1
|
Tan Y, Lai T, Li Y, Tang Q, Zhang W, Liu Q, Wu S, Peng X, Sui X, Reggiori F, Jiang X, Chen Q, Wang C. An oil-in-gel type of organohydrogel loaded with methylprednisolone for the treatment of secondary injuries following spinal cord traumas. J Control Release 2024; 374:505-524. [PMID: 39182693 DOI: 10.1016/j.jconrel.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
The secondary injuries following traumatic spinal cord injury (SCI) is a multiphasic and complex process that is difficult to treat. Although methylprednisolone (MP) is the only available pharmacological regime for SCI treatment, its efficacy remains controversial due to its very narrow therapeutic time window and safety concerns associated with high dosage. In this study, we have developed an oil-in-gel type of organohydrogel (OHG) in which the binary oleic-water phases coexist, for the local delivery of MP. This new OHG is fabricated by a glycol chitosan/oxidized hyaluronic acid hydrophilic network that is uniformly embedded with a biocompatible oil phase, and it can be effectively loaded with MP or other hydrophobic compounds. In addition to spatiotemporally control MP release, this biodegradable OHG also provides a brain tissue-mimicking scaffold that can promote tissue regeneration. OHG remarkably decreases the therapeutic dose of MP in animals and extends its treatment course over 21 d, thereby timely manipulating microglia/macrophages and their associated with signaling molecules to restore immune homeostasis, leading to a long-term functional improvement in a complete transection SCI rat model. Thus, this OHG represents a new type of gel for clinical treatment of secondary injuries in SCI.
Collapse
Affiliation(s)
- Yinqiu Tan
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, PR China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Ting Lai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yuntao Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Qi Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Weijia Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Qi Liu
- The First Dongguan Affiliated Hospital Guangdong Medical University No. 42, Jiaoping Road Dongguan, Guangdong 523710, PR China
| | - Sihan Wu
- Center for Biomedical Optics and Photonics (CBOP)&College of Physics and Optoelectronic Engineering, Key Lab of Optoelectronics Devices and systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen 518060, PR China
| | - Xiao Peng
- Center for Biomedical Optics and Photonics (CBOP)&College of Physics and Optoelectronic Engineering, Key Lab of Optoelectronics Devices and systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaofeng Sui
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus C, Denmark; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Høegh-Guldbergs Gade 6B, 8000 Aarhus C, Denmark.
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, PR China.
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China.
| | - Cuifeng Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; Department of Neurosurgery, JiuJiang Hospital of Traditional Chinese Medicine, Jiujiang, PR China.
| |
Collapse
|
2
|
Monika, Meenakshi, Brahma M, Maruthi M, Selvakumar S, Ansari A, Gupta MK. N-Hydroxyalkanamide Based Organo/hydrogels as Novel Scaffolds for pH-Dependent Metronidazole and Theophylline Release. Chem Biodivers 2024; 21:e202400105. [PMID: 38700110 DOI: 10.1002/cbdv.202400105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
The traditional delivery of metronidazole and theophylline presents challenges like bitter taste, variable absorption, and side effects. However, gel-based systems offer advantages including enhanced targeted drug delivery, minimized side effects, and improved patient compliance, effectively addressing these challenges. Consequently, a cost-effective synthesis of N-hydroxyalkanamide gelators with varying alkyl chain lengths was achieved in a single-step reaction procedure. These gelators formed self-assembled aggregates in DMSO/water solvent system, resulting in organo/hydrogels at a minimum gelation concentration of 1.5 % w/v. Subsequently, metronidazole and theophylline were encapsulated within the gel core and released through gel-to-sol transition triggered by pH variation at 37 °C, while maintaining the structural-activity relationship. UV-vis spectroscopy was employed to observe the drug release behavior. Furthermore, in vitro cytotoxicity assays revealed cytotoxic effects against A549 lung adenocarcinoma cells, indicating anti-proliferative activity against human lung cancer cells. Specifically, the gel containing theophylline (16HAD+Th) exhibited cytotoxicity on cancerous A549 cells with IC50 values of 19.23±0.6 μg/mL, followed by the gel containing metronidazole (16HAD+Mz) with IC50 values of 23.75±0.7 μg/mL. Moreover, the system demonstrated comparable antibacterial activity against both gram-negative (E. coli) and gram-positive bacteria (S. aureus).
