solubility of FF in povidone/SLS (PVP/SLS) solutions, the increment of FF solubility in copovidone/SLS (VA64/SLS) solutions was due to the formation of free SLS micelles, which have been confirmed by transmission electron microscopy (TEM). Particularly, the wettability of FF SDs and physical mixtures (PMs) was also determined by the sessile drop technique. A linear relationship between the wettability of carriers and that of FF SDs was found, which revealed the significant role of carriers on the surface composition of FF SDs. As the molecular weight of PVP increased, the wettability of carriers decreased, thus leading to the reduction of the dissolution rate of SDs. Although the presence of SLS did not enhance the dissolution of FF SDs, it increased the amount of drug released at the initial stage. All these results indicated that the polymer/SLS interaction would affect the performance of SDs; hence, it was necessary to study their properties in the preformulation.
Collapse
|
11
|
Chen J, Chen Y, Huang W, Wang H, Du Y, Xiong S. Bottom-Up and Top-Down Approaches to Explore Sodium Dodecyl Sulfate and Soluplus on the Crystallization Inhibition and Dissolution of Felodipine Extrudates. J Pharm Sci 2018; 107:2366-2376. [DOI: 10.1016/j.xphs.2018.04.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/31/2018] [Accepted: 04/27/2018] [Indexed: 10/17/2022]
|
12
|
Liu C, Liu Z, Chen Y, Chen Z, Chen H, Pui Y, Qian F. Oral bioavailability enhancement of β-lapachone, a poorly soluble fast crystallizer, by cocrystal, amorphous solid dispersion, and crystalline solid dispersion. Eur J Pharm Biopharm 2018; 124:73-81. [PMID: 29305142 DOI: 10.1016/j.ejpb.2017.12.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/28/2017] [Accepted: 12/28/2017] [Indexed: 10/18/2022]
Abstract
The aim of this paper was to compare the in vitro dissolution and in vivo bioavailability of three solubility enhancement technologies for β-lapachone (LPC), a poorly water soluble compound with extremely high crystallization propensity. LPC cocrystal was prepared by co-grinding LPC with resorcinol. LPC crystalline and amorphous solid dispersions (CSD and ASD) were obtained by spray drying with Poloxamer 188 and HPMC-AS, respectively. The cocrystal structure was solved by single crystal x-ray diffraction. All formulations were characterized by WAXRD, DSC, POM and SEM. USP II and intrinsic dissolution studies were used to compare the in vitro dissolution of these formulations, and a crossover dog pharmacokinetic study was used to compare their in vivo bioavailability. An 1:1 LPC-resorcinol cocrystal with higher solubility and faster dissolution rate was obtained, yet it converted to LPC crystal rapidly in solution. LPC/HPMC-AS ASD was confirmed to be amorphous and uniform, while the crystal and crystallite sizes of LPC in CSD were found to be ∼1-3 μm and around 40 nm, respectively. These formulations performed similarly during USP II dissolution, while demonstrated dramatically different oral bioavailability of ∼32%, ∼5%, and ∼1% in dogs, for CSD, co-crystal, and ASD, respectively. CSD showed the fastest intrinsic dissolution rate among the three. The three formulations showed poor IVIVC which could be due to rapid and unpredictable crystallization kinetics. Considering all the reasons, we conclude that for molecules with extremely high crystallization tendency that cannot be inhibited by any pharmaceutical excipients, size-reduction technologies such as CSD could be advantageous for oral bioavailability enhancement in vivo than technologies only generating transient but not sustained supersaturation.
