1
|
Budiman A, Handini AL, Muslimah MN, Nurani NV, Laelasari E, Kurniawansyah IS, Aulifa DL. Amorphous Solid Dispersion as Drug Delivery Vehicles in Cancer. Polymers (Basel) 2023; 15:3380. [PMID: 37631436 PMCID: PMC10457821 DOI: 10.3390/polym15163380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer treatment has improved over the past decades, but a major challenge lies in drug formulation, specifically for oral administration. Most anticancer drugs have poor water solubility which can affect their bioavailability. This causes suboptimal pharmacokinetic performance, resulting in limited efficacy and safety when administered orally. As a result, it is essential to develop a strategy to modify the solubility of anticancer drugs in oral formulations to improve their efficacy and safety. A promising approach that can be implemented is amorphous solid dispersion (ASD) which can enhance the aqueous solubility and bioavailability of poorly water-soluble drugs. The addition of a polymer can cause stability in the formulations and maintain a high supersaturation in bulk medium. Therefore, this study aimed to summarize and elucidate the mechanisms and impact of an amorphous solid dispersion system on cancer therapy. To gather relevant information, a comprehensive search was conducted using keywords such as "anticancer drug" and "amorphous solid dispersion" in the PubMed, Scopus, and Google Scholar databases. The review provides an overview and discussion of the issues related to the ASD system used to improve the bioavailability of anticancer drugs based on molecular pharmaceutics. A thorough understanding of anticancer drugs in this system at a molecular level is imperative for the rational design of the products.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Annisa Luthfiyah Handini
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Mutia Nur Muslimah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Neng Vera Nurani
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Eli Laelasari
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Insan Sunan Kurniawansyah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia;
| |
Collapse
|
2
|
Wang G, Li Y, Qin Z, Liu T. Nanosizing Coamorphous Drugs Using Top-Down Approach: The Effect of Particle Size Reduction on Dissolution Improvement. AAPS PharmSciTech 2022; 24:14. [PMID: 36478061 DOI: 10.1208/s12249-022-02475-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology and coamorphous are both advanced technologies that can effectively improve the solubility of drugs. This study has been the first attempt to combine these two approaches to construct the coamorphous nanoparticles to improve the dissolution and investigated the effect of physical properties of coamorphous solid on the nanosizing process. Two types of coamorphous solid, i.e., curcumin-artemisinin and quercetin-lysine, were selected as models. Coamorphous curcumin-artemisinin could highly contribute to the size reduction during milling compared to the crystalline form, which might attribute to the change of crystallinity. Nanosized coamorphous curcumin-artemisinin showed higher dissolution than nanocrystals and single coamorphous sample. However, quercetin-lysine coamorphous nanoparticles did not reflect significant dissolution improvement compared with the microsized sample. The difference of initial dissolutions for both could be the main reason. The directly mixing and drying method was confirmed to be an effective and simple approach to maintain the dissolution of nanosized coamorphous sample.
Collapse
Affiliation(s)
- Guoliang Wang
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yanchao Li
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Zhiguo Qin
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Tao Liu
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
| |
Collapse
|
3
|
Development and Characterization of Eudragit ® EPO-Based Solid Dispersion of Rosuvastatin Calcium to Foresee the Impact on Solubility, Dissolution and Antihyperlipidemic Activity. Pharmaceuticals (Basel) 2022; 15:ph15040492. [PMID: 35455489 PMCID: PMC9025505 DOI: 10.3390/ph15040492] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023] Open
Abstract
Poor solubility is the major challenge involved in the formulation development of new chemical entities (NCEs), as more than 40% of NCEs are practically insoluble in water. Solid dispersion (SD) is a promising technology for improving dissolution and, thereby, the bioavailability of poorly soluble drugs. This study investigates the influence of a pH-sensitive acrylate polymer, EPO, on the physicochemical properties of rosuvastatin calcium, an antihyperlipidemic drug. In silico docking was conducted with numerous polymers to predict drug polymer miscibility. The screened-out polymer was used to fabricate the binary SD of RoC in variable ratios using the co-grinding and solvent evaporation methods. The prepared formulations were assessed for physiochemical parameters such as saturation solubility, drug content and in vitro drug release. The optimized formulations were further ruled out using solid-state characterization (FTIR, DSC, XRD and SEM) and in vitro cytotoxicity. The results revealed that all SDs profoundly increased solubility as well as drug release. However, the formulation RSE-2, with a remarkable 71.88-fold increase in solubility, presented 92% of drug release in the initial 5 min. The molecular interaction studied using FTIR, XRD, DSC and SEM analysis evidenced the improvement of in vitro dissolution. The enhancement in solubility of RoC may be important for the modulation of the dyslipidemia response. Therefore, pharmacodynamic activity was conducted for optimized formulations. Our findings suggested an ameliorative effect of RSE-2 in dyslipidemia and its associated complications. Moreover, RSE-2 exhibited nonexistence of cytotoxicity against human liver cell lines. Convincingly, this study demonstrates that SD of RoC can be successfully fabricated by EPO, and have all the characteristics that are favourable for superior dissolution and better therapeutic response to the drug.
