1
|
Yao Y, Fan D. Advances in MUC1 resistance to chemotherapy in pancreatic cancer. J Chemother 2024; 36:449-456. [PMID: 38006297 DOI: 10.1080/1120009x.2023.2282839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/27/2023]
Abstract
The incidence of pancreatic cancer (PC), a highly fatal malignancy, is increasing every year. Chemotherapy is an important treatment for it in addition to surgery, yet most patients become resistant to chemotherapeutic agents within a few weeks of treatment initiation. MUC1 is a highly glycosylated transmembrane protein, and studies have shown that aberrantly glycosylated overexpression of MUC1 is involved in regulating the biology of chemoresistance in cancer cells. This article summarizes the mechanism of MUC1 in PC chemoresistance and reviews MUC1-based targeted therapies.
Collapse
Affiliation(s)
- Youhao Yao
- The Fifth Clinical Medical College of Shanxi Medical University, Shanxi, PR China
- Surgery Department, Shanxi Provincial People's Hospital, Taiyuan, PR China
| | - Daguang Fan
- Surgery Department, Shanxi Provincial People's Hospital, Taiyuan, PR China
| |
Collapse
|
2
|
Tacias-Pascacio VG, Castañeda-Valbuena D, Tavano O, Abellanas-Perez P, de Andrades D, Santiz-Gómez JA, Berenguer-Murcia Á, Fernandez-Lafuente R. A review on the immobilization of bromelain. Int J Biol Macromol 2024; 273:133089. [PMID: 38878936 DOI: 10.1016/j.ijbiomac.2024.133089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/21/2024] [Accepted: 06/09/2024] [Indexed: 06/24/2024]
Abstract
This review shows the endeavors performed to prepare immobilized formulations of bromelain extract, usually from pineapple, and their use in diverse applications. This extract has a potent proteolytic component that is based on thiol proteases, which differ depending on the location on the fruit. Stem and fruit are the areas where higher activity is found. The edible origin of this enzyme is one of the features that determines the applications of the immobilized bromelain to a more significant degree. The enzyme has been immobilized on a wide diversity of supports via different strategies (covalent bonds, ion exchange), and also forming ex novo solids (nanoflowers, CLEAs, trapping in alginate beads, etc.). The use of preexisting nanoparticles as immobilization supports is relevant, as this facilitates one of the main applications of the immobilized enzyme, in therapeutic applications (as wound dressing and healing components, antibacterial or anticancer, mucus mobility control, etc.). A curiosity is the immobilization of this enzyme on spores of probiotic microorganisms via adsorption, in order to have a perfect in vivo compatibility. Other outstanding applications of the immobilized enzyme are in the stabilization of wine versus haze during storage, mainly when immobilized on chitosan. Curiously, the immobilized bromelain has been scarcely applied in the production of bioactive peptides.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico.
| | - Daniel Castañeda-Valbuena
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | | | - Diandra de Andrades
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - José Alfredo Santiz-Gómez
- Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | | |
Collapse
|
3
|
Kansakar U, Trimarco V, Manzi MV, Cervi E, Mone P, Santulli G. Exploring the Therapeutic Potential of Bromelain: Applications, Benefits, and Mechanisms. Nutrients 2024; 16:2060. [PMID: 38999808 PMCID: PMC11243481 DOI: 10.3390/nu16132060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
Bromelain is a mixture of proteolytic enzymes primarily extracted from the fruit and stem of the pineapple plant (Ananas comosus). It has a long history of traditional medicinal use in various cultures, particularly in Central and South America, where pineapple is native. This systematic review will delve into the history, structure, chemical properties, and medical indications of bromelain. Bromelain was first isolated and described in the late 19th century by researchers in Europe, who identified its proteolytic properties. Since then, bromelain has gained recognition in both traditional and modern medicine for its potential therapeutic effects.
Collapse
Affiliation(s)
- Urna Kansakar
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Valentina Trimarco
- Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University, 80131 Naples, Italy
| | - Maria V. Manzi
- Department of Advanced Biomedical Sciences, Federico II University Hospital, 80131 Naples, Italy
| | - Edoardo Cervi
- Vein Clinic, University of Brescia, 25100 Brescia, Italy
| | - Pasquale Mone
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, 86100 Campobasso, Italy
- Casa di Cura “Montevergine”, 83013 Avellino, Italy
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Advanced Biomedical Sciences, Federico II University Hospital, 80131 Naples, Italy
- Department of Molecular Pharmacology, Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
4
|
Pillai K, Akhter J, Mekkawy AH, Valle SJ, Morris DL. Development and Validation of Micro-Azocasein Assay for Quantifying Bromelain. Methods Protoc 2024; 7:25. [PMID: 38525783 PMCID: PMC10961761 DOI: 10.3390/mps7020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024] Open
Abstract
The proteolytic activity of enzymes may be evaluated by a colorimetric method with azocasein. Hence, we developed a micro-assay to quantify bromelain using azocasein. A total of 250 µL of 1.0% azocasein in dH2O was added to 250 µL of test solution, vortexed and incubated at ambient room temperature/30 min. The reaction was terminated with 1500 µL of 5% trichloroacetic acid, vortexed and centrifuged. A total of 150 µL of 0.5M NaOH was added to 150 µL of supernatant in triplicates, and absorbance was recorded at 410 nm. The linearity of the calibration curve was tested with 200-800 µg/mL serial dilutions. The detection limit, precision, accuracy, and robustness were tested along with the substrate enzyme reaction time and solvent matrix effect. Good linearity was seen with serially diluted 200 µg/mL bromelain. The limit of quantification and limit of detection were 5.412 and 16.4 µg/mL, respectively. Intra-day and inter-day analyses showed a relative standard deviation below 2.0%. The assay was robust when tested over 400-450 nm wavelengths. The assays performed using dH2O or PBS diluents indicated a higher sensitivity in dH2O. The proteolytic activity of bromelain was enhanced with L-cysteine or N-acetylcysteine. Hence, this micro-azocasein assay is reliable for quantifying bromelain.