Collapse
Affiliation(s)
- Monika
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Meenakshi
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Mettle Brahma
- Department of Biochemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Mulaka Maruthi
- Department of Biochemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Sermadurai Selvakumar
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, Madhya Pradesh, India
| | - Azaj Ansari
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Manoj K Gupta
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| |
Collapse
|
3
|
Nikam AN, Roy A, Raychaudhuri R, Navti PD, Soman S, Kulkarni S, Shirur KS, Pandey A, Mutalik S. Organogels: "GelVolution" in Topical Drug Delivery - Present and Beyond. Curr Pharm Des 2024; 30:489-518. [PMID: 38757691 DOI: 10.2174/0113816128279479231231092905] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/02/2023] [Indexed: 05/18/2024]
Abstract
Topical drug delivery holds immense significance in dermatological treatments due to its non-invasive nature and direct application to the target site. Organogels, a promising class of topical drug delivery systems, have acquired substantial attention for enhancing drug delivery efficiency. This review article aims to explore the advantages of organogels, including enhanced drug solubility, controlled release, improved skin penetration, non-greasy formulations, and ease of application. The mechanism of organogel permeation into the skin is discussed, along with formulation strategies, which encompass the selection of gelling agents, cogelling agents, and additives while considering the influence of temperature and pH on gel formation. Various types of organogelators and organogels and their properties, such as viscoelasticity, non-birefringence, thermal stability, and optical clarity, are presented. Moreover, the biomedical applications of organogels in targeting skin cancer, anti-inflammatory drug delivery, and antifungal drug delivery are discussed. Characterization parameters, biocompatibility, safety considerations, and future directions in optimizing skin permeation, ensuring long-term stability, addressing regulatory challenges, and exploring potential combination therapies are thoroughly examined. Overall, this review highlights the immense potential of organogels in redefining topical drug delivery and their significant impact on the field of dermatological treatments, thus paving the way for exciting prospects in the domain.
Collapse
Affiliation(s)
- Ajinkya Nitin Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Amrita Roy
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ruchira Raychaudhuri
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Prerana D Navti
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Krishnaraj Somayaji Shirur
- Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| |
Collapse
|
4
|
Zhang Y, Han Y, Peng Y, Lei J, Chang F. Bionic Biphasic Composite Scaffold with Osteochondrogenic Factors for Regeneration of Full-Thickness Osteochondral Defect. Biomater Sci 2022; 10:1713-1723. [PMID: 35229096 DOI: 10.1039/d2bm00103a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Full-thickness osteochondral defects lack the capability to self-repair owing to their complicated hierarchical structure. At present, clinical treatments including microfracture etc. have shown some efficacy; however, the newborn tissue exhibits...
Collapse
Affiliation(s)
- Yanbo Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, P. R. China
| | - Yu Han
- Department of Orthopedics, Jilin Central General Hospital, Jilin, P. R. China
| | - Yachen Peng
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, P. R. China
| | - Jie Lei
- Department of MR, Changchun FAW General Hospital, Changchun, P. R. China
| | - Fei Chang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P. R. China.
| |
Collapse
|
5
|
Comparative study of the micro-rheological properties and microstructure of edible oil gels prepared by amino acid gelator. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Yadav E, Khatana AK, Sebastian S, Gupta MK. DAP derived fatty acid amide organogelators as novel carrier for drug incorporation and pH-responsive release. NEW J CHEM 2021. [DOI: 10.1039/d0nj04611f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Low-molecular mass fatty acid amide gelators were synthesized using 2,6-diaminopyridine as a linker and alkyl chains of varying lengths. The prepared organogel-elusions are able to trap and release ibuprofen molecule without changing its structure and activity.
