1
|
Feng Báez JP, George De la Rosa MV, Alvarado-Hernández BB, Romañach RJ, Stelzer T. Evaluation of a compact composite sensor array for concentration monitoring of solutions and suspensions via multivariate analysis. J Pharm Biomed Anal 2023; 233:115451. [PMID: 37182364 PMCID: PMC10330539 DOI: 10.1016/j.jpba.2023.115451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/24/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
Compact composite probes were identified as a priority to alleviate space constraints in miniaturized unit operations and pharmaceutical manufacturing platforms. Therefore, in this proof of principle study, a compact composite sensor array (CCSA) combining ultraviolet and near infrared features at four different wavelengths (280, 340, 600, 860 nm) in a 380 × 30 mm housing (length x diameter, 7 mm diameter at the probe head), was evaluated for its capabilities to monitor in situ concentration of solutions and suspensions via multivariate analysis using partial least squares (PLS) regression models. Four model active pharmaceutical ingredients (APIs): warfarin sodium isopropanol solvate (WS), lidocaine hydrochloride monohydrate (LID), 6-mercaptopurine monohydrate (6-MP), and acetaminophen (ACM) in their aqueous solution and suspension formulation were used for the assessment. The results demonstrate that PLS models can be applied for the CCSA prototype to measure the API concentrations with similar accuracy (validation samples within the United States Pharmacopeia (USP) limits), compared to univariate CCSA models and multivariate models for an established Raman spectrometer. Specifically, the multivariate CCSA models applied to the suspensions of 6-MP and ACM demonstrate improved accuracy of 63% and 31%, respectively, compared to the univariate CCSA models [1]. On the other hand, the PLS models for the solutions WS and LID showed a reduced accuracy compared to the univariate models [1].
Collapse
Affiliation(s)
- Jean P Feng Báez
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA; Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA
| | - Mery Vet George De la Rosa
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA; Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA
| | | | - Rodolfo J Romañach
- Department of Chemistry, University of Puerto Rico, Mayagüez Campus, Mayagüez, PR 00681, USA
| | - Torsten Stelzer
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA; Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA.
| |
Collapse
|
2
|
Dharani S, Sediri K, Cook P, Arunagiri R, Khan MA, Rahman Z. Preparation and Characterization of Stable Amorphous Glassy Solution of BCS II and IV Drugs. AAPS PharmSciTech 2021; 23:35. [PMID: 34950995 DOI: 10.1208/s12249-021-02198-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022] Open
Abstract
The focus of the present investigation was to develop amorphous glassy solutions (AGSs) of BCS Class II and IV drugs using sucrose acetate isobutyrate (SAIB). The drugs studied were rifaximin (RFX), dasatinib (DST), aripiprazole (APZ), dolutegravir (DLT), cyclosporine (CYS), itraconazole (ITZ), tacrolimus (TAC), sirolimus (SRL), aprepitant (APT), and carbamazepine (CBZ). AGSs were prepared by dissolving known quantity of the drug in the SAIB at 120 (TAC and APZ), 140 (CYS) or 150 oC (RFX, DST, DLT, ITZ, SRL, APT, and CBZ). They were characterized visually and by NIR, NIR hyperspectroscopy (NIR-H), and XRPD. Stability were determined by exposing open vials to 40 oC/75% RH for a week. AGSs behave like a glassy solid at room temperature and liquified above 60 oC. The solubility of APT, DLT, SRL, APZ, RFX, CBZ, TAC and CYS in SAIB was 0.4±0.0, 1.7±0.4, 1.9±0.0, 21.6±2.6, 36.4±0.9, 76.5±4.0, 115.1±2.3, and 239.0±12.6 mg/g, respectively. NIR, NIR-H, and XRPD data indicated the amorphous nature of the AGSs. Furthermore, AGSs were stable against devitrification on exposure to high temperature and humidity. In summary, SAIB can be employed to develop stable AGSs of poorly soluble drugs to increase dissolution, and oral bioavailability with the addition of hydrophilic excipients.
