1
|
Grosso R, Benito E, Carbajo-Gordillo AI, Díaz MJ, García-Martín MG, de-Paz MV. Advanced interpenetrating polymer networks for innovative gastroretentive formulations targeting Helicobacter pylori gastric colonization. Eur J Pharm Sci 2024; 200:106840. [PMID: 38909691 DOI: 10.1016/j.ejps.2024.106840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/25/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
The escalating challenges of Helicobacter pylori-induced gastric complications, driven by rising antibiotic resistance and persistent cancer risks, underscore the demand for innovative therapeutic strategies. This study addresses this urgency through the development of tailored semi-interpenetrating polymer networks (semi-IPN) serving as gastroretentive matrices for amoxicillin (AMOX). They are biodegradable, absorb significant volume of simulated gastric fluid (swelling index > 360 %) and exhibit superporous microstructures, remarkable mucoadhesion, and buoyancy. The investigation includes assessment at pH 1.2 for comparative analysis with prior studies and, notably, at pH 5.0, reflecting the acidic environment in H. pylori-infected stomachs. The semi-IPN demonstrated gel-like structures, maintaining integrity throughout the 24-hour controlled release study, and disintegrating upon completing their intended function. Evaluated in gastroretentive drug delivery system performance, AMOX release at pH 1.2 and pH 5.0 over 24 h (10 %-100 %) employed experimental design methodology, elucidating dominant release mechanisms. Their mucoadhesive, buoyant, three-dimensional scaffold stability, and gastric biodegradability make them ideal for accommodating substantial AMOX quantities. Furthermore, exploring the inclusion of the potassium-competitive acid blocker (P-CAB) vonoprazan (VONO) in AMOX-loaded formulations shows promise for precise and effective drug delivery. This innovative approach has the potential to combat H. pylori infections, thereby preventing the gastric cancer induced by this pathogen.
Collapse
Affiliation(s)
- Roberto Grosso
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/ Prof. García González, n. 2, 41012, Seville, Spain
| | - Elena Benito
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/ Prof. García González, n. 2, 41012, Seville, Spain.
| | - Ana I Carbajo-Gordillo
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/ Prof. García González, n. 2, 41012, Seville, Spain
| | | | - M Gracia García-Martín
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/ Prof. García González, n. 2, 41012, Seville, Spain
| | - M-Violante de-Paz
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/ Prof. García González, n. 2, 41012, Seville, Spain.
| |
Collapse
|
2
|
Liu Z, Li H, Huang X, Liu Q. Animal Models of Helicobacter pylori Infection and Vaccines: Current Status and Future Prospects. Helicobacter 2024; 29:e13119. [PMID: 39108210 DOI: 10.1111/hel.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 01/02/2025]
Abstract
Helicobacter pylori infection causes chronic gastritis, ulcers, and gastric cancer, making it a threat to human health. Despite the use of antibiotic therapy, the global prevalence of H. pylori infection remains high, necessitating early eradication measures. Immunotherapy, especially vaccine development, is a promising solution in this direction, albeit the selection of an appropriate animal model is critical in efficient vaccine production. Accordingly, we conducted a literature, search and summarized the commonly used H. pylori strains, H. pylori infection-related animal models, and models for evaluating H. pylori vaccines. Based on factors such as the ability to replicate human diseases, strain compatibility, vaccine types, and eliciting of immune responses, we systematically compared the advantages and disadvantages of different animal models, to obtain the informed recommendations. In addition, we have proposed novel perspectives on H. pylori-related animal models to advance research and vaccine evaluation for the prevention and treatment of diseases such as gastric cancer.