Collapse
Affiliation(s)
- Chengyu Liu
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, PR China
| | - Zhengsheng Liu
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, PR China
| | - Yuejie Chen
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, PR China
| | - Zhen Chen
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, PR China
| | - Huijun Chen
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, PR China
| | - Yipshu Pui
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, PR China
| | - Feng Qian
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
13
|
Patel HH, Maniar M, Ren C, Dave RH. Determination of Degradation Kinetics and Effect of Anion Exchange Resin on Dissolution of Novel Anticancer Drug Rigosertib in Acidic Conditions. AAPS PharmSciTech 2018; 19:93-100. [PMID: 28600665 DOI: 10.1208/s12249-017-0820-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/24/2017] [Indexed: 02/06/2023] Open
Abstract
Rigosertib is a novel anticancer drug in clinical development by Onconova therapeutics, Inc. Currently, it is in pivotal phase III clinical trials for myelodysplastic syndrome (MDS) patients. Chemically, it is a sodium salt of weak acid with low solubility in lower pH solutions. In the preliminary studies, it was found that rigosertib is unstable in acidic conditions and forms multiple degradation products. In this research, drug degradation kinetics of rigosertib were studied in acidic conditions. Rigosertib follows pseudo-first-order general acid catalysis reaction. Cholestyramine, which is a strong anion exchange resin, was used to form complex with drug to improve stability and dissolution in acidic conditions. Drug complex with cholestyramine showed better dissolution profile compared to drug alone. Effect of polyethylene glycol was investigated on the release of drug from the drug resin complex. Polyethylene glycol further improved dissolution profile by improving drug solubility in acidic medium.
Collapse
|
14
|
Chaudhari SP, Dugar RP. Application of surfactants in solid dispersion technology for improving solubility of poorly water soluble drugs. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.06.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Mustapha O, Kim KS, Shafique S, Kim DS, Jin SG, Seo YG, Youn YS, Oh KT, Yong CS, Kim JO, Choi HG. Comparison of three different types of cilostazol-loaded solid dispersion: Physicochemical characterization and pharmacokinetics in rats. Colloids Surf B Biointerfaces 2017; 154:89-95. [DOI: 10.1016/j.colsurfb.2017.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 10/20/2022]
|
16
|
Kim DS, Kim DW, Kim KS, Choi JS, Seo YG, Youn YS, Oh KT, Yong CS, Kim JO, Jin SG, Choi HG. Development of a novel l-sulpiride-loaded quaternary microcapsule: Effect of TPGS as an absorption enhancer on physicochemical characterization and oral bioavailability. Colloids Surf B Biointerfaces 2016; 147:250-257. [DOI: 10.1016/j.colsurfb.2016.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/14/2016] [Accepted: 08/07/2016] [Indexed: 12/24/2022]
|
17
|
Ng CL, Lee SE, Lee JK, Kim TH, Jang WS, Choi JS, Kim YH, Kim JK, Park JS. Solubilization and formulation of chrysosplenol C in solid dispersion with hydrophilic carriers. Int J Pharm 2016; 512:314-321. [PMID: 27593897 DOI: 10.1016/j.ijpharm.2016.08.062] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/15/2016] [Accepted: 08/30/2016] [Indexed: 11/29/2022]
Abstract
We investigated how to overcome problems associated with the solubility, dissolution, and oral bioavailability of the poorly water-soluble drug compound, chrysosplenol C (CRSP), as well as the effects of single and binary hydrophilic polymers (PVP K-25 and/or PEG 6000) on the solubility and dissolution parameters of CRSP. Then an optimized formulation was further developed with a surfactant. To select a surfactant suitable for a CRSP-loaded solid dispersion (SD), the solubility of CRSP in distilled water containing 1% surfactant was compared with the solubilities in other surfactants. Sodium lauryl sulfate (SLS) showed the highest drug solubility. Overall, a formulation containing CRSP, binary hydrophilic polymers (PVP and PEG 6000), and SLS at a ratio of 2.0/0.2/1.1/0.7 showed the optimum in vitro release profile. This optimized formulation had better safety properties than pure CRSP in cell viability examinations. SD formulations were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray powder diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy. Our optimized SD formulation is expected to improve the bioavailability of CRPS because it improves the solubility and dissolution rate of CRSP.
