1
|
Rahim SA, Al-Zoubi N, Gharaibeh S, Aljaberi A. Kollidon® SR: Formulation techniques and drug delivery applications. Int J Pharm 2025; 669:125078. [PMID: 39672313 DOI: 10.1016/j.ijpharm.2024.125078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Kollidon® SR is one of the recent versatile coprocessed excipients in the formulation of modified-release dosage forms. It is prepared by co-spray drying aqueous dispersions of polyvinylacetate and polyvinylpyrrolidone. This article gives a critical review of the physicochemical attributes and technological properties of Kollidon® SR. The current review discusses various technological approaches used in the formulation with Kollidon® SR, from conventional ones like direct compaction and wet granulation to more advanced methodologies such as 3D printing, electrospinning and hot-melt extrusion. The review further elaborates on the influence of the major factors on drug release kinetics from Kollidon® SR-based formulations. Furthermore, this review unravels the potential of Kollidon® SR in the development of site-targeted oral drug delivery systems and focuses on its adaptability to other routes of administration. Further, the review deals with the considerations to be made regarding stability to make sure the formulations based on Kollidon® SR are reliable.
Collapse
Affiliation(s)
- Safwan Abdel Rahim
- Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Nizar Al-Zoubi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan.
| | - Shadi Gharaibeh
- Faculty of Pharmacy, Jerash University, Jerash 26150, Jordan
| | - Ahmad Aljaberi
- Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| |
Collapse
|
2
|
Wassif RK, Elkheshen SA, Shamma RN, Amer MS, Elhelw R, El-Kayal M. Injectable systems of chitosan in situ forming composite gel incorporating linezolid-loaded biodegradable nanoparticles for long-term treatment of bone infections. Drug Deliv Transl Res 2024; 14:80-102. [PMID: 37542190 PMCID: PMC10746766 DOI: 10.1007/s13346-023-01384-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2023] [Indexed: 08/06/2023]
Abstract
The objective of the current study was to create an efficient, minimally invasive combined system comprising in situ forming hydrogel loaded with both spray-dried polymeric nanoparticles encapsulating linezolid and nanohydroxyapatite for local injection to bones or their close vicinity. The developed system was designed for a dual function namely releasing the drug in a sustained manner for long-term treatment of bone infections and supporting bone proliferation and new tissues generation. To achieve these objectives, two release sustainment systems for linezolid were optimized namely a composite in situ forming chitosan hydrogel and spray-dried PLGA/PLA solid nanoparticles. The composite, in situ forming hydrogel of chitosan was prepared using two different gelling agents namely glycerophosphate (GP) and sodium bicarbonate (NaHCO3) at 3 different concentrations each. The spray-dried linezolid-loaded PLGA/PLA nanoparticles were developed using a water-soluble carrier (PVP K30) and a lipid soluble one (cetyl alcohol) along with 3 types of DL-lactide and/or DL-lactide-co-glycolide copolymer using nano-spray-drying technique. Finally, the optimized spray-dried linezolid nanoparticles were incorporated into the optimized composite hydrogel containing nanohydroxy apatite (nHA). The combined hydrogel/nanoparticle systems displayed reasonable injectability with excellent gelation time at 37 °C. The optimum formulae sustained the release of linezolid for 7-10 days, which reveals its ability to reduce the frequency of injection during the course of treatment of bones infections and increase the patients' compliance. They succeeded to alleviate the bone infections and the associated clinical, biochemical, radiological, and histopathological changes within 2-4 weeks of injection. As to the state of art in this study and to the best of our knowledge, no such complete and systematic study on this type of combined in situ forming hydrogel loaded with spray-dried nanoparticles of linezolid is available yet in literatures.
Collapse
Affiliation(s)
- Reem Khaled Wassif
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Seham A Elkheshen
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr Elini Street, Cairo, 11562, Egypt.
| | - Rehab Nabil Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr Elini Street, Cairo, 11562, Egypt
| | - Mohammed S Amer
- Department of Surgery, Anaesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Rehab Elhelw
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Maha El-Kayal
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| |
Collapse
|
3
|
Al-Zoubi N, Partheniadis I, Aljaberi A, Nikolakakis I. Co-spray Drying Drugs with Aqueous Polymer Dispersions (APDs)-a Systematic Review. AAPS PharmSciTech 2022; 23:140. [PMID: 35538248 DOI: 10.1208/s12249-022-02293-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
Aqueous colloidal dispersions of water-insoluble polymers (APDs) avoid hassles associated with the use of organic solvents and offer processing advantages related to their low viscosity and short processing times. Therefore, they became the main vehicle for pharmaceutical coating of tablets and multiparticulates, a process commonly employed using pan and fluidized-bed machinery. Another interesting although less common processing approach is co-spray drying APDs with drugs in aqueous systems. It enables the manufacture of capsule- and matrix-type microspheres with controllable size and improved processing characteristics in a single step. These microspheres can be further formulated into different dosage forms. This systematic review is based on published research articles and aims to highlight the applicability and opportunities of co-spray drying drugs with APDs in drug delivery.