Collapse
Affiliation(s)
- Krishna Pillai
- Mucpharm Pty Ltd., Sydney, NSW 2217, Australia; (K.P.); (J.A.); (A.H.M.); (S.J.V.)
- Department of Surgery, St. George Hospital, Sydney, NSW 2217, Australia
| | - Javed Akhter
- Mucpharm Pty Ltd., Sydney, NSW 2217, Australia; (K.P.); (J.A.); (A.H.M.); (S.J.V.)
- Department of Surgery, St. George Hospital, Sydney, NSW 2217, Australia
| | - Ahmed H. Mekkawy
- Mucpharm Pty Ltd., Sydney, NSW 2217, Australia; (K.P.); (J.A.); (A.H.M.); (S.J.V.)
- Department of Surgery, St. George Hospital, Sydney, NSW 2217, Australia
- St. George & Sutherland Clinical School, University of New South Wales, Sydney, NSW 2217, Australia
| | - Sarah J. Valle
- Mucpharm Pty Ltd., Sydney, NSW 2217, Australia; (K.P.); (J.A.); (A.H.M.); (S.J.V.)
- Department of Surgery, St. George Hospital, Sydney, NSW 2217, Australia
- Intensive Care Unit, St. George Hospital, Sydney, NSW 2217, Australia
| | - David L. Morris
- Mucpharm Pty Ltd., Sydney, NSW 2217, Australia; (K.P.); (J.A.); (A.H.M.); (S.J.V.)
- Department of Surgery, St. George Hospital, Sydney, NSW 2217, Australia
- St. George & Sutherland Clinical School, University of New South Wales, Sydney, NSW 2217, Australia
| |
Collapse
|
5
|
Mousavi Ghahfarrokhi SS, Mahdigholi FS, Amin M. Collateral beauty in the damages: an overview of cosmetics and therapeutic applications of microbial proteases. Arch Microbiol 2023; 205:375. [PMID: 37935975 DOI: 10.1007/s00203-023-03713-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023]
Abstract
Microbial proteases are enzymes secreted by a variety of microorganisms, including bacteria and fungi, and have attracted significant attention due to their versatile applications in the food and pharmaceutical industries. In addition, certain proteases have been used in the development of skin health products and cosmetics. This article provides a review of microbial proteases in terms of their classification, sources, properties, and applications. Moreover, different pharmacological and molecular investigations have been reviewed. Various biological activities of microbial proteases, such as Arazyme, collagenase, elastin, and Nattokinase, which are involved in the digestion of dietary proteins, as well as their potential anti-inflammatory, anti-cancer, antithrombotic, and immunomodulatory effects have been included. Furthermore, their ability to control infections and treat various disorders has been discussed. Finally, this review highlights the potential applications and future perspectives of microbial proteases in biotechnology and biomedicine, and proposes further studies to develop new perspectives for disease control and health-promoting strategies using microbial resources.
Collapse
Affiliation(s)
- Seyed Sadeq Mousavi Ghahfarrokhi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Microbiology Group, Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fateme Sadat Mahdigholi
- Department of Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Pharmaceutical Microbiology Group, Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Room No. 1-221, Faculty of Pharmacy, 16th Azar Street, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Bedir F, Telatar GY. Comparison of Different Dentin Deproteinizing Agents on Bond Strength and Microleakage of Universal Adhesive to Dentin. JOURNAL OF ADVANCED ORAL RESEARCH 2023. [DOI: 10.1177/23202068231157998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Aim: To evaluate the effects of papain (Brix 3000), bromelain, sodium hypochlorite (NaOCl), and chlorine dioxide (ClO2) application to the deep dentin surface on shear bond strength (SBS), microleakage, and dentin surface properties. Materials and Methods: Deep dentin surface ( n = 100) for evaluating SBS, class V preparation at the buccal surface for testing microleakage ( n = 100), and deep dentin slices ( n = 20) for evaluating surface properties were conducted on the 220 molar teeth. Four different deproteinizing agents (Brix 3000, 40% bromelain, 5.25% NaOCl (Chloraxid), and 0.12% ClO2) were applied to the dentin, and then the universal adhesive was used in self-etch (SE) and etch&rinse (E&R). Deproteinizing agents were not applied to the control group. All of the samples were subjected to 5000 cycles of thermal aging at 5ºC–55ºC. SBS (MPa) was tested by a universal testing machine. The microleakage of resin composite bonded with different adhesive modes was evaluated under a stereomicroscope. The changes in the surface morphology were examined with scanning electron microscopy (SEM) and attenuated total reflection – fourier transform infrared spectroscopy (ATR-FTIR). Results: ClO2 exhibited the highest bond strength among deproteinizing agents. Compared to the SE mode, E&R mode significantly showed higher bond strength ( p < .05). In gingival margin, bromelain SE exhibited the highest marginal leakage, while Brix 3000 SE had the lowest mean microleakage score. Conclusion: Deproteinizing with ClO2 was effective in improving the SBS of universal adhesive in the E&R mode to deep dentin. Deproteinization with bromelain before universal adhesive in SE mode showed more microleakage on both the occlusal and gingival surfaces.