Collapse
|
3
|
Shah HS, Chaturvedi K, Dave RH, Morris KR. Molecular Insights into Warfarin Sodium 2-Propanol Solvate Solid Form Changes and Disproportionation Using a Low Volume Two-Stage Dissolution Approach. Mol Pharm 2021; 18:1779-1791. [PMID: 33689375 DOI: 10.1021/acs.molpharmaceut.1c00034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The current research work focuses on understanding the reported discrepancies and our observations in the dissolution profiles of warfarin sodium tablets and potential patient-based failure modes during oral warfarin therapy. It was hypothesized that freely soluble crystalline warfarin sodium (WARC) at first transforms into noncrystalline warfarin sodium (WARNC) under stress conditions. The WARC → WARNC conversion facilitates the rapid formation of the poorly soluble unionized form, which could lead to dissolution failures and potential poor in vivo performance. Depressed warfarin concentrations locally in the gastrointestinal tract (GIT) may in turn lead to inadequate absorption and thereby affect bioavailability. A low volume two-stage dissolution method was developed to mimic in vivo GIT conditions. Warfarin sodium tablets exposed to room temperature and 75% relative humidity for 1 week showed approximately 23% decrease in drug release. The decline in drug release supports the hypothesis that WARNC is converted to the unionized form faster than WARC does under the same conditions. Solid state characterization (powder X-ray diffractometry and differential scanning calorimetry) data demonstrated the disproportionation of warfarin sodium to unionized warfarin after solubility and dissolution studies. The findings support the hypothesis and a possible failure mode of warfarin sodium tablets. This work is a second case study from our laboratory on narrow therapeutic index drug products in which the instability of the solid state of the drug substance is potentially responsible for observed clinical failures.
Collapse
Affiliation(s)
- Harsh S Shah
- Department of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, 75 Dekalb Ave, Brooklyn, New York11201, United States.,J-Star Research Inc., 6 Cedarbrook Drive, Cranbury, New Jersey08512, United States.,Lachman Institute for Pharmaceutical Analysis, Long Island University, 75 Dekalb Ave, Brooklyn, New York11201, United States
| | - Kaushalendra Chaturvedi
- Department of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, 75 Dekalb Ave, Brooklyn, New York11201, United States.,J-Star Research Inc., 6 Cedarbrook Drive, Cranbury, New Jersey08512, United States.,Lachman Institute for Pharmaceutical Analysis, Long Island University, 75 Dekalb Ave, Brooklyn, New York11201, United States
| | - Rutesh H Dave
- Department of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, 75 Dekalb Ave, Brooklyn, New York11201, United States
| | - Kenneth R Morris
- Lachman Institute for Pharmaceutical Analysis, Long Island University, 75 Dekalb Ave, Brooklyn, New York11201, United States
| |
Collapse
|
4
|
da Costa NF, Fernandes AI, Pinto JF. Measurement of the amorphous fraction of olanzapine incorporated in a co-amorphous formulation. Int J Pharm 2020; 588:119716. [DOI: 10.1016/j.ijpharm.2020.119716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/14/2020] [Accepted: 07/28/2020] [Indexed: 10/23/2022]
|
5
|
Shakleya D, Rahman Z, Faustino PJ. Development and validation of an ultra-high-performance liquid chromatography-tandem mass spectrometry method to determine the bioavailability of warfarin and its major metabolite 7-hydroxy warfarin in rats dosed with oral formulations containing different polymorphic forms. Biomed Chromatogr 2019; 33:e4685. [PMID: 31430835 DOI: 10.1002/bmc.4685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/29/2019] [Accepted: 08/15/2019] [Indexed: 11/12/2022]
Abstract
A simple, sensitive and rapid ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry method was developed and validated for the quantification of warfarin and 7-hydroxy warfarin in Sprague Dawley (SD) rats. Animals were administered a single dose of warfarin sodium formulations (crystalline and amorphous) at 12 mg/kg via oral gavage and blood was drawn over a 96-h time course. Sample process recoveries, matrix effect and analyte stability were determined. The linearity for warfarin and 7-hydroxy warfarin was from 5 to 2000 ng/mL in blank SD rat plasma. Correlation coefficients (r2 ) for standard calibration curves were >.98 and analytes quantified within ±15% of target at all calibrator concentrations. The average percent accuracy and precision for intra- and inter-day were 93.7%-113.8% and ≤12.1%, respectively, for warfarin and 7-hydroxy warfarin, across the quality control standards (5, 10, 500, 1800 and 2000 ng/mL). Acceptable analytical recovery (>55%) was achieved with process efficiencies >41.5% and matrix effects <139.9% over the analytical range. Both analytes were stable in stock solution, autosampler, benchtop and three cycles of freeze-thaw with percent accuracy ≥90.2% and precision (percent relative standard deviation) ≤14%. The validated method was successfully applied to a pre-clinical bioavailability study of crystalline and amorphous warfarin sodium formulations in SD rats.