Collapse
Affiliation(s)
- Zhili Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- HuanKui Academy, Nanchang University, Nanchang, China
| | - He Li
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Rampedi PN, Ogunrombi MO, Adeleke OA. Leading Paediatric Infectious Diseases-Current Trends, Gaps, and Future Prospects in Oral Pharmacotherapeutic Interventions. Pharmaceutics 2024; 16:712. [PMID: 38931836 PMCID: PMC11206886 DOI: 10.3390/pharmaceutics16060712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Paediatric infectious diseases contribute significantly to global health challenges. Conventional therapeutic interventions are not always suitable for children, as they are regularly accompanied with long-standing disadvantages that negatively impact efficacy, thus necessitating the need for effective and child-friendly pharmacotherapeutic interventions. Recent advancements in drug delivery technologies, particularly oral formulations, have shown tremendous progress in enhancing the effectiveness of paediatric medicines. Generally, these delivery methods target, and address challenges associated with palatability, dosing accuracy, stability, bioavailability, patient compliance, and caregiver convenience, which are important factors that can influence successful treatment outcomes in children. Some of the emerging trends include moving away from creating liquid delivery systems to developing oral solid formulations, with the most explored being orodispersible tablets, multiparticulate dosage forms using film-coating technologies, and chewable drug products. Other ongoing innovations include gastro-retentive, 3D-printed, nipple-shield, milk-based, and nanoparticulate (e.g., lipid-, polymeric-based templates) drug delivery systems, possessing the potential to improve therapeutic effectiveness, age appropriateness, pharmacokinetics, and safety profiles as they relate to the paediatric population. This manuscript therefore highlights the evolving landscape of oral pharmacotherapeutic interventions for leading paediatric infectious diseases, crediting the role of innovative drug delivery technologies. By focusing on the current trends, pointing out gaps, and identifying future possibilities, this review aims to contribute towards ongoing efforts directed at improving paediatric health outcomes associated with the management of these infectious ailments through accessible and efficacious drug treatments.
Collapse
Affiliation(s)
- Penelope N. Rampedi
- Department of Clinical Pharmacology and Therapeutics, School of Medicine, Sefako Makgatho Health Science University, Pretoria 0208, South Africa; (P.N.R.); (M.O.O.)
| | - Modupe O. Ogunrombi
- Department of Clinical Pharmacology and Therapeutics, School of Medicine, Sefako Makgatho Health Science University, Pretoria 0208, South Africa; (P.N.R.); (M.O.O.)
| | - Oluwatoyin A. Adeleke
- Preclinical Laboratory for Drug Delivery Innovations, College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS B3H 4R2, Canada
- School of Biomedical Engineering, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 3J5, Canada
- School of Pharmacy, Sefako Makgatho Health Science University, Pretoria 0208, South Africa
| |
Collapse
|
4
|
Souissi S, Makni C, Chaieb B, Jarraya A, Toulgui N, Jmal L, Mlika M, Fendri C, Bouchoucha M, Razgallah R, Ammar LB, Bousnina O, Mezni F, Jmal A, Kallel L. Eradication of Helicobacter pylori: a prospective comparative randomized trial of standard versus optimized quadruple therapy. Future Sci OA 2024; 10:FSO974. [PMID: 38817354 PMCID: PMC11137849 DOI: 10.2144/fsoa-2023-0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/06/2024] [Indexed: 06/01/2024] Open
Abstract
The treatment of Helicobacter pylori infection remains a challenge. None of the proposed treatment regimens has resulted in a 100% eradication rate. The aim of our study was to compare the rate of H. pylori eradication after standard or dose-optimized amoxicillin quadruple therapy. We conducted a prospective comparative study collating patients naive to any anti-H. pylori treatment and with chronic H. pylori infection documented by histological examination. Patients were randomly assigned to either standard quadruple therapy or optimized quadruple therapy. Eradication control was performed by urea breath test. Eighty-eight eligible patients were included with 44 in each group.There was no significant difference between the eradication rates of Qo-14 and Qs-14 neither in ITT (84 vs 70.4%; p = 0.127) nor in PP (82.1 vs 77.7%; p = 0.473). Compliance and tolerance appeared similar in each group.