Collapse
|
4
|
Salehi S, Nourbakhsh MS, Yousefpour M, Rajabzadeh G, Sahab-Negah S. Co-encapsulation of Curcumin and Boswellic Acids in Chitosan-Coated Niosome: An In-vitro Digestion Study. J Microencapsul 2022; 39:226-238. [PMID: 35384786 DOI: 10.1080/02652048.2022.2060360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIM In this study chitosan-coated niosome (ChN) was utilized for bioavailability enhancement of curcumin (Cn) and boswellic acids (BAs). METHODS The bare niosome (BN) was prepared by the heating method and optimized by using the mixture design procedure. Physicochemical stability, as well as the in vitro release, and bioavailability of Cn and BAs in BN and ChN were studied. RESULTS The optimized BN had a mean diameter of 70.00 ± 0.21 nm and surface charge of -31.00 ± 0.25 mv, which changed to 60.01 ± 0.20 nm and +40.00 ± 0, respectively, in ChN. In-vitro digestion study revealed chitosan layer augmented the bioavailability of Cn and BAs to 79.02 ± 0.13 and 81 ± 0.10, respectively. The chitosan layer obviously improved the physical stability of Cn and BA in the niosome vehicle, by means of vesicle size, zeta potential, and encapsulation efficiency. CONCLUSION The Chitosan-coated niosome was considered to be promising delivery system for increasing the bioavailability of Cn and BAs.
Collapse
Affiliation(s)
- Sahar Salehi
- Ph. D Candidate, Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, Iran.
| | - Mohammad Sadegh Nourbakhsh
- Associate Professor, Biomedical Engineering- Biomaterials, Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, Iran. P.O.Box: 19111-35131 - Tel - Fax: +98 23 33383166 E-mail: ORCiD: 0000-0002-5252-4047
| | - Mardali Yousefpour
- Professor, Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, Iran. P.O.Box: 19111-35131 Tel Fax: +98 23 3383166 E-mail: ORCiD: 0000-0002-7240-0877
| | - Ghadir Rajabzadeh
- Professor, Department of Food Nanotechnology, Research Institute of Food Science and Technology, Mashhad, Iran, P.O.Box: 91851-76933 Tel Fax: +98 51 35425406 E-mail: ORCiD: 0000-0001-5073-9450
| | - Sajad Sahab-Negah
- Assistant Professor, Neuroscience Research center, Mashhad University of Medical Sciences, Mashhad, Iran.,Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Teharn, Iran P.O.Box: 91779-48564 Tel Fax: +98 51 38828560 E-mail: ORCiD: 0000-0002-2242-9794
| |
Collapse
|
5
|
Zhu W, Fan W, Zhang X, Gao M. Sustained-Release Solid Dispersion of High-Melting-Point and Insoluble Resveratrol Prepared through Hot Melt Extrusion to Improve Its Solubility and Bioavailability. Molecules 2021; 26:4982. [PMID: 34443569 PMCID: PMC8400122 DOI: 10.3390/molecules26164982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to prepare a sustained-release solid dispersion of poorly water-soluble resveratrol (RES) with high melting point in a single hot melt extrusion step. A hydrophobic-hydrophilic polymeric blend (Eudragit RS and PEG6000) was used to control the release of RES. With the dispersive mixing and high shear forces of hot melt extrusion, the thermodynamic properties and dispersion of RES were changed to improve its solubility. The effects of the formulation were investigated through univariate analysis to optimize the preparation of the sustained-release solid dispersion. In vitro and in vivo studies were performed to evaluate the prepared RES/RS/PEG6000 sustained-release solid dispersion. The physical state of the solid dispersion was characterized using differential scanning calorimetry and X-ray diffraction. Surface properties of the dispersion were visualized using scanning electron microscopy, and the chemical interaction between RES and excipients was detected through Fourier-transform infrared spectroscopy. Results suggested that the optimized sustained-release solid dispersion was obtained when the mass ratio of RES-polymeric blend was 1:5, the ratio of PEG6000 was 35%, the barrel temperature was 170 °C, and the screw speed was 80 rpm. In vitro studies demonstrated that the solid dispersion showed a good sustained release effect. The cumulative release of RES reached 82.42% until 12 h and was fit by the Weibull model. In addition, the saturated solubility was 2.28 times higher than that of the bulk RES. In vitro studies demonstrated that the half-life increased from 3.78 to 7.09 h, and the bioavailability improved to 140.38%. The crystalline RES was transformed into the amorphous one, and RES was highly dispersed in the polymeric blend matrix.