Collapse
Affiliation(s)
- Fatih Bedir
- Faculty of Dentistry, Department of Restorative Dentistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Gül Yıldız Telatar
- Faculty of Dentistry, Department of Restorative Dentistry, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
7
|
Pezzani R, Jiménez-Garcia M, Capó X, Sönmez Gürer E, Sharopov F, Rachel TYL, Ntieche Woutouoba D, Rescigno A, Peddio S, Zucca P, Tsouh Fokou PV, Martorell M, Gulsunoglu-Konuskan Z, Ydyrys A, Bekzat T, Gulmira T, Hano C, Sharifi-Rad J, Calina D. Anticancer properties of bromelain: State-of-the-art and recent trends. Front Oncol 2023; 12:1068778. [PMID: 36698404 PMCID: PMC9869248 DOI: 10.3389/fonc.2022.1068778] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Bromelain is a key enzyme found in pineapple (Ananas comosus (L.) Merr.); a proteolytic substance with multiple beneficial effects for human health such as anti-inflammatory, immunomodulatory, antioxidant and anticarcinogenic, traditionally used in many countries for its potential therapeutic value. The aim of this updated and comprehensive review focuses on the potential anticancer benefits of bromelain, analyzing the cytotoxic, apoptotic, necrotic, autophagic, immunomodulating, and anti-inflammatory effects in cancer cells and animal models. Detailed information about Bromelain and its anticancer effects at the cellular, molecular and signaling levels were collected from online databases such as PubMed/MedLine, TRIP database, GeenMedical, Scopus, Web of Science and Google Scholar. The results of the analyzed studies showed that Bromelain possesses corroborated pharmacological activities, such as anticancer, anti-edema, anti-inflammatory, anti-microbial, anti-coagulant, anti-osteoarthritis, anti-trauma pain, anti-diarrhea, wound repair. Nonetheless, bromelain clinical studies are scarce and still more research is needed to validate the scientific value of this enzyme in human cancer diseases.
Collapse
Affiliation(s)
- Raffaele Pezzani
- Phytotherapy Lab, Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy,Associazione Italiana per la Ricerca Oncologica di Base (AIROB), Padova, Italy
| | - Manuel Jiménez-Garcia
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Palma de Mallorca, Spain
| | - Xavier Capó
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands, Palma de Mallorca, Spain
| | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Farukh Sharopov
- Research Institution “Chinese-Tajik Innovation Center for Natural Products” of the National Academy of Sciences of Tajikistan, Dushanbe, Tajikistan
| | | | - David Ntieche Woutouoba
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde, Yaounde, Cameroon
| | - Antonio Rescigno
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Stefania Peddio
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy,*Correspondence: Javad Sharifi-Rad, ; Christophe Hano, ; Daniela Calina, ; Paolo Zucca,
| | | | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile,Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción, Chile
| | - Zehra Gulsunoglu-Konuskan
- Faculty of Health Science, Nutrition and Dietetics Department, Istanbul Aydin University, Istanbul, Turkey
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Almaty, Kazakhstan,The Elliott School of International Affairs, George Washington University, Washington, DC, United States
| | - Tynybekov Bekzat
- Department of Biodiversity and Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Tussupbekova Gulmira
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Christophe Hano
- Department of Biological Chemistry, University of Orleans, Chartres, France,*Correspondence: Javad Sharifi-Rad, ; Christophe Hano, ; Daniela Calina, ; Paolo Zucca,
| | - Javad Sharifi-Rad
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador,*Correspondence: Javad Sharifi-Rad, ; Christophe Hano, ; Daniela Calina, ; Paolo Zucca,
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania,*Correspondence: Javad Sharifi-Rad, ; Christophe Hano, ; Daniela Calina, ; Paolo Zucca,
| |
Collapse
|
8
|
Agrawal P, Nikhade P, Patel A, Mankar N, Sedani S. Bromelain: A Potent Phytomedicine. Cureus 2022; 14:e27876. [PMID: 36110474 PMCID: PMC9463608 DOI: 10.7759/cureus.27876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022] Open
Abstract
The commercially available protein-digesting enzyme bromelain is derived from the pineapple fruit or stem. Bromelain from fruit and stems are produced in different ways and has varied enzyme compositions. "Bromelain" often refers to the "stem bromelain". Bromelain is a combination of several thiol endopeptidases and others including various protease inhibitors, glucosidase, cellulase, phosphatase, peroxidase, and escharase. Studies conducted in both the lab and on animals show that bromelain has a variety of fibrinolytic, anti-edematous, antithrombotic, and anti-inflammatory effects. The body can absorb bromelain to a significant extent without it ceasing its proteolytic activity or having any negative side effects. Numerous therapeutic advantages of bromelain include wound debridement, improved drug absorption, and the management of sinusitis, bronchitis, angina pectoris, surgical trauma, and thrombophlebitis. Additionally, it treats numerous cardiovascular conditions, diarrhoea, and osteoarthritis. Bromelain also encourages apoptotic cell death and exhibits some anti-cancerous properties. This review compiles the crucial traits, medical and dental uses of bromelain as well as its potential mechanism of action.