Collapse
Affiliation(s)
- Salma Souissi
- University of Tunis El Manar, Departement of Gastroenterology, Mahmoud Matri Hospital, Ariana, 2080, Tunisia
| | - Cyrine Makni
- University of Tunis El Manar, Departement of Gastroenterology, Mahmoud Matri Hospital, Ariana, 2080, Tunisia
| | - Basma Chaieb
- University of Tunis El Manar, Departement of Gastroenterology, Mahmoud Matri Hospital, Ariana, 2080, Tunisia
| | - Amine Jarraya
- University of Tunis El Manar, Departement of Gastroenterology, Mahmoud Matri Hospital, Ariana, 2080, Tunisia
| | - Nadia Toulgui
- University of Tunis El Manar, Departement of Gastroenterology, Mahmoud Matri Hospital, Ariana, 2080, Tunisia
| | - Lobna Jmal
- University of Tunis El Manar, Departement of Bacteriology & Biochemistry Laboratory, Mahmoud Matri Hospital, Ariana, 2080, Tunisia
| | - Mouna Mlika
- University of Tunis El Manar, Departement of Anatomopathology, Abderrahmen Mami Hospital, Ariana, 2080, Tunisia
| | - Chadlia Fendri
- Clinical Analysis Laboratory “Fendri”, Ariana, 2080, Tunisia
| | | | - Rabie Razgallah
- University of Tunis El Manar, Dacima Consulting, Tunis, 2080, Tunisia
| | - Leila Belhadj Ammar
- University of Tunis El Manar, Departement of Gastroenterology, Mahmoud Matri Hospital, Ariana, 2080, Tunisia
| | - Olfa Bousnina
- University of Tunis El Manar, Departement of Gastroenterology, Mahmoud Matri Hospital, Ariana, 2080, Tunisia
| | - Fawzi Mezni
- University of Tunis El Manar, Departement of Anatomopathology, Abderrahmen Mami Hospital, Ariana, 2080, Tunisia
| | - Awatef Jmal
- University of Tunis El Manar, Departement of Bacteriology & Biochemistry Laboratory, Mahmoud Matri Hospital, Ariana, 2080, Tunisia
| | - Lamia Kallel
- University of Tunis El Manar, Departement of Gastroenterology, Mahmoud Matri Hospital, Ariana, 2080, Tunisia
| |
Collapse
|
5
|
Stegemann S, Klingmann V, Reidemeister S, Breitkreutz J. Patient-centric drug product development acceptability across patient populations- Science and evidence. Eur J Pharm Biopharm 2023:S0939-6411(23)00105-4. [PMID: 37164232 DOI: 10.1016/j.ejpb.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023]
Abstract
The 6th APV (Arbeitsgemeinschaft für Pharmazeutische Verfahrenstechnologie e.V., The International Association for Pharmaceutical Technology) Winter Conference took place in Salzburg (Austria) from January 19-20, 2023. This conference was dedicated to advance patient-centric drug development across all dosage forms, indications and patient populations and was organized by the APV PaCeMe IN Task Force. The topic was chosen due to emerging evidence and increasing regulatory requirements to consider patient needs and capabilities in drug product development. It is well acknowledged that acceptability of a drug product and its dosage form is a fundamental aspect of patient centric drug product design which can directly impact adherence and intended use, hence effectiveness and safety. Despite the requirement to proof acceptability within the drug development program, respective methods to determine and compare the degree of acceptability of different dosage forms and drug product designs are still limited.
Collapse
Affiliation(s)
- Sven Stegemann
- Leibniz JointLab First in Translation, Forckenbeckstrasse 50, 52074 Aachen, Germany.
| | - Viviane Klingmann
- University Hospital Düsseldorf, , Department of General Paediatrics, Neonatology and Paediatric Cardiology , Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Sibylle Reidemeister
- Novartis, Global Drug Development/Technical Research & Development, Novartis Campus, 4056 Basel, Switzerland
| | - Jörg Breitkreutz
- University of Düsseldorf, Institute of Pharmaceutical Technology and Biopharmacy, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
6
|
Biodegradable Guar-Gum-Based Super-Porous Matrices for Gastroretentive Controlled Drug Release in the Treatment of Helicobacter pylori: A Proof of Concept. Int J Mol Sci 2023; 24:ijms24032281. [PMID: 36768604 PMCID: PMC9917163 DOI: 10.3390/ijms24032281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
An increase in resistance to key antibiotics has made the need for novel treatments for the gastric colonization of Helicobacter pylori (H. pylori) a matter of the utmost urgency. Recent studies tackling this topic have focused either on the discovery of new compounds to ameliorate therapeutic regimes (such as vonoprazan) or the synthesis of gastroretentive drug delivery systems (GRDDSs) to improve the pharmacokinetics of oral formulations. The use of semi-interpenetrating polymer networks (semi-IPNs) that can act as super-porous hydrogels for this purpose is proposed in the present work, specifically those displaying low ecological footprint, easy synthesis, self-floating properties, high encapsulation efficiency for drugs such as amoxicillin (AMOX), great mucoadhesiveness, and optimal mechanical strength when exposed to stomach-like fluids. To achieve such systems, biodegradable synthetic copolymers containing acid-labile monomers were prepared and interpenetrated with guar gum (GG) in a one-pot polymerization process based on thiol-ene click reactions. The resulting matrices were characterized by SEM, GPC, TGA, NMR, and rheology studies, and the acidic hydrolysis of the acid-sensitive polymers was also studied. Results confirm that some of the obtained matrices are expected to perform optimally as GRDDSs for the sustained release of active pharmaceutical ingredients at the gastrointestinal level, being a priori facilitated by its disaggregation. Therefore, the optimal performance of these systems is assessed by varying the molar ratio of the labile monomer in the matrices.