Collapse
Affiliation(s)
- Wenjing Zhu
- Laboratory of Pharmacy Engineering, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (W.Z.); (X.Z.); (M.G.)
| | - Wenling Fan
- Laboratory of Pharmacy Engineering, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (W.Z.); (X.Z.); (M.G.)
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaotong Zhang
- Laboratory of Pharmacy Engineering, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (W.Z.); (X.Z.); (M.G.)
| | - Meiqi Gao
- Laboratory of Pharmacy Engineering, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (W.Z.); (X.Z.); (M.G.)
| |
Collapse
|
6
|
Soliman MAN, Ibrahim HK, Nour SAEK. Diacerein solid dispersion loaded tablets for minimization of drug adverse effects: statistical design, formulation, in vitro, and in vivo evaluation. Pharm Dev Technol 2021; 26:302-315. [PMID: 33356729 DOI: 10.1080/10837450.2020.1869982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Diacerein is a BCS class II drug employed in osteoarthritis management. The acid/base hydrolysis of the unabsorbed diacerein in the colon is responsible for its laxative effect. Therefore, this work aimed to enhance the solubility, dissolution, and oral bioavailability of diacerein. Such enhancement means lower doses and fewer gastrointestinal adverse effects. A 41.31.21 full factorial design was adopted to prepare 24 solid dispersion formulae. Solid-state characterization showed the dissolution of diacerein crystals as metastable amorphous or microcrystalline forms in a matrix system that enhanced the drug dissolution. Desirability factor suggested compounding an optimized formula (F1) of Pluronic®F68 with 1:3 drug:carrier ratio using rotavap that showed higher drug solubility (187.61 µg/mL) than drug powder (22.5 µg/mL). It achieved higher dissolution efficiency (4.04-fold) and rate (6.6-fold) as well as 100% release in 2 min. F1 was compressed into tablets recording greater dissolution efficiency (1.24-fold) and rate (12.5-fold) than the marketed product. The prepared tablet accomplished a 2.66-fold enhancement in diacerein bioavailability compared to the marketed product. In conclusion, the formulation of diacerein as solid dispersion loaded tablets could be of added value for the treatment of osteoarthritis in terms of enhanced patient compliance. Solid dispersion is an easy and scalable technique.