Collapse
Affiliation(s)
- Paridhi Agrawal
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College, Datta Meghe Institute of Medical Sciences, Sawangi, Wardha, IND
| | - Pradnya Nikhade
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College, Datta Meghe Institute of Medical Sciences, Sawangi, Wardha, IND
| | - Aditya Patel
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Medical Sciences, Wardha, IND
| | - Nikhil Mankar
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Medical Sciences, Wardha, IND
| | - Shweta Sedani
- Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institude of Medical Sciences, Wardha, IND
| |
Collapse
|
9
|
Bromelain mediates apoptosis in HeLa cells via ROS-independent pathway. ADVANCES IN TRADITIONAL MEDICINE 2022. [DOI: 10.1007/s13596-022-00638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Rajan PK, Dunna NR, Venkatabalasubramanian S. A comprehensive overview on the anti-inflammatory, antitumor, and ferroptosis functions of bromelain: an emerging cysteine protease. Expert Opin Biol Ther 2022; 22:615-625. [PMID: 35176951 DOI: 10.1080/14712598.2022.2042250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Bromelain belongs to the cysteine protease endopeptidase class of enzymes isolated from the stem and fruit tissue component of Ananas comosus. The commercial and translational therapeutic potential of bromelain is ever increasing due to its augmented stability, easier purification, and salubrious pan-cancer effects. AREAS COVERED This paper presents the current state of knowledge about the isolation methods of bromelain, its safety, efficacy and tolerability. In addition, bromelains<apos;> role in eliciting pharmacological effects and its healing ability to mitigate cancer side effects based on accumulated in vitro, in vivo, and clinical evidence is relatively considerable. EXPERT OPINION Identification of molecular targets and crucial signalling pathways that bromelain regulates suggest it genuinely prospects for combating cancer and mitigation of chemotherapy or radiotherapy mediated side effects. Further research on the development of bromelain-entrapped drug delivery systems for augmented enzyme stability, processing ability and translational potential against cancer can be beneficial.
Collapse
Affiliation(s)
- Prajitha K Rajan
- Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, India
| | - Nageswara Rao Dunna
- Cancer Genomics Laboratory, Department of Biotechnology, School of Chemical and Biotechnology, SASTRA - Deemed University, Thanjavur, 613401, India
| | - Sivaramakrishnan Venkatabalasubramanian
- Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, India
| |
Collapse
|
11
|
Jančič U, Gorgieva S. Bromelain and Nisin: The Natural Antimicrobials with High Potential in Biomedicine. Pharmaceutics 2021; 14:76. [PMID: 35056972 PMCID: PMC8778819 DOI: 10.3390/pharmaceutics14010076] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Infectious diseases along with various cancer types are among the most significant public health problems and the leading cause of death worldwide. The situation has become even more complex with the rapid development of multidrug-resistant microorganisms. New drugs are urgently needed to curb the increasing spread of diseases in humans and livestock. Promising candidates are natural antimicrobial peptides produced by bacteria, and therapeutic enzymes, extracted from medicinal plants. This review highlights the structure and properties of plant origin bromelain and antimicrobial peptide nisin, along with their mechanism of action, the immobilization strategies, and recent applications in the field of biomedicine. Future perspectives towards the commercialization of new biomedical products, including these important bioactive compounds, have been highlighted.
Collapse
Affiliation(s)
- Urška Jančič
- Institute of Engineering Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
| | - Selestina Gorgieva
- Institute of Engineering Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
- Institute of Automation, Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, 2000 Maribor, Slovenia
| |
Collapse
|
12
|
Abstract
Peritoneal surface malignancies comprise a heterogeneous group of primary tumours, including peritoneal mesothelioma, and peritoneal metastases of other tumours, including ovarian, gastric, colorectal, appendicular or pancreatic cancers. The pathophysiology of peritoneal malignancy is complex and not fully understood. The two main hypotheses are the transformation of mesothelial cells (peritoneal primary tumour) and shedding of cells from a primary tumour with implantation of cells in the peritoneal cavity (peritoneal metastasis). Diagnosis is challenging and often requires modern imaging and interventional techniques, including surgical exploration. In the past decade, new treatments and multimodal strategies helped to improve patient survival and quality of life and the premise that peritoneal malignancies are fatal diseases has been dismissed as management strategies, including complete cytoreductive surgery embedded in perioperative systemic chemotherapy, can provide cure in selected patients. Furthermore, intraperitoneal chemotherapy has become an important part of combination treatments. Improving locoregional treatment delivery to enhance penetration to tumour nodules and reduce systemic uptake is one of the most active research areas. The current main challenges involve not only offering the best treatment option and developing intraperitoneal therapies that are equivalent to current systemic therapies but also defining the optimal treatment sequence according to primary tumour, disease extent and patient preferences. New imaging modalities, less invasive surgery, nanomedicines and targeted therapies are the basis for a new era of intraperitoneal therapy and are beginning to show encouraging outcomes.