Collapse
Affiliation(s)
- Diaa Shakleya
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Ziyaur Rahman
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.,Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX, USA
| | - Patrick J Faustino
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
6
|
Razuc M, Grafia A, Gallo L, Ramírez-Rigo MV, Romañach RJ. Near-infrared spectroscopic applications in pharmaceutical particle technology. Drug Dev Ind Pharm 2019; 45:1565-1589. [DOI: 10.1080/03639045.2019.1641510] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- M. Razuc
- Instituto de Química del Sur (INQUISUR), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - A. Grafia
- Planta Piloto de Ingeniería Química (PLAPIQUI), Universidad Nacional del Sur (UNS)- CONICET, Bahía Blanca, Argentina
| | - L. Gallo
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- Planta Piloto de Ingeniería Química (PLAPIQUI), Universidad Nacional del Sur (UNS)- CONICET, Bahía Blanca, Argentina
| | - M. V. Ramírez-Rigo
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- Planta Piloto de Ingeniería Química (PLAPIQUI), Universidad Nacional del Sur (UNS)- CONICET, Bahía Blanca, Argentina
| | - R. J. Romañach
- Department of Chemistry, Center for Structured Organic Particulate Systems, University of Puerto Rico – Mayagüez, Mayagüez, Puerto Rico
| |
Collapse
|
7
|
Griffen JA, Owen AW, Matousek P. Quantifying low levels (<0.5% w/w) of warfarin sodium salts in oral solid dose forms using Transmission Raman spectroscopy. J Pharm Biomed Anal 2018; 155:276-283. [DOI: 10.1016/j.jpba.2018.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 10/17/2022]
|
8
|
Dharani S, Rahman Z, Barakh Ali SF, Afrooz H, Khan MA. Quantitative estimation of phenytoin sodium disproportionation in the formulations using vibration spectroscopies and multivariate methodologies. Int J Pharm 2018; 539:65-74. [DOI: 10.1016/j.ijpharm.2018.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/15/2017] [Accepted: 01/01/2018] [Indexed: 11/16/2022]
|
9
|
A headspace-gas chromatography method for isopropanol determination in warfarin sodium products as a measure of drug crystallinity. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2018; 68:31-46. [PMID: 29453909 DOI: 10.2478/acph-2018-0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/03/2017] [Indexed: 11/20/2022]
Abstract
Coumadin® a nd s everal generic products of warfarin s odium (WS) contain the crystalline form (clathrate) in which WS and isopropanol (IPA) are associated in a 2:1 molar ratio. IPA is critical in maintaining the WS crystalline structure. Physicochemical properties of the drug and drug product may change when the crystalline drug transforms to amorphous form. A headspace-gas chromatography (HS-GC) method was developed and validated for IPA determination in the WS drug product. n-propanol (NPA) was used as internal standard and the method was validated for specificity, system suitability, linearity, accuracy, precision, range, limits of detection and quantification, and robustness. The method was specific, with good resolution between IPA and NPA peaks. Chromatographic parameters (retention time, IPA/NPA area ratio, tailing factor, theoretical plates, USP symmetry, capacity factor, selectivity and resolution) were consistent over three days of validation. The analytical method was linear from 2-200 μg mL-1 (0.1- 10 % IPA present in the drug product). LOD and LOQ were 0.1 and 2 μg mL-1, respectively. Accuracy at low (2 μg mL-1) and high (200 μg mL-1) IPA concentrations of the calibration curve was 103.3-113.3 and 98.9-102.2 % of the nominal value, resp. The validated method was precise, as indicated by the RSD value of less than 2 % at three concentration levels of the calibration curve. The method reported here was utilized to determine accurately and precisely the IPA content in in-house formulations and commercial products. In summary, IPA determination by HS-GC provides an indirect measure of WS crystallinity in the drug product. Nevertheless, it should be confirmed by another analytical method since IPA from the drug substance is not distinguishable from IPA that may be present outside the drug crystals in a dosage form when prepared by wet granulation with IPA.