Collapse
Affiliation(s)
- Mohamed Ahmed Naseef Soliman
- Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo, Egypt.,Faculty of Health and Life Sciences, Leicester Institute of Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Howida Kamal Ibrahim
- Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo, Egypt
| | - Samia Abd El-Kader Nour
- Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Jermain SV, Lowinger MB, Ellenberger DJ, Miller DA, Su Y, Williams RO. In Vitro and In Vivo Behaviors of KinetiSol and Spray-Dried Amorphous Solid Dispersions of a Weakly Basic Drug and Ionic Polymer. Mol Pharm 2020; 17:2789-2808. [DOI: 10.1021/acs.molpharmaceut.0c00108] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Scott V. Jermain
- College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, Texas 78712, United States
| | - Michael B. Lowinger
- Merck Research Laboratories (MRL), Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Daniel J. Ellenberger
- DisperSol Technologies, LLC, 111 West Cooperative Way, Building 2, Suite 200, Georgetown, Texas 78626, United States
| | - Dave A. Miller
- DisperSol Technologies, LLC, 111 West Cooperative Way, Building 2, Suite 200, Georgetown, Texas 78626, United States
| | - Yongchao Su
- College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, Texas 78712, United States
- Merck Research Laboratories (MRL), Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Robert O. Williams
- College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, Texas 78712, United States
| |
Collapse
|
8
|
Effects of Different Formulation Methods on Drug Crystallinity, Drug-Carrier Interaction, and Ex Vivo Permeation of a Ternary Solid Dispersion Containing Nisoldipine. J Pharm Innov 2019. [DOI: 10.1007/s12247-019-09415-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Ziaee A, O'Dea S, Howard-Hildige A, Padrela L, Potter C, Iqbal J, Albadarin AB, Walker G, O'Reilly EJ. Amorphous solid dispersion of ibuprofen: A comparative study on the effect of solution based techniques. Int J Pharm 2019; 572:118816. [DOI: 10.1016/j.ijpharm.2019.118816] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 11/25/2022]
|
10
|
Central composite designed ezetimibe solid dispersion for dissolution enhancement: synthesis and in vitro evaluation. Ther Deliv 2019; 10:643-658. [PMID: 31702450 DOI: 10.4155/tde-2019-0063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aim: The current research is focused on increasing aqueous solubility and dissolution of BCS class II drug by using modified solvent evaporation technique to produce solid dispersions of ezetimibe (EZSD) using gelucire 50/13 and polyvinyl pyrollidone K30. Methodology & results: Central composite design analyzed the effect of gelucire 50/13 and polyvinyl pyrollidone K30 on the percentage of drug released in 5 and 30 min. Ezetimibe (EZ) aqueous saturation solubility (4.56 ± 0.94 μg/ml) was increased 25-fold in EZSD (115 ± 3.41 μg/ml). Cumulative drug release from EZ and optimized EZSD were observed 24.67 and 87.54% within 1 h, respectively. Conclusion: Manufacturing EZSD using modified solvent evaporation technique using rotary evaporator holds great promise for enhancing EZ's solubility and dissolution.
Collapse
|
11
|
Tran P, Pyo YC, Kim DH, Lee SE, Kim JK, Park JS. Overview of the Manufacturing Methods of Solid Dispersion Technology for Improving the Solubility of Poorly Water-Soluble Drugs and Application to Anticancer Drugs. Pharmaceutics 2019; 11:E132. [PMID: 30893899 PMCID: PMC6470797 DOI: 10.3390/pharmaceutics11030132] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 01/11/2023] Open
Abstract
Approximately 40% of new chemical entities (NCEs), including anticancer drugs, have been reported as poorly water-soluble compounds. Anticancer drugs are classified into biologic drugs (monoclonal antibodies) and small molecule drugs (nonbiologic anticancer drugs) based on effectiveness and safety profile. Biologic drugs are administered by intravenous (IV) injection due to their large molecular weight, while small molecule drugs are preferentially administered by gastrointestinal route. Even though IV injection is the fastest route of administration and ensures complete bioavailability, this route of administration causes patient inconvenience to visit a hospital for anticancer treatments. In addition, IV administration can cause several side effects such as severe hypersensitivity, myelosuppression, neutropenia, and neurotoxicity. Oral administration is the preferred route for drug delivery due to several advantages such as low cost, pain avoidance, and safety. The main problem of NCEs is a limited aqueous solubility, resulting in poor absorption and low bioavailability. Therefore, improving oral bioavailability of poorly water-soluble drugs is a great challenge in the development of pharmaceutical dosage forms. Several methods such as solid dispersion, complexation, lipid-based systems, micronization, nanonization, and co-crystals were developed to improve the solubility of hydrophobic drugs. Recently, solid dispersion is one of the most widely used and successful techniques in formulation development. This review mainly discusses classification, methods for preparation of solid dispersions, and use of solid dispersion for improving solubility of poorly soluble anticancer drugs.