Collapse
Affiliation(s)
- Eqvinshi Yadav
- Department of Chemistry
- School of Basic Sciences
- Central University of Haryana
- Haryana
- India
| | - Anil Kumar Khatana
- Department of Chemistry
- School of Basic Sciences
- Central University of Haryana
- Haryana
- India
| | - Sharol Sebastian
- Department of Chemistry
- School of Basic Sciences
- Central University of Haryana
- Haryana
- India
| | - Manoj K. Gupta
- Department of Chemistry
- School of Basic Sciences
- Central University of Haryana
- Haryana
- India
| |
Collapse
|
7
|
Hu B, Yan H, Sun Y, Chen X, Sun Y, Li S, Jing Y, Li H. Organogels based on amino acid derivatives and their optimization for drug release using response surface methodology. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:266-275. [PMID: 31851842 DOI: 10.1080/21691401.2019.1699833] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Organogels are excellent drug carrier for controlled release. Organogels based on amino acid derivatives has been widely used in the area of drug delivery. In this study, a series of the organogel system based on amino acid derivatives gelators was designed and prepared to investigate the structure-property correlation in organogels. To investigate the factors that influence the property of drug release, we varied the formulation in the organogels: gelator structure, gelator concentration, volume of antigelation solvent, and drug loading. Through the Box-Behnken tests, the optimum organogel formulation in vitro was obtained. The self-healing properties of the organogel have been utilised for injection of a model lipophilic risperidone in situ, and sustained release of the drug has been studied over about one week in vivo. In conclusion, the gelation ability of gelators could be adjusted by the gelator structure. Gel property is related with the whole composition of the formulation. As drug carrier, the drug release property of organogels is affected by multiple factors. Our investigation of the gel release property will play a theoretical guiding role in the application in the in situ drug delivery system.
Collapse
Affiliation(s)
- Beibei Hu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, P, R. China
| | - Haipeng Yan
- School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang, P. R. China
| | - Yanping Sun
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, P, R. China
| | - Xi Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, P, R. China
| | - Yujuan Sun
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, P, R. China
| | - Sanming Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Yongshuai Jing
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, P, R. China
| | - Heran Li
- School of Pharmacy, China Medical University, Shenyang, P. R. China
| |
Collapse
|
8
|
Hu B, Sun W, Li H, Sui H, Li S. Systematic modifications of amino acid-based organogelators for the investigation of structure-property correlations in drug delivery system. Int J Pharm 2018; 547:637-647. [DOI: 10.1016/j.ijpharm.2018.06.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/28/2018] [Accepted: 06/19/2018] [Indexed: 02/04/2023]
|
9
|
Hu B, Sun W, Yang B, Li H, Zhou L, Li S. Application of Solvent Parameters for Predicting Organogel Formation. AAPS PharmSciTech 2018; 19:2288-2300. [PMID: 29845502 DOI: 10.1208/s12249-018-1074-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 05/14/2018] [Indexed: 11/30/2022] Open
Abstract
Solvents, accounting the majority of the organogel system, have a tremendous impact on the characteristics of gels. To date, there is a large variety of organogel systems; relatively few have been investigated in the field of structure-solvent correlation. Here, a series of solvent parameters were applied to explore the role of solvent effect on network forming and gel property, intending to build the connection between the precise solvent parameter and gel property. Among the solvent parameters, Kamlet-Taft Parameters and Hansen solubility parameters can distinguish specific types of intermolecular interactions, which could correlate solvent parameter with the gel property. From an analysis of the morphologies obtained from POM and SEM, the gelator structure has an impact on its self-assembly. For possible conformations, the gelators were investigated through XRD. The investigation of solvent-property relationship will provide a theoretical basis for controllable drug delivery implants.
Collapse
|
10
|
Esposito CL, Kirilov P, Roullin VG. Organogels, promising drug delivery systems: an update of state-of-the-art and recent applications. J Control Release 2018; 271:1-20. [DOI: 10.1016/j.jconrel.2017.12.019] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/15/2017] [Accepted: 12/17/2017] [Indexed: 12/23/2022]
|
11
|
Hu B, Wang W, Wang Y, Yang Y, Xu L, Li S. Degradation of glutamate-based organogels for biodegradable implants: In vitro study and in vivo observation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 82:80-90. [DOI: 10.1016/j.msec.2017.08.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 11/30/2022]
|