Collapse
Affiliation(s)
- Choon Lian Ng
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Sang-Eun Lee
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Joon-Kyung Lee
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Tae-Hyeon Kim
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Woo Suk Jang
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jin-Seok Choi
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Young-Ho Kim
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jin-Ki Kim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Jeong-Sook Park
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
18
|
Yousaf AM, Kim DW, Kim DS, Kim JO, Youn YS, Cho KH, Yong CS, Choi HG. Influence of polyvinylpyrrolidone quantity on the solubility, crystallinity and oral bioavailability of fenofibrate in solvent-evaporated microspheres. J Microencapsul 2016; 33:365-71. [PMID: 27283260 DOI: 10.1080/02652048.2016.1194906] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The objective of this study is to explore the influence of polyvinylpyrrolidone (PVP) quantity on the solubility, crystallinity and oral bioavailability of poorly water-soluble fenofibrate in solvent-evaporated microspheres. Numerous microspheres were prepared with fenofibrate, sodium lauryl sulphate (SLS) and PVP using the spray-drying technique. Their aqueous solubility, dissolution, physicochemical properties and pharmacokinetics in rats were assessed. The drug in the solvent-evaporated microspheres composed of fenofibrate, PVP and SLS at the weight ratio of 1:0.5:0.25 was not entirely changed to the amorphous form and partially in the microcrystalline state. However, the microspheres at the weight ratio of 1:4:0.25 provided the entire conversion to the amorphous form. The latter microspheres, with an improvement of about 115 000-fold in aqueous solubility and 5.6-fold improvement in oral bioavailability compared with the drug powder, gave higher aqueous solubility and oral bioavailability compared with the former. Thus, PVP quantity played an important role in these properties of fenofibrate in the solvent-evaporated microspheres.
Collapse
Affiliation(s)
- Abid Mehmood Yousaf
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , South Korea ;,b Faculty of Pharmacy , University of Central Punjab , Johar , Lahore , Pakistan
| | - Dong Wuk Kim
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , South Korea
| | - Dong Shik Kim
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , South Korea
| | - Jong Oh Kim
- c College of Pharmacy, Yeungnam University , Gyongsan , South Korea
| | - Yu Seok Youn
- d School of Pharmacy, Sungkyunkwan University , Suwon , South Korea
| | - Kwan Hyung Cho
- e College of Pharmacy, Inje University , Gimhae , South Korea
| | - Chul Soon Yong
- c College of Pharmacy, Yeungnam University , Gyongsan , South Korea
| | - Han-Gon Choi
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , South Korea
| |
Collapse
|
19
|
Jung HJ, Ahn HI, Park JY, Ho MJ, Lee DR, Cho HR, Park JS, Choi YS, Kang MJ. Improved oral absorption of tacrolimus by a solid dispersion with hypromellose and sodium lauryl sulfate. Int J Biol Macromol 2016; 83:282-7. [DOI: 10.1016/j.ijbiomac.2015.11.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 11/06/2015] [Accepted: 11/24/2015] [Indexed: 10/22/2022]
|
20
|
Alam MA, Al-Jenoobi FI, Al-Mohizea AM, Ali R. Effervescence Assisted Fusion Technique to Enhance the Solubility of Drugs. AAPS PharmSciTech 2015; 16:1487-94. [PMID: 26265190 DOI: 10.1208/s12249-015-0381-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 07/28/2015] [Indexed: 11/30/2022] Open
Abstract
The solubility of five poorly soluble drugs was enhanced by using an effervescence assisted solid dispersion (EASD) technique. EASDs were prepared by using modified fusion method. Drug and hydrophilic carrier were melted, and in this molten mixture, effervescence was generated by adding effervescence couple comprising organic acid (citric acid) and carbonic base (sodium bicarbonate). Solubility of drug powders, solid dispersions, and EASDs was determined at 25°C using shake flask method. Atorvastatin calcium, cefuroxime axetil, clotrimazole, ketoconazole, and metronidazole benzoate were estimated using a spectrophotometer at 246, 280, 260, 230, and 232 nm (λ max), respectively. Solubility of atorvastatin calcium (from 100 to 345 μg/ml), cefuroxime axetil (from 441 to 1948 μg/ml), clotrimazole (from 63 to 677 μg/ml), ketoconazole (from 16 to 500 μg/ml), and metronidazole benzoate (from 112 to 208 μg/ml) in EASDs was enhanced by 3.45-, 4.4-, 10.7-, 31.2-, and 1.8-fold, respectively. Scanning electron micrographs of drug powder, solid dispersion, and EASDs were compared. Scanning electron micrographs of EASDs showed a uniform distribution of drug particles in the carrier matrix. Morphology (size and shape) of cefuroxime axetil particles was altered in solid dispersion as well as in EASD. EASDs showed better solubility enhancement than conventional solid dispersions. The present technique is better suitable for drugs having a low melting point or melt without charring. Effervescence assisted fusion technique of preparing solid dispersions can be employed for enhancing solubility, dissolution, and bioavailability of poorly soluble drugs.