Collapse
Affiliation(s)
- Phuong Tran
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Yong-Chul Pyo
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Dong-Hyun Kim
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Sang-Eun Lee
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Jin-Ki Kim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Korea.
| | - Jeong-Sook Park
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| |
Collapse
|
12
|
Jermain SV, Miller D, Spangenberg A, Lu X, Moon C, Su Y, Williams RO. Homogeneity of amorphous solid dispersions - an example with KinetiSol ®. Drug Dev Ind Pharm 2019; 45:724-735. [PMID: 30653376 DOI: 10.1080/03639045.2019.1569037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
KinetiSol® is a high-shear, fusion-based technology capable of producing stable amorphous solid dispersions (ASDs) without the assistance of solvent. KinetiSol® has proven successful with multiple challenging BCS class II and IV drugs, where drug properties like thermal instability or lack of appreciable solubility in volatile solvents make hot melt extrusion or spray drying unfeasible. However, there is a necessity to characterize the ASDs like those made by the KinetiSol® process, in order to better understand whether KinetiSol® is capable of homogeneously dispersing drug throughout a carrier in a short (<40 s) processing time. Our study utilized the high melting point, BCS class II drug, meloxicam, in order to evaluate the degree of homogeneity of 1, 5, and 10% w/w KinetiSol®-processed samples. Powder blend homogeneity and content uniformity were evaluated, and all samples demonstrated a meloxicam concentration % relative standard deviation of ≤2.0%. SEM/EDS was utilized to map elemental distribution of the processed samples, which confirmed KinetiSol®-processed materials were homogeneous at a 25 µm2 area. Utilizing Raman spectroscopy, we were able to verify the amorphous content of the processed samples. Finally, we utilized ssNMR 1 H spin-lattice relaxation measurement to evaluate the molecular miscibility of meloxicam with the polymer at 1% w/w drug load, for the first time, and determined the processed sample was highly miscible at ∼200 nm scale. In conclusion, we determined the KinetiSol® process is capable of producing ASDs that are homogeneously and molecularly well-dispersed drug-in-polymer at drug concentrations as low as 1% w/w.
Collapse
Affiliation(s)
- Scott V Jermain
- a Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin , Austin , TX , USA
| | - Dave Miller
- b DisperSol Technologies, LLC , Georgetown , TX , USA
| | | | - Xingyu Lu
- c Merck Research Laboratories (MRLs), Merck & Co., Inc. , Kenilworth , NJ , USA
| | - Chaeho Moon
- a Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin , Austin , TX , USA
| | - Yongchao Su
- a Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin , Austin , TX , USA.,c Merck Research Laboratories (MRLs), Merck & Co., Inc. , Kenilworth , NJ , USA
| | - Robert O Williams
- a Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
13
|
Omer HK, Hussein NR, Ferraz A, Najlah M, Ahmed W, Taylor KMG, Elhissi AMA. Spray-Dried Proliposome Microparticles for High-Performance Aerosol Delivery Using a Monodose Powder Inhaler. AAPS PharmSciTech 2018; 19:2434-2448. [PMID: 29872976 DOI: 10.1208/s12249-018-1058-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 05/04/2018] [Indexed: 11/30/2022] Open
Abstract
Proliposome formulations containing salbutamol sulphate (SS) were developed using spray drying, and the effects of carrier type (lactose monohydrate (LMH) or mannitol) and lipid to carrier ratio were evaluated. The lipid phase comprised soy phosphatidylcholine (SPC) and cholesterol (1:1), and the ratios of lipid to carrier were 1:2, 1:4, 1:6, 1:8 or 1:10 w/w. X-ray powder diffraction (XRPD) revealed an interaction between the components of the proliposome particles, and scanning electron microscopy (SEM) showed that mannitol-based proliposomes were uniformly sized and spherical, whilst LMH-based proliposomes were irregular and relatively large. Using a two-stage impinger (TSI), fine particle fraction (FPF) values of the proliposomes were higher for mannitol-based formulations, reaching 52.6%, which was attributed to the better flow properties when mannitol was used as carrier. Following hydration of proliposomes, transmission electron microscopy (TEM) demonstrated that vesicles generated from mannitol-based formulations were oligolamellar, whilst LMH-based proliposomes generated 'worm-like' structures and vesicle clusters. Vesicle size decreased upon increasing carrier to lipid ratio, and the zeta potential values were negative. Drug entrapment efficiency (EE) was higher for liposomes generated from LMH-based proliposomes, reaching 37.76% when 1:2 lipid to carrier ratio was used. The in vitro drug release profile was similar for both carriers when 1:6 lipid to carrier ratio was used. This study showed that spray drying can produce inhalable proliposome microparticles that can generate liposomes upon contact with an aqueous phase, and the FPF of proliposomes and the EE offered by liposomes were formulation-dependent.