Collapse
|
4
|
Choudhury D, Jala A, Murty US, Borkar RM, Banerjee S. In Vitro and In Vivo Evaluations of Berberine-Loaded Microparticles Filled In-House 3D Printed Hollow Capsular Device for Improved Oral Bioavailability. AAPS PharmSciTech 2022; 23:89. [PMID: 35296955 PMCID: PMC8926385 DOI: 10.1208/s12249-022-02241-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/19/2022] [Indexed: 11/30/2022] Open
Abstract
The low oral bioavailability, short biological half-life, high dose, and frequent dosing of berberine (BBR) contribute to its restricted clinical use despite its extensive pharmacological activity. Thus, the objective of this study was to formulate sustained-release microparticles (MPs) using a pH-independent release polymer and to evaluate their potential to improve the oral bioavailability of BBR. BBR loaded MPs were prepared using the emulsion crosslinking method and evaluated for particle size, circularity, morphology, entrapment efficiency, solid-state analysis, swelling index, and in vitro BBR release study fitted with different models of release kinetics. The MPs exhibited desired particle sizes ranges between 11.09-11.62 μm and were almost spherical in shape, as confirmed by the circularity value and micrographic images. A loss of BBR crystallinity was observed after encapsulation in MPs, as evident from various solid-state analyses. The final optimized batch (F3) showed highest % BBR entrapment efficiency value of 81.63% ± 4.9. The in vitro BBR release performance in both acidic and alkaline media showed the desired sustained release behavior from the crosslinked MPs, where the maximum BBR release was observed at alkaline pH, which is in accordance with the swelling study data. In the in vivo study, the oral absorption profiles of BBR from both pristine and MPs formats were investigated using in-house prototyped 3D printed hollow capsules as a unit dose carrier. In vivo data showed sustained and prolonged absorption behavior of BBR from MPs compared to their pristine counterparts, which resulted in a cumulative increment of relative oral bioavailability to mitigate the aforementioned issues related to BBR. Graphical Abstract.
Collapse
Affiliation(s)
- Dinesh Choudhury
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India
- National Centre for Pharmacoengineering, NIPER-Guwahati, Changsari, Assam, India
| | - Aishwarya Jala
- Department of Pharmaceutical analysis, NIPER-Guwahati, Changsari, Assam, India
| | | | - Roshan M Borkar
- Department of Pharmaceutical analysis, NIPER-Guwahati, Changsari, Assam, India
| | - Subham Banerjee
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India.
- National Centre for Pharmacoengineering, NIPER-Guwahati, Changsari, Assam, India.
| |
Collapse
|
5
|
Abstract
Tableting by direct compression (DC) is one of the simplest and most cost-effective drug manufacturing approaches. However, most active pharmaceutical ingredients (APIs) and excipients lack the compression and flow properties required to meet the needs of high-speed industrial tablet presses. Therefore, the majority of DC APIs and excipients are modified via processing/co-processing particle engineering techniques to boost their properties. Spray drying is one of the most commonly employed techniques to prepare DC grades of APIs and excipients with prominent advantages. This review aims to present an overview of the commercially marketed and investigationally-prepared DC APIs and excipients produced by spray drying.
Collapse
|
6
|
Al-Zoubi N, Odeh F, Partheniadis I, Gharaibeh S, Nikolakakis I. Spray drying of naproxen and naproxen sodium for improved tableting and dissolution - physicochemical characterization and compression performance. Pharm Dev Technol 2020; 26:193-208. [PMID: 33211618 DOI: 10.1080/10837450.2020.1853769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this work, the tabletability and dissolution of spray-dried forms of naproxen and its sodium salt were compared with those of unprocessed drugs. Solutions of naproxen or naproxen sodium alone or with HPMC (5% w/w of drug content) were spray dried. Scanning electron micrographs showed that naproxen sodium spray-dried particles were spherical, whereas those of naproxen were non-spherical but isodiametric. Powder x-ray diffraction and thermal analysis indicated that co-spray drying with HPMC resulted in reduced crystallinity of naproxen and higher naproxen sodium dihydrate content. FTIR and Raman analysis showed shifting, merging or elimination of bands in the spectra of the co-spray dried products signifying solid-state alterations. When mixed with suitable processing aids (7% w/w), all co-spray dried powders produced satisfactory tablets in the pressure range 73-295 MPa. Conversely, physical mixtures of naproxen compressed with the same aids failed tableting, whereas naproxen sodium produced weak tablets. Dissolution tests showed significant improvement for co-spray dried drugs tablets. Therefore, since the large therapeutic doses of naproxen and sodium naproxen limit the use of tableting aids, the improved compaction and dissolution performance of the spray-dried forms may be a formulation alternative.