Collapse
|
7
|
Blynskaya EV, Tishkov SV, Vinogradov VP, Alekseev KV, Marakhova AI, Vetcher AA. Polymeric Excipients in the Technology of Floating Drug Delivery Systems. Pharmaceutics 2022; 14:pharmaceutics14122779. [PMID: 36559272 PMCID: PMC9786229 DOI: 10.3390/pharmaceutics14122779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
The combination of targeted transport and improvement of the release profile of the active pharmaceutical ingredient (API) is a current trend in the development of oral medicinal products (MP). A well-known way to implement this concept is to obtain floating gastroretentive delivery systems that provide a long stay of the dosage form (DF) on the surface of the stomach contents. The nomenclature of excipients (Es) of a polymeric nature used in the technology of obtaining floating drug delivery systems (FDDS) is discussed. Based on the data presented in research papers, the most widely used groups of polymers, their properties, and their purpose in various technological approaches to achieving buoyancy have been determined. In addition, ways to modify the release of APIs in these systems and the Es used for this are described. The current trends in the use of polymers in the technology of floating dosage forms (FDF) and generalized conclusions about the prospects of this direction are outlined.
Collapse
Affiliation(s)
- Evgenia V. Blynskaya
- V. V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St., 125315 Moscow, Russia
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Sergey V. Tishkov
- V. V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Vladimir P. Vinogradov
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Konstantin V. Alekseev
- V. V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Anna I. Marakhova
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Alexandre A. Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5 Yasnogorskaya St., 117588 Moscow, Russia
- Correspondence:
| |
Collapse
|
8
|
Scope and Limitations of Current Antibiotic Therapies against Helicobacter pylori: Reviewing Amoxicillin Gastroretentive Formulations. Pharmaceutics 2022; 14:pharmaceutics14071340. [PMID: 35890236 PMCID: PMC9320814 DOI: 10.3390/pharmaceutics14071340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
Even though general improvement of quality of life has happened around the globe, statistics show that gastric cancer is still a very serious medical concern in some regions of the world. A big portion of malignant neoplasms that develop inside the stomach are linked to an infection of Helicobacter pylori; in fact, this pathogen has already been categorized as a group 1 carcinogen by the World Health Organization (WHO). Still, the efficacy of current anti-H. pylori therapeutic approaches is insufficient and follows a worrying decreasing trend, mainly due to an exponential increase in resistance to key antibiotics. This work analyzes the clinical and biological characteristics of this pathogen, especially its link to gastric cancer, and provides a comprehensive review of current formulation trends for H. pylori eradication. Research effort has focused both on the discovery of new combinations of chemicals that function as optimized antibiotic regimens, and on the preparation of gastroretentive drug delivery systems (GRDDSs) to improve overall pharmacokinetics. Regarding the last topic, this review aims to summarize the latest trend in amoxicillin-loaded GRDDS, since this is the antibiotic that has shown the least bacterial resistance worldwide. It is expected that the current work could provide some insight into the importance of innovative options to combat this microorganism. Therefore, this review can inspire new research strategies in the development of efficient formulations for the treatment of this infection and the consequent prevention of gastric cancer.
Collapse
|
9
|
Vrettos NN, Roberts CJ, Zhu Z. Gastroretentive Technologies in Tandem with Controlled-Release Strategies: A Potent Answer to Oral Drug Bioavailability and Patient Compliance Implications. Pharmaceutics 2021; 13:pharmaceutics13101591. [PMID: 34683884 PMCID: PMC8539558 DOI: 10.3390/pharmaceutics13101591] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/24/2022] Open
Abstract
There have been many efforts to improve oral drug bioavailability and therapeutic efficacy and patient compliance. A variety of controlled-release oral delivery systems have been developed to meet these needs. Gastroretentive drug delivery technologies have the potential to achieve retention of the dosage form in the upper gastrointestinal tract (GIT) that can be sufficient to ensure complete solubilisation of the drugs in the stomach fluids, followed by subsequent absorption in the stomach or proximal small intestine. This can be beneficial for drugs that have an “absorption window” or are absorbed to a different extent in various segments of the GIT. Therefore, gastroretentive technologies in tandem with controlled-release strategies could enhance both the therapeutic efficacy of many drugs and improve patient compliance through a reduction in dosing frequency. The paper reviews different gastroretentive drug delivery technologies and controlled-release strategies that can be combined and summarises examples of formulations currently in clinical development and commercially available gastroretentive controlled-release products. The different parameters that need to be considered and monitored during formulation development for these pharmaceutical applications are highlighted.