Collapse
|
14
|
Ellenberger DJ, Miller DA, Williams RO. Expanding the Application and Formulation Space of Amorphous Solid Dispersions with KinetiSol®: a Review. AAPS PharmSciTech 2018; 19:1933-1956. [PMID: 29846889 DOI: 10.1208/s12249-018-1007-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/28/2018] [Indexed: 01/19/2023] Open
Abstract
Due to the high number of poorly soluble drugs in the development pipeline, novel processes for delivery of these challenging molecules are increasingly in demand. One such emerging method is KinetiSol, which utilizes high shear to produce amorphous solid dispersions. The process has been shown to be amenable to difficult to process active pharmaceutical ingredients with high melting points, poor organic solubility, or sensitivity to heat degradation. Additionally, the process enables classes of polymers not conventionally processable due to their high molecular weight and/or poor organic solubility. Beyond these advantages, the KinetiSol process shows promise with other applications, such as the production of amorphous mucoadhesive dispersions for delivery of compounds that would also benefit from permeability enhancement.
Collapse
|
15
|
Huang S, Williams RO. Effects of the Preparation Process on the Properties of Amorphous Solid Dispersions. AAPS PharmSciTech 2018; 19:1971-1984. [PMID: 28924730 DOI: 10.1208/s12249-017-0861-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/11/2017] [Indexed: 11/30/2022] Open
Abstract
The use of amorphous solid dispersions to improve the bioavailability of active ingredients from the BCS II and IV classifications continues to gain interest in the pharmaceutical industry. Over the last decade, methods for generating amorphous solid dispersions have been well established in commercially available products and in the literature. However, the amorphous solid dispersions manufactured by different technologies differ in many aspects, primarily chemical stability, physical stability, and performance, both in vitro and in vivo. This review analyzes the impact of manufacturing methods on those properties of amorphous solid dispersions. For example, the chemical stability of drugs and polymers can be influenced by differences in the level of thermal exposure during fusion-based and solvent-based processes. The physical stability of amorphous content varies according to the thermal history, particle morphology, and nucleation process of amorphous solid dispersions produced by different methods. The in vitro and in vivo performance of amorphous formulations are also affected by differences in particle morphology and in the molecular interactions caused by the manufacturing method. Additionally, we describe the mechanism of manufacturing methods and the thermodynamic theories that relate to amorphous formulations.
Collapse
|
16
|
|
17
|
Li W, Qing S, Zhi W, Yao H, Fu C, Niu X. The pharmacokinetics and anti-inflammatory effects of chelerythrine solid dispersions in vivo. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Edueng K, Mahlin D, Bergström CAS. The Need for Restructuring the Disordered Science of Amorphous Drug Formulations. Pharm Res 2017; 34:1754-1772. [PMID: 28523384 PMCID: PMC5533858 DOI: 10.1007/s11095-017-2174-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/01/2017] [Indexed: 11/25/2022]
Abstract
The alarming numbers of poorly soluble discovery compounds have centered the efforts towards finding strategies to improve the solubility. One of the attractive approaches to enhance solubility is via amorphization despite the stability issue associated with it. Although the number of amorphous-based research reports has increased tremendously after year 2000, little is known on the current research practice in designing amorphous formulation and how it has changed after the concept of solid dispersion was first introduced decades ago. In this review we try to answer the following questions: What model compounds and excipients have been used in amorphous-based research? How were these two components selected and prepared? What methods have been used to assess the performance of amorphous formulation? What methodology have evolved and/or been standardized since amorphous-based formulation was first introduced and to what extent have we embraced on new methods? Is the extent of research mirrored in the number of marketed amorphous drug products? We have summarized the history and evolution of amorphous formulation and discuss the current status of amorphous formulation-related research practice. We also explore the potential uses of old experimental methods and how they can be used in tandem with computational tools in designing amorphous formulation more efficiently than the traditional trial-and-error approach.