Collapse
Affiliation(s)
- Nizar Al-Zoubi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | - Faten Odeh
- Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Ioannis Partheniadis
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Ioannis Nikolakakis
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
7
|
Bolourchian N, Bahjat M. Design and In Vitro Evaluation of Eudragit-Based Extended Release Diltiazem Microspheres for Once- and Twice-Daily Administration: The Effect of Coating on Drug Release Behavior. Turk J Pharm Sci 2019; 16:340-347. [PMID: 32454733 DOI: 10.4274/tjps.galenos.2018.24861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 06/20/2018] [Indexed: 12/01/2022]
Abstract
Objectives The aim of this investigation was to develop an extended release formulation of diltiazem hydrochloride (DL) for once- and twice-daily administration, based on Eudragit (Eud) RL and RS microspheres using emulsion solvent evaporation. Materials and Methods Formulations with different drug-polymer concentrations were produced and characterized in terms of yield, encapsulation efficiency (EE), particle size, and surface morphology. The drug release and thermal behavior of the microspheres were also investigated. Selected microspheres were then coated with Eud RS by continuous solvent evaporation, in order to modify the microspheres' properties and burst release. Results According to the results, the EE was in the range of 56%-93% for uncoated microspheres. The mean particle size of microspheres was different from 470 to above 1000 μm, based on various formulation variables. No difference was observed between the mean size of particles prepared with Eud RL and Eud RS. Microspheres showed sustained release behavior, which was affected by the drug:polymer ratio as well as particle size. Coating the microspheres not only improved the EE values (82%-92%) but also reduced the mean dissolution rate as well as the burst release. Conclusion Microspheres prepared with DL:Eud RL ratios of 1:3 and 1:4 showed release profiles in accordance with the USP criteria for a DL extended release product for dosing every 12 and 24 h, respectively.
Collapse
Affiliation(s)
- Noushin Bolourchian
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Bahjat
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Ivanova NA, Trapani A, Franco CD, Mandracchia D, Trapani G, Franchini C, Corbo F, Tripodo G, Kolev IN, Stoyanov GS, Bratoeva KZ. In vitro and ex vivo studies on diltiazem hydrochloride-loaded microsponges in rectal gels for chronic anal fissures treatment. Int J Pharm 2018; 557:53-65. [PMID: 30580086 DOI: 10.1016/j.ijpharm.2018.12.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 10/27/2022]
Abstract
Diltiazem hydrochloride, topically applied at 2% concentration, is considered effective for the treatment of chronic anal fissures, although it involves several side effects among which anal pruritus and postural hypotension. To test the hypothesis that a sustained delivery system of diltiazem hydrochloride may be helpful for the treatment of chronic anal fissures, in the present study we evaluated the potential of gels containing diltiazem hydrochloride entrapped in microsponges. Such microsponges were based on Eudragit RS 100 and the effect of some formulation variables was assessed by a 23 full factorial screening design. An optimized formulation of diltiazem hydrochloride microsponges was dispersed in Methylcellulose 2% or Poloxamer 407 20% and the resulting gels (micro-l-diltiazem hydrochloride 2%) were subjected to in vitro drug release, ex vivo permeability and drug deposition after application on porcine rectal mucosa. The results showed a prolonged release up to 24 h from micro-l-diltiazem hydrochloride at 2% in the gels. The permeation tests revealed up to 18% higher drug retention on the mucosal tissue after 24 h by the micro-l-diltiazem hydrochloride 2% gels compared to conventional diltiazem hydrochloride gels at 2%. These results suggest that diltiazem hydrochloride-loaded microsponges dispersed in rectal gels may be useful to overcome some limitations of conventional local chronic anal fissure therapy.
Collapse
Affiliation(s)
- Nadezhda Antonova Ivanova
- Faculty of Pharmacy, Medical University, "Prof. Dr. Paraskev Stoyanov", 84 Tsar Osvoboditel str., Varna, Bulgaria
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona, 4, 70125 Bari, Italy.
| | | | - Delia Mandracchia
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona, 4, 70125 Bari, Italy
| | - Giuseppe Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona, 4, 70125 Bari, Italy
| | - Carlo Franchini
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona, 4, 70125 Bari, Italy
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona, 4, 70125 Bari, Italy
| | - Giuseppe Tripodo
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy
| | - Iliyan Nikolov Kolev
- Faculty of Pharmacy, Medical University, "Prof. Dr. Paraskev Stoyanov", 84 Tsar Osvoboditel str., Varna, Bulgaria
| | - Georgi Stoyanov Stoyanov
- Department of General and Clinical Pathology, Forensic Medicine and Deontology, Faculty of Medicine, Medical University, "Prof. Dr. Paraskev Stoyanov", 55 Marin Drinov str., Varna, Bulgaria; Faculty of Medicine, Medical University, "Prof. Dr. Paraskev Stoyanov", 55 Marin Drinov str., Varna, Bulgaria
| | - Kameliya Zhechkova Bratoeva
- Faculty of Medicine, Medical University, "Prof. Dr. Paraskev Stoyanov", 55 Marin Drinov str., Varna, Bulgaria
| |
Collapse
|
9
|
Fu Q, Su X, Hou Y, Li M, Li J, Sun J, He Z. Once-daily amoxicillin immediate- and extended-release bilayer tablets. POWDER TECHNOL 2016. [DOI: 10.1016/j.powtec.2016.06.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|