Collapse
|
13
|
Hikisz P, Bernasinska-Slomczewska J. Beneficial Properties of Bromelain. Nutrients 2021; 13:4313. [PMID: 34959865 PMCID: PMC8709142 DOI: 10.3390/nu13124313] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/21/2022] Open
Abstract
Bromelain is a major sulfhydryl proteolytic enzyme found in pineapple plants, having multiple activities in many areas of medicine. Due to its low toxicity, high efficiency, high availability, and relative simplicity of acquisition, it is the object of inexhaustible interest of scientists. This review summarizes scientific reports concerning the possible application of bromelain in treating cardiovascular diseases, blood coagulation and fibrinolysis disorders, infectious diseases, inflammation-associated diseases, and many types of cancer. However, for the proper application of such multi-action activities of bromelain, further exploration of the mechanism of its action is needed. It is supposed that the anti-viral, anti-inflammatory, cardioprotective and anti-coagulatory activity of bromelain may become a complementary therapy for COVID-19 and post-COVID-19 patients. During the irrepressible spread of novel variants of the SARS-CoV-2 virus, such beneficial properties of this biomolecule might help prevent escalation and the progression of the COVID-19 disease.
Collapse
Affiliation(s)
- Pawel Hikisz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland;
| | | |
Collapse
|
14
|
Lam AR, Bazzi K, Valle SJ, Morris DL. Novel Use of Bromelain and Acetylcysteine (BromAc®) for Pleural Involvement in Pseudomyxoma Peritonei. Case Rep Oncol 2021; 14:628-633. [PMID: 33976645 PMCID: PMC8077436 DOI: 10.1159/000514273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/05/2022] Open
Abstract
Pseudomyxoma peritonei (PMP) is a rare mucinous disease most commonly arising from the appendix. Pleural involvement arising from established PMP is seen in a small number of cases. Combined cytoreductive surgery and hyperthermic intrathoracic chemotherapy is the treatment of choice when managing intra-thoracic PMP. In cases of recurrence, surgical intervention may be technically challenging and carry higher rates of complications, morbidity, and mortality. Bromelain and acetylcysteine (BromAc<sup>®</sup>) is a novel treatment modality that has demonstrated mucolytic properties. When injected directly into mucinous disease, it facilitates tumour dissolution and allows it to be aspirated. It has recently been tested in the treatment of inoperable peritoneal mucinous disease, with an acceptable safety profile and positive objective response. Here we describe the first two cases of BromAc<sup>®</sup> administered directly into pleural adenomucinosis, with striking differences in response between the two patients likely due to differences in tumour hardness.
Collapse
Affiliation(s)
- Anthony R Lam
- Department of Surgery, Peritonectomy Unit, St George Hospital, Kogarah, New South Wales, Australia
| | - Khalil Bazzi
- Department of Surgery, Peritonectomy Unit, St George Hospital, Kogarah, New South Wales, Australia
| | - Sarah J Valle
- Department of Surgery, Peritonectomy Unit, St George Hospital, Kogarah, New South Wales, Australia
| | - David L Morris
- Department of Surgery, Peritonectomy Unit, St George Hospital, Kogarah, New South Wales, Australia.,University of New South Wales, St George Hospital Clinical School, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Wang S, You L, Dai M, Zhao Y. Quantitative assessment of the diagnostic role of mucin family members in pancreatic cancer: a meta-analysis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:192. [PMID: 33708819 PMCID: PMC7940915 DOI: 10.21037/atm-20-5606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background The use of mucins (MUC) as specific biomarkers for various malignancies has recently emerged. MUC1, MUC4, MUC5AC, and MUC16 can be detected at different stages of pancreatic cancer (PC), and can be valuable for indicating the initiation and progression of this disease. However, the diagnostic significance of the mucin family in patients with PC remains disputed. Herein, we assessed the diagnostic accuracy of mucins in PC using a meta-analysis. Methods We searched the PubMed, Cochrane Library, Institute for Scientific Information (ISI) Web of Science, Embase, and Chinese databases from their date of inception to June 1, 2020 to identify studies assessing the diagnostic performance of mucins in PC. The estimations of diagnostic indicators in selected studies were extracted for further analysis by Meta-DiSc software. Publication bias was assessed using Deeks’ funnel plot asymmetry test. Results Our meta-analysis included 34 studies. The pooled accuracy indicators of MUC1 in PC including the sensitivity, specificity, diagnostic odds ratio (DOR), positive likelihood ratio (PLR), and negative likelihood ratio (NLR) (with 95% confidence intervals) were 0.84 (0.82–0.86), 0.60 (0.56–0.64), 18.37 (9.18–36.78), 2.62 (1.79–3.86), and 0.22 (0.15–0.33), respectively. The area under the summary receiver operating characteristic (SROC) curve was 0.8875 and the Q index was 0.8181. Quantitative random-effects meta-analysis of MUC4 in PC using the summary (ROC) curve model revealed a pooled sensitivity of 0.86 (95% confidence interval, 0.82–0.89) and specificity of 0.88 (95% confidence interval, 0.85–0.91). In addition, the meta-analysis of MUC5AC in PC diagnosis also showed a high sensitivity and specificity of 0.71 (95% confidence interval, 0.65–0.76) and 0.60 (95% confidence interval, 0.53–0.66), respectively. Regarding MUC16, the area under the summary ROC curve and Q index were 0.9185 and 0.8516, respectively. Conclusions In summary, our results suggested a good diagnostic accuracy of several crucial mucins in PC. Mucins may serve as optional indicators in PC examination, and further research is warranted to investigate the role of mucins as potential clinical biomarkers.