Collapse
|
21
|
Meng F, Gala U, Chauhan H. Classification of solid dispersions: correlation to (i) stability and solubility (ii) preparation and characterization techniques. Drug Dev Ind Pharm 2015; 41:1401-15. [DOI: 10.3109/03639045.2015.1018274] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Shanmugam S, Im HT, Sohn YT, Kim YI, Park JH, Park ES, Woo JS. Enhanced oral bioavailability of paclitaxel by solid dispersion granulation. Drug Dev Ind Pharm 2015; 41:1864-76. [DOI: 10.3109/03639045.2015.1018275] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Yousaf AM, Kim DW, Oh YK, Yong CS, Kim JO, Choi HG. Enhanced oral bioavailability of fenofibrate using polymeric nanoparticulated systems: physicochemical characterization and in vivo investigation. Int J Nanomedicine 2015; 10:1819-30. [PMID: 25784807 PMCID: PMC4356686 DOI: 10.2147/ijn.s78895] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The intention of this research was to prepare and compare various solubility-enhancing nanoparticulated systems in order to select a nanoparticulated formulation with the most improved oral bioavailability of poorly water-soluble fenofibrate. Methods The most appropriate excipients for different nanoparticulated preparations were selected by determining the drug solubility in 1% (w/v) aqueous solutions of each carrier. The polyvinylpyrrolidone (PVP) nanospheres, hydroxypropyl-β-cyclodextrin (HP-β-CD) nanocorpuscles, and gelatin nanocapsules were formulated as fenofibrate/PVP/sodium lauryl sulfate (SLS), fenofibrate/HP-β-CD, and fenofibrate/gelatin at the optimized weight ratios of 2.5:4.5:1, 1:4, and 1:8, respectively. The three solid-state products were achieved using the solvent-evaporation method through the spray-drying technique. The physicochemical characterization of these nanoparticles was accomplished by powder X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and Fourier-transform infrared spectroscopy. Their physicochemical properties, aqueous solubility, dissolution rate, and pharmacokinetics in rats were investigated in comparison with the drug powder. Results Among the tested carriers, PVP, HP-β-CD, gelatin, and SLS showed better solubility and were selected as the most appropriate constituents for various nanoparticulated systems. All of the formulations significantly improved the aqueous solubility, dissolution rate, and oral bioavailability of fenofibrate compared to the drug powder. The drug was present in the amorphous form in HP-β-CD nanocorpuscles; however, in other formulations, it existed in the crystalline state with a reduced intensity. The aqueous solubility and dissolution rates of the nanoparticles (after 30 minutes) were not significantly different from one another. Among the nanoparticulated systems tested in this study, the initial dissolution rates (up to 10 minutes) were higher with the PVP nanospheres and HP-β-CD nanocorpuscles; however, neither of them resulted in the highest oral bioavailability. Irrespective of relatively retarded dissolution rate, gelatin nanocapsules showed the highest apparent aqueous solubility and furnished the most improved oral bioavailability of the drug (~5.5-fold), owing to better wetting and diminution in crystallinity. Conclusion Fenofibrate-loaded gelatin nanocapsules prepared using the solvent-evaporation method through the spray-drying technique could be a potential oral pharmaceutical product for administering the poorly water-soluble fenofibrate with an enhanced bioavailability.
Collapse
Affiliation(s)
- Abid Mehmood Yousaf
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | - Dong Wuk Kim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | - Yu-Kyoung Oh
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyongsan, South Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyongsan, South Korea
| | - Han-Gon Choi
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| |
Collapse
|
24
|
Rambharose S, Ojewole E, Branham M, Kalhapure R, Govender T. High-energy ball milling of saquinavir increases permeability across the buccal mucosa. Drug Dev Ind Pharm 2014; 40:639-48. [DOI: 10.3109/03639045.2014.884120] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Keen JM, McGinity JW, Williams III RO. Enhancing bioavailability through thermal processing. Int J Pharm 2013; 450:185-96. [DOI: 10.1016/j.ijpharm.2013.04.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/16/2013] [Accepted: 04/16/2013] [Indexed: 11/26/2022]
|