Collapse
|
10
|
Teaima M, Abdel Hamid MM, Shoman NA, Jasti BR, El-Nabarawi MA. Promising Swellable Floating Bupropion Tablets: Formulation, in vitro/in vivo Evaluation and Comparative Pharmacokinetic Study in Human Volunteers. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2741-2757. [PMID: 32764875 PMCID: PMC7368561 DOI: 10.2147/dddt.s258571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/26/2020] [Indexed: 12/27/2022]
Abstract
Purpose Bupropion is an antidepressant drug that facilitates weight loss. It is a highly water-soluble drug that needs multiple dosing, so it is considered a potential candidate for oral controlled-release dosage form. The aim of this research was to formulate and evaluate satiety-inducing swellable floating bupropion tablets by direct compression targeting depression associated with eating disorders. Various combinations of natural and semi-synthetic hydrogels were selected to achieve maximum swelling and remaining buoyant in the stomach. This synergistically enhances weight loss by increasing satiety. Methods An I-optimal mixture design was conducted to establish the optimal quantitative composition of tablets. Friability, floating lag time, swelling index after 4 and 8 hours, along with the percent of bupropion released at 1 and 8 hours were selected as dependent variables. The optimized formulation was characterized by physicochemical properties, thermal stability, and chemical interaction. In vivo radiographic evaluation of gastric residence besides, the oral bioavailability relative to marketed Wellbutrin® sustained-release tablets were investigated using human volunteers. Results The optimized formulation (73.3 mg xanthan, 120 mg glucomannan, 8.4 mg tamarind kernel powder, 78.3 mg HPMC K15M) was achieved with the overall desirability equals 0.782. In vivo radiographic study showed that formulation was retained for >8 hours in the stomach. Compared with the marketed BUP tablets, the Cmax was almost the same with a significant increase (p =0.004) for Tmax. Conclusion Using combinations of these hydrogels would be promising gastroretentive delivery systems in the control of bupropion rate release with enhanced floating and swelling features.
Collapse
Affiliation(s)
- Mahmoud Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Magdi M Abdel Hamid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Nabil A Shoman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Bhaskara R Jasti
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, California, USA
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
11
|
3D-Printed Gastroretentive Sustained Release Drug Delivery System by Applying Design of Experiment Approach. Molecules 2020; 25:molecules25102330. [PMID: 32429452 PMCID: PMC7287939 DOI: 10.3390/molecules25102330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/09/2020] [Accepted: 05/14/2020] [Indexed: 01/08/2023] Open
Abstract
This study aimed to develop a novel oral drug delivery system for gastroretentive sustained drug release by using a capsular device. A capsular device that can control drug release rates from the inner immediate release (IR) tablet while floating in the gastric fluid was fabricated and printed by a fused deposition modeling 3D printer. A commercial IR tablet of baclofen was inserted into the capsular device. The structure of the capsular device was optimized by applying a design of experiment approach to achieve sustained release of a drug while maintaining sufficient buoyancy. The 2-level factorial design was used to identify the optimal sustained release with three control factors: size, number, and height of drug-releasing holes of the capsular device. The drug delivery system was buoyant for more than 24 h and the average time to reach 80% dissolution (T80) was 1.7–6.7 h by varying the control factors. The effects of the different control factors on the response factor, T80, were predicted by using the equation of best fit. Finally, drug delivery systems with predetermined release rates were prepared with a mean prediction error ≤ 15.3%. This approach holds great promise to develop various controlled release drug delivery systems.