Collapse
Affiliation(s)
- Khadijah Edueng
- Department of Pharmacy, Uppsala University, Uppsala Biomedical Centre, P.O. Box 580, SE-75123, Uppsala, Sweden
- Kulliyyah of Pharmacy,, International Islamic University Malaysia, Jalan Istana, 25200, Bandar Indera Mahkota, Pahang, Malaysia
| | - Denny Mahlin
- Department of Pharmacy, Uppsala University, Uppsala Biomedical Centre, P.O. Box 580, SE-75123, Uppsala, Sweden
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala University, Uppsala Biomedical Centre, P.O. Box 580, SE-75123, Uppsala, Sweden.
| |
Collapse
|
19
|
Fong SYK, Bauer-Brandl A, Brandl M. Oral bioavailability enhancement through supersaturation: an update and meta-analysis. Expert Opin Drug Deliv 2016; 14:403-426. [DOI: 10.1080/17425247.2016.1218465] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
LaFountaine JS, McGinity JW, Williams RO. Challenges and Strategies in Thermal Processing of Amorphous Solid Dispersions: A Review. AAPS PharmSciTech 2016; 17:43-55. [PMID: 26307759 DOI: 10.1208/s12249-015-0393-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/08/2015] [Indexed: 11/30/2022] Open
Abstract
Thermal processing of amorphous solid dispersions continues to gain interest in the pharmaceutical industry, as evident by several recently approved commercial products. Still, a number of pharmaceutical polymer carriers exhibit thermal or viscoelastic limitations in thermal processing, especially at smaller scales. Additionally, active pharmaceutical ingredients with high melting points and/or that are thermally labile present their own specific challenges. This review will outline a number of formulation and process-driven strategies to enable thermal processing of challenging compositions. These include the use of traditional plasticizers and surfactants, temporary plasticizers utilizing sub- or supercritical carbon dioxide, designer polymers tailored for hot-melt extrusion processing, and KinetiSol® Dispersing technology. Recent case studies of each strategy will be described along with potential benefits and limitations.
Collapse
|
21
|
Miller DA, Keen JM, Brough C, Ellenberger DJ, Cisneros M, Williams RO, McGinity JW. Bioavailability enhancement of a BCS IV compound via an amorphous combination product containing ritonavir. J Pharm Pharmacol 2015; 68:678-91. [DOI: 10.1111/jphp.12478] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/28/2015] [Indexed: 12/29/2022]
Abstract
Abstract
Objectives
To evaluate the effect of ritonavir (RTV) co-administration on the bioavailability of an amorphous dispersion of acetyl-11-keto-beta-boswellic acid (AKBA) and to develop a pharmaceutically acceptable AKBA–RTV combination tablet.
Methods
A pharmacokinetic (PK) study in rats was conducted to evaluate the influence of RTV co-administration on the oral bioavailability of an AKBA amorphous dispersion. KinetiSol was utilized to enable production of an improved RTV formulation that facilitated the development of an AKBA–RTV combination tablet. Following in-vitro characterization, the PK performance of the tablets was evaluated in male beagles.
Key findings
Co-administration of RTV increased oral absorption of AKBA by about fourfold over the AKBA dispersion alone and approximately 24-fold over the pure compound. The improved RTV amorphous dispersion exhibited similar purity and neutral-phase dissolution to Norvir. The AKBA–RTV combination tablets yielded a substantial increase in AKBA's bioavailability in dogs.
Conclusions
Oral absorption of AKBA is substantially limited by intestinal CYP3A activity and poor aqueous solubility. Consequently, AKBA's oral bioavailability is maximized by administration from a supersaturating formulation in conjunction with a CYP3A inhibitor. The AKBA–RTV combination tablet presented herein represents a breakthrough in the oral delivery of the compound facilitating future use as a drug therapy for broad spectrum cancer treatment.
Collapse
Affiliation(s)
| | | | - Chris Brough
- DisperSol Technologies, Georgetown, TX, USA
- College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Daniel J Ellenberger
- DisperSol Technologies, Georgetown, TX, USA
- College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | | | - Robert O Williams
- College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - James W McGinity
- College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
22
|
Altamimi MA, Neau SH. Use of the Flory–Huggins theory to predict the solubility of nifedipine and sulfamethoxazole in the triblock, graft copolymer Soluplus. Drug Dev Ind Pharm 2015; 42:446-55. [DOI: 10.3109/03639045.2015.1075033] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Mohammad A. Altamimi
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA and
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Steven H. Neau
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA and
| |
Collapse
|
23
|
Gue E, Muschert S, Willart JF, Danede F, Delcourt-Debruyne E, Descamps M, Siepmann J. Accelerated ketoprofen release from spray-dried polymeric particles: importance of phase transitions and excipient distribution. Drug Dev Ind Pharm 2014; 41:838-50. [DOI: 10.3109/03639045.2014.908902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|