Collapse
Affiliation(s)
- Shunda Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Pattnaik M, Pandey P, Martin GJO, Mishra HN, Ashokkumar M. Innovative Technologies for Extraction and Microencapsulation of Bioactives from Plant-Based Food Waste and their Applications in Functional Food Development. Foods 2021; 10:279. [PMID: 33573135 PMCID: PMC7911848 DOI: 10.3390/foods10020279] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
The by-products generated from the processing of fruits and vegetables (F&V) largely are underutilized and discarded as organic waste. These organic wastes that include seeds, pulp, skin, rinds, etc., are potential sources of bioactive compounds that have health imparting benefits. The recovery of bioactive compounds from agro-waste by recycling them to generate functional food products is of increasing interest. However, the sensitivity of these compounds to external factors restricts their utility and bioavailability. In this regard, the current review analyses various emerging technologies for the extraction of bioactives from organic wastes. The review mainly aims to discuss the basic principle of extraction for extraction techniques viz. supercritical fluid extraction, subcritical water extraction, ultrasonic-assisted extraction, microwave-assisted extraction, and pulsed electric field extraction. It provides insights into the strengths of microencapsulation techniques adopted for protecting sensitive compounds. Additionally, it outlines the possible functional food products that could be developed by utilizing components of agricultural by-products. The valorization of wastes can be an effective driver for accomplishing food security goals.
Collapse
Affiliation(s)
- Monalisha Pattnaik
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; (M.P.); (P.P.); (H.N.M.)
| | - Pooja Pandey
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; (M.P.); (P.P.); (H.N.M.)
- School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Gregory J. O. Martin
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Hari Niwas Mishra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; (M.P.); (P.P.); (H.N.M.)
| | | |
Collapse
|
17
|
Excellency of pyrimidinyl moieties containing α-aminophosphonates over benzthiazolyl moieties for thermal and structural stability of stem bromelain. Int J Biol Macromol 2020; 165:2010-2021. [DOI: 10.1016/j.ijbiomac.2020.10.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/19/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022]
|
18
|
Azarkan M, Maquoi E, Delbrassine F, Herman R, M'Rabet N, Calvo Esposito R, Charlier P, Kerff F. Structures of the free and inhibitors-bound forms of bromelain and ananain from Ananas comosus stem and in vitro study of their cytotoxicity. Sci Rep 2020; 10:19570. [PMID: 33177555 PMCID: PMC7658999 DOI: 10.1038/s41598-020-76172-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/01/2020] [Indexed: 11/09/2022] Open
Abstract
The Ananas comosus stem extract is a complex mixture containing various cysteine proteases of the C1A subfamily, such as bromelain and ananain. This mixture used for centuries in Chinese medicine, has several potential therapeutic applications as anti-cancer, anti-inflammatory and ecchymosis degradation agent. In the present work we determined the structures of bromelain and ananain, both in their free forms and in complex with the inhibitors E64 and TLCK. These structures combined with protease-substrate complexes modeling clearly identified the Glu68 as responsible for the high discrimination of bromelain in favor of substrates with positively charged residues at P2, and unveil the reasons for its weak inhibition by cystatins and E64. Our results with purified and fully active bromelain, ananain and papain show a strong reduction of cell proliferation with MDA-MB231 and A2058 cancer cell lines at a concentration of about 1 μM, control experiments clearly emphasizing the need for proteolytic activity. In contrast, while bromelain and ananain had a strong effect on the proliferation of the OCI-LY19 and HL-60 non-adherent cell lines, papain, the archetypal member of the C1A subfamily, had none. This indicates that, in this case, sequence/structure identity beyond the active site of bromelain and ananain is more important than substrate specificity.
Collapse
Affiliation(s)
- Mohamed Azarkan
- Laboratoire de Chimie Générale (Unité de Chimie Des Protéines), Faculté de Médecine, Université Libre de Bruxelles, Campus Erasme (CP 609), 1070, Bruxelles, Belgium.