Collapse
|
10
|
Chavan RB, Bhargavi N, Lodagekar A, Shastri NR. Near infra red spectroscopy: a tool for solid state characterization. Drug Discov Today 2017; 22:1835-1843. [DOI: 10.1016/j.drudis.2017.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 08/04/2017] [Accepted: 09/03/2017] [Indexed: 11/28/2022]
|
11
|
Calvo NL, Maggio RM, Kaufman TS. Chemometrics-assisted solid-state characterization of pharmaceutically relevant materials. Polymorphic substances. J Pharm Biomed Anal 2017; 147:518-537. [PMID: 28668295 DOI: 10.1016/j.jpba.2017.06.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/07/2017] [Accepted: 06/12/2017] [Indexed: 11/26/2022]
Abstract
Current regulations command to properly characterize pharmaceutically relevant solid systems. Chemometrics comprise a range of valuable tools, suitable to process large amounts of data and extract valuable information hidden in their structure. This review aims to detail the results of the fruitful association between analytical techniques and chemometrics methods, focusing on those which help to gain insight into the characteristics of drug polymorphism as an important aspect of the solid state of bulk drugs and drug products. Hence, the combination of Raman, terahertz, mid- and near- infrared spectroscopies, as well as instrumental signals resulting from X-ray powder diffraction, 13C solid state nuclear magnetic resonance spectroscopy and thermal methods with quali-and quantitative chemometrics methodologies are examined. The main issues reviewed, concerning pharmaceutical drug polymorphism, include the use of chemometrics-based approaches to perform polymorph classification and assignment of polymorphic identity, as well as the determination of given polymorphs in simple mixtures and complex systems. Aspects such as the solvation/desolvation of solids, phase transformation, crystallinity and the recrystallization from the amorphous state are also discussed. A brief perspective of the field for the next future is provided, based on the developments of the last decade and the current state of the art of analytical instrumentation and chemometrics methodologies.
Collapse
Affiliation(s)
- Natalia L Calvo
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Área Análisis de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario (S2002LRK), Argentina
| | - Rubén M Maggio
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Área Análisis de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario (S2002LRK), Argentina
| | - Teodoro S Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Área Análisis de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario (S2002LRK), Argentina.
| |
Collapse
|
12
|
Chong XM, Zou WB, Yao SC, Hu CQ. Rapid Analysis of the Quality of Amoxicillin and Clavulanate Potassium Tablets Using Diffuse Reflectance Near-Infrared Spectroscopy. AAPS PharmSciTech 2017; 18:1311-1317. [PMID: 27495163 DOI: 10.1208/s12249-016-0602-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/22/2016] [Indexed: 11/30/2022] Open
Abstract
The cycle-closed dimer of amoxicillin influences its critical quality and is an important impurity in amoxicillin and clavulanate potassium tablets. The quality of the tablets could be rapidly evaluated using the impurity as an indicator. Here, we report a quantitative model to determine the cycle-closed dimer in samples from different manufacturers using diffuse reflectance near-infrared (NIR) spectroscopy by partial least squares regression for one y variable (PLS1) and hierarchical cluster analysis. Because the contents of the (active pharmaceutical ingredients) APIs (amoxicillin and clavulanate potassium) and water are also the important indexes of the tablet quality, three other quantitative models were used to confirm the API data and water content. All of the four models facilitate rapid and complete control of the tablet quality. In addition, quantitative models were validated in terms of specificity, linearity, accuracy, repeatability, and intermediate precision according to the International Conference on Harmonisation guidelines by evaluating the characteristics of the NIR spectra. These results confirmed that the models were satisfactory.
Collapse
|
13
|
Fisher AC, Lee SL, Harris DP, Buhse L, Kozlowski S, Yu L, Kopcha M, Woodcock J. Advancing pharmaceutical quality: An overview of science and research in the U.S. FDA's Office of Pharmaceutical Quality. Int J Pharm 2016; 515:390-402. [PMID: 27773853 DOI: 10.1016/j.ijpharm.2016.10.038] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 11/29/2022]
Abstract
Failures surrounding pharmaceutical quality, particularly with respect to product manufacturing issues and facility remediation, account for the majority of drug shortages and product recalls in the United States. Major scientific advancements pressure established regulatory paradigms, especially in the areas of biosimilars, precision medicine, combination products, emerging manufacturing technologies, and the use of real-world data. Pharmaceutical manufacturing is increasingly globalized, prompting the need for more efficient surveillance systems for monitoring product quality. Furthermore, increasing scrutiny and accelerated approval pathways provide a driving force to be even more efficient with limited regulatory resources. To address these regulatory challenges, the Office of Pharmaceutical Quality (OPQ) in the Center for Drug Evaluation and Research (CDER) at the U.S. Food and Drug Administration (FDA) harbors a rigorous science and research program in core areas that support drug quality review, inspection, surveillance, standards, and policy development. Science and research is the foundation of risk-based quality assessment of new drugs, generic drugs, over-the-counter drugs, and biotechnology products including biosimilars. This is an overview of the science and research activities in OPQ that support the mission of ensuring that safe, effective, and high-quality drugs are available to the American public.