Collapse
|
12
|
Tripathi J, Thapa P, Maharjan R, Jeong SH. Current State and Future Perspectives on Gastroretentive Drug Delivery Systems. Pharmaceutics 2019; 11:pharmaceutics11040193. [PMID: 31010054 PMCID: PMC6523542 DOI: 10.3390/pharmaceutics11040193] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/07/2019] [Accepted: 04/17/2019] [Indexed: 01/09/2023] Open
Abstract
In recent years, many attempts have been made to enhance the drug bioavailability and therapeutic effectiveness of oral dosage forms. In this context, various gastroretentive drug delivery systems (GRDDS) have been used to improve the therapeutic efficacy of drugs that have a narrow absorption window, are unstable at alkaline pH, are soluble in acidic conditions, and are active locally in the stomach. In this review, we discuss the physiological state of the stomach and various factors that affect GRDDS. Recently applied gastrointestinal technologies such as expandable, superporous hydrogel; bio/mucoadhesive, magnetic, ion-exchange resin; and low- and high-density-systems have also been examined along with their merits and demerits. The significance of in vitro and in vivo evaluation parameters of various GRDDS is summarized along with their applications. Moreover, future perspectives on this technology are discussed to minimize the gastric emptying rate in both the fasted and fed states. Overall, this review may inform and guide formulation scientists in designing the GRDDS.
Collapse
Affiliation(s)
- Julu Tripathi
- College of Pharmacy, Dongguk University-Seoul, 32 Donggukro, Ilsandonggu, Goyang, Gyeonggi 10326, Korea.
| | - Prakash Thapa
- College of Pharmacy, Dongguk University-Seoul, 32 Donggukro, Ilsandonggu, Goyang, Gyeonggi 10326, Korea.
| | - Ravi Maharjan
- College of Pharmacy, Dongguk University-Seoul, 32 Donggukro, Ilsandonggu, Goyang, Gyeonggi 10326, Korea.
| | - Seong Hoon Jeong
- College of Pharmacy, Dongguk University-Seoul, 32 Donggukro, Ilsandonggu, Goyang, Gyeonggi 10326, Korea.
| |
Collapse
|
13
|
Leelakanok N, Geary S, Salem A. Fabrication and Use of Poly(d,l-lactide-co-glycolide)-Based Formulations Designed for Modified Release of 5-Fluorouracil. J Pharm Sci 2017; 107:513-528. [PMID: 29045885 DOI: 10.1016/j.xphs.2017.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 12/14/2022]
Abstract
5-fluorouracil (5-FU) is a chemotherapeutic agent that has been used for the treatment of a variety of malignancies since its initial introduction to the clinic in 1957. Owing to its short biological half-life, multiple dosings are generally required to maintain effective 5-FU plasma concentrations throughout the therapeutic period. Clinical studies have shown that continuous 5-FU administration is generally superior to bolus injection as exhibited by lower toxicities and increased therapeutic efficacy. Optimal therapeutic efficacy, however, is often compromised by the limiting therapeutic index. Whilst oral formulations are also used, these suffer from the drawbacks of variable bioavailability and first-pass metabolism. As a result, sustained release formulations of 5-FU have been investigated in an effort to mimic the kinetics of continuous infusion particularly for situations where local delivery is considered appropriate. The biocompatible, biodegradable, and highly tunable synthetic polymer, poly(d,l-lactide-co-glycolide) (PLGA), is widely used as a vector for sustained drug delivery, however, issues such as insufficient loading and inappropriate burst release kinetics have dogged progress into the clinic for small hydrophilic drugs such as 5-FU. This review provides introductory information about the mechanism of action, pharmacokinetic and physicochemical properties, and clinical use of 5-FU that have contributed to the development of PLGA-based 5-FU release platforms. In addition, this review provides information on fabrication methods used for a range of 5-FU-loaded PLGA formulations and discusses factors affecting the release kinetics of 5-FU as well as the in vitro and in vivo antitumor or antiproliferative efficacy of these platforms.
Collapse
Affiliation(s)
- Nattawut Leelakanok
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, Iowa City, Iowa 52242
| | - Sean Geary
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, Iowa City, Iowa 52242
| | - Aliasger Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, Iowa City, Iowa 52242.
| |
Collapse
|
14
|
Verma A, Dubey J, Hegde RR, Rastogi V, Pandit JK. Helicobacter pylori: past, current and future treatment strategies with gastroretentive drug delivery systems. J Drug Target 2016; 24:897-915. [DOI: 10.3109/1061186x.2016.1171326] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|