| | - Erik Maquoi
- Laboratoire de Biologie Des Tumeurs Et du Développement, GIGA-Cancer, Université de Liège, 4000, Liège, Belgium
| | - François Delbrassine
- UR InBioS, Centre D'Ingénierie Des Protéines, Université de Liège, Sart Tilman, 4000, Liège, Belgium
| | - Raphael Herman
- UR InBioS, Centre D'Ingénierie Des Protéines, Université de Liège, Sart Tilman, 4000, Liège, Belgium
| | - Nasiha M'Rabet
- Laboratoire de Chimie Générale (Unité de Chimie Des Protéines), Faculté de Médecine, Université Libre de Bruxelles, Campus Erasme (CP 609), 1070, Bruxelles, Belgium
| | - Rafaèle Calvo Esposito
- Laboratoire de Chimie Générale (Unité de Chimie Des Protéines), Faculté de Médecine, Université Libre de Bruxelles, Campus Erasme (CP 609), 1070, Bruxelles, Belgium
| | - Paulette Charlier
- UR InBioS, Centre D'Ingénierie Des Protéines, Université de Liège, Sart Tilman, 4000, Liège, Belgium
| | - Frédéric Kerff
- UR InBioS, Centre D'Ingénierie Des Protéines, Université de Liège, Sart Tilman, 4000, Liège, Belgium.
| |
Collapse
|
19
|
Wang S, You L, Dai M, Zhao Y. Mucins in pancreatic cancer: A well-established but promising family for diagnosis, prognosis and therapy. J Cell Mol Med 2020; 24:10279-10289. [PMID: 32745356 PMCID: PMC7521221 DOI: 10.1111/jcmm.15684] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/12/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
Mucins are a family of multifunctional glycoproteins that mostly line the surface of epithelial cells in the gastrointestinal tract and exert pivotal roles in gut lubrication and protection. Pancreatic cancer is a lethal disease with poor early diagnosis, limited therapeutic effects, and high numbers of cancer‐related deaths. In this review, we introduce the expression profiles of mucins in the normal pancreas, pancreatic precursor neoplasia and pancreatic cancer. Mucins in the pancreas contribute to biological processes such as the protection, lubrication and moisturization of epithelial tissues. They also participate in the carcinogenesis of pancreatic cancer and are used as diagnostic biomarkers and therapeutic targets. Herein, we discuss the important roles of mucins that lead to the lethality of pancreatic adenocarcinoma, particularly MUC1, MUC4, MUC5AC and MUC16 in disease progression, and present a comprehensive analysis of the clinical application of mucins and their promising roles in cancer treatment to gain a better understanding of the role of mucins in pancreatic cancer.
Collapse
Affiliation(s)
- Shunda Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Taşkın A, Tarakçıoğlu M, Ulusal H, Örkmez M, Taysı S. Idarubicin-bromelain combination sensitizes cancer cells to conventional chemotherapy. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 22:1172-1178. [PMID: 31998459 PMCID: PMC6885387 DOI: 10.22038/ijbms.2019.37884.9003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objectives The primary cytotoxic effects of anticancer drugs like idarubicin, a chemotherapeutic agent, are not limited to neoplastic cells; they also produce similar effects in normal cells. In this study, we hypothesized that the combination of idarubicin-bromelain could make cancer cells more susceptible to cytotoxicity and genotoxicity. Materials and Methods To test our hypothesis, the optimal concentrations of idarubicin and bromelain were combined and incubated in the HL-60 cancer cell line and normal human mononuclear leukocytes (PBMC) for 24, 48, and 72 hr. Cytotoxicity and genotoxicity were evaluated by measurement of ATP cell viability test, DNA damage, Caspase-3, Acridine orange/ethidium bromide (AO/EB), and DAPI fluorescent dyes in both cell types. Results The combination of idarubicin-bromelain significantly reduced cell proliferation in the more potent HL-60 compared to PBMC in all incubation times (P<0.05). DNA damage and Caspase-3 levels (except for 24 hr) were also higher in the HL-60 cell line in comparison with PBMC and were statistically significant (P<0.05). The percentages of apoptotic images obtained by DAPI and AO / EB morphological examination were increased in both cells, depending on the combination dose. Conclusion Based on these results, it can be concluded that idarubicin combined with bromelain produces more cytotoxic effects in low concentrations in comparison with when it was used per se in the HL-60 cells. Conversely, it was found that this combination in PBMC caused less cytotoxicity and less genotoxicity. Taken together, it can be said that this new combination makes cancer cells more sensitive to conventional therapy.
Collapse
Affiliation(s)
- Abdullah Taşkın
- Nutrition and Dietetics Department, Faculty of Health Science, Harran University, Şanlıurfa, Turkey
| | - Mehmet Tarakçıoğlu
- Department of Biochemistry, Medical Faculty, Gaziantep University, Gaziantep, Turkey
| | - Hasan Ulusal
- Department of Biochemistry, Medical Faculty, Gaziantep University, Gaziantep, Turkey
| | - Mustafa Örkmez
- Department of Biochemistry, Medical Faculty, Gaziantep University, Gaziantep, Turkey
| | - Seyithan Taysı
- Department of Biochemistry, Medical Faculty, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
21
|
Kumar PK, Jha I, Sindhu A, Venkatesu P, Bahadur I, Ebenso EE. Experimental and molecular docking studies in understanding the biomolecular interactions between stem bromelain and imidazolium-based ionic liquids. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
22
|
Bayat S, Amiri N, Pishavar E, Kalalinia F, Movaffagh J, Hashemi M. Bromelain-loaded chitosan nanofibers prepared by electrospinning method for burn wound healing in animal models. Life Sci 2019; 229:57-66. [PMID: 31085247 DOI: 10.1016/j.lfs.2019.05.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/27/2019] [Accepted: 05/10/2019] [Indexed: 11/28/2022]
Abstract
Bromelain is a mixture of proteolytic enzymes present in all tissues of pineapple (Ananas comosus). It is known as an efficient debriding agent in burn treatment. In this study, the efficiency of bromelain-loaded chitosan nanofibers for burn wounds repair was investigated in animal model. Chitosan nanofibers containing bromelain (2% and 4% w/v) were prepared by electrospinning method. The physicochemical characteristics of the synthetized nanofibers were evaluated. The release profile and activity of bromelain loaded in nanofibers were also assayed. Cytotoxicity test was carried out using Alamar blue. The burn healing effect of chitosan-2% w/v bromelain nanofiber was studied in the induced burn wounds in rats for 21 days. The efficacy of treatment was assessed by reduction of burn wound area and histological characteristics at different times. Chitosan-2% w/v bromelain showed the better physicochemical properties and release profile as well as low cytotoxicity than chitosan-4% w/v bromelain. The results also indicated that chitosan-2% w/v bromelain nanofiber was more efficient to heal burn skin compared to chitosan nanofiber alone in the animal model tested. The present study concludes that chitosan-2% w/v bromelain nanofiber possesses great wound healing activity and could be considered as an effective natural topical burn wound healing treatment.