Collapse
Affiliation(s)
- Adam C Fisher
- Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Silver Spring, MD 20993, United States
| | - Sau L Lee
- Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Silver Spring, MD 20993, United States.
| | - Daniel P Harris
- Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Silver Spring, MD 20993, United States
| | - Lucinda Buhse
- Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Silver Spring, MD 20993, United States
| | - Steven Kozlowski
- Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Silver Spring, MD 20993, United States
| | - Lawrence Yu
- Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Silver Spring, MD 20993, United States
| | - Michael Kopcha
- Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Silver Spring, MD 20993, United States
| | - Janet Woodcock
- Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD 20993, United States
| |
Collapse
|
14
|
Korang-Yeboah M, Rahman Z, Shah D, Mohammad A, Wu S, Siddiqui A, Khan MA. Impact of formulation and process variables on solid-state stability of theophylline in controlled release formulations. Int J Pharm 2016; 499:20-28. [DOI: 10.1016/j.ijpharm.2015.11.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/10/2015] [Accepted: 11/26/2015] [Indexed: 11/17/2022]
|
15
|
Korang-Yeboah M, Rahman Z, Shah DA, Khan MA. Spectroscopic-Based Chemometric Models for Quantifying Low Levels of Solid-State Transitions in Extended Release Theophylline Formulations. J Pharm Sci 2016; 105:97-105. [PMID: 26852844 DOI: 10.1016/j.xphs.2015.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/02/2015] [Accepted: 11/06/2015] [Indexed: 11/30/2022]
Abstract
Variations in the solid state form of a pharmaceutical solid have profound impact on the product quality and clinical performance. Quantitative models that allow rapid and accurate determination of polymorphic changes in pharmaceutical products are essential in ensuring product quality throughout its lifecycle. This study reports the development and validation of chemometric models of Raman and near infrared spectroscopy (NIR) for quantifying the extent of pseudopolymorphic transitions of theophylline in extended release formulations. The chemometric models were developed using sample matrices consisting of the commonly used excipients and at the ratios in commercially available products. A combination of scatter removal (multiplicative signal correction and standard normal variate) and derivatization (Savitzky-Golay second derivative) algorithm were used for data pretreatment. Partial least squares and principal component regression models were developed and their performance assessed. Diagnostic statistics such as the root mean square error, correlation coefficient, bias and Q(2) were used as parameters to test the model fit and performance. The models developed had a good fit and performance as shown by the values of the diagnostic statistics. The model diagnostic statistics were similar for MSC-SG and SNV-SG treated spectra. Similarly, PLSR and PCR models had comparable performance. Raman chemometric models were slightly better than their corresponding NIR model. The Raman and NIR chemometric models developed had good accuracy and precision as demonstrated by closeness of the predicted values for the independent observations to the actual TMO content hence the developed models can serve as useful tools in quantifying and controlling solid state transitions in extended release theophylline products.
Collapse
Affiliation(s)
- Maxwell Korang-Yeboah
- Division of Product Quality and Research, Center for Drug Evaluation and Research, Food and Drug Administration, Maryland 20993
| | - Ziyaur Rahman
- Division of Product Quality and Research, Center for Drug Evaluation and Research, Food and Drug Administration, Maryland 20993
| | - Dhaval A Shah
- Division of Product Quality and Research, Center for Drug Evaluation and Research, Food and Drug Administration, Maryland 20993
| | - Mansoor A Khan
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, Texas 77843.
| |
Collapse
|
16
|
Understanding effect of formulation and manufacturing variables on the critical quality attributes of warfarin sodium product. Int J Pharm 2015; 495:19-30. [DOI: 10.1016/j.ijpharm.2015.08.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/05/2015] [Accepted: 08/21/2015] [Indexed: 11/20/2022]
|