Collapse
Affiliation(s)
- Samaneh Bayat
- Scool of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nafise Amiri
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Pishavar
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Kalalinia
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jebrail Movaffagh
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Yu M, Zhang C, Tang Z, Tang X, Xu H. Intratumoral injection of gels containing losartan microspheres and (PLG-g-mPEG)-cisplatin nanoparticles improves drug penetration, retention and anti-tumor activity. Cancer Lett 2018; 442:396-408. [PMID: 30439541 DOI: 10.1016/j.canlet.2018.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 10/03/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022]
Abstract
Intratumoral injection of chemotherapy agents may be employed in the treatment of cancers. However, its anti-tumor efficacy is significantly impeded by collagen fibers in the tumor which decrease drug penetration into the tumor tissues. To improve the penetration, collagen inhibiting drug exposure is required. In this study, microspheres were fabricated by the modified double emulsion-solvent evaporation method as the drug delivery system of losartan potassium (LP MSs), with 5% gelatin as the inner phase. The collagen inhibiting experiment analyzed by Sirius Red stains demonstrated that LP MSs may effectively inhibit collagen I synthesis in B16 tumors. In addition, 15% F127 was used as the solvent to fix the formulations at the injection site, with poly (α-l-glutamate) grafted polyethylene glycol mono methyl ether (PLG-g-mPEG)-cisplatin loaded nanoparticles (CDDP NPs) as the model drug. The in vivo live imaging system showed that formulations dissolved in 15% F127 had 54.91% CDDP NPs retained in tumors at the end of 10 days, in comparison with 19.72% for those solved in water, suggesting strong intratumoral retention property of the in situ gel. In addition, confocal laser scanning microscope (CLSM) and Energy-Dispersive Analysis of X-ray spectroscopy combined with scanning electron microscope (SEM-EDAX) tests showed that LP MSs can effectively enhance the distribution and penetration of CDDP NPs within tumors. Furthermore, tumors i.t. treated with LP MSs/CDDP NPs gel could be significantly halted, or even reduced to 200 mm3, comparing with a volume of about 12000 mm3 incontrol group at the end of the anti-tumor effect experiment. These results provided important guiding principles for prolonged and localized drug delivery system of intratumoral collagen inhibitor. The improvements of intratumoral penetration method made in this study provided practical significance for the treatment of cancer, especially for mass tumors.
Collapse
Affiliation(s)
- Meiling Yu
- Shenyang Pharmaceutical University, Benxi, 117004, PR China
| | - Chunxue Zhang
- Shenyang Pharmaceutical University, Benxi, 117004, PR China
| | - Zhaohui Tang
- Changchu Institute of Applied Chemistry, Chinese Academy of Sciences, Changchu, 130022, Jilin, PR China
| | - Xing Tang
- Shenyang Pharmaceutical University, Benxi, 117004, PR China.
| | - Hui Xu
- Shenyang Pharmaceutical University, Benxi, 117004, PR China.
| |
Collapse
|
24
|
Boussios S, Moschetta M, Karathanasi A, Tsiouris AK, Kanellos FS, Tatsi K, Katsanos KH, Christodoulou DK. Malignant peritoneal mesothelioma: clinical aspects, and therapeutic perspectives. Ann Gastroenterol 2018; 31:659-669. [PMID: 30386115 PMCID: PMC6191875 DOI: 10.20524/aog.2018.0305] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/18/2018] [Indexed: 12/11/2022] Open
Abstract
Malignant peritoneal mesothelioma (MPM) is a rare disease with a wide clinical spectrum. It arises from the peritoneal lining and commonly presents with diffuse, extensive spread throughout the abdomen and, more rarely, metastatic spread beyond the abdominal cavity. Computed tomography, magnetic resonance imaging and positron-emission tomography are important diagnostic tools used for the preoperative staging of MPM. The definitive diagnosis is based on histopathological analysis, mainly via immunohistochemistry. In this regard, paired-box gene 8 negativity represents a useful diagnostic biomarker for differentiating MPM from ovarian carcinoma. In addition, BRCA1-associated protein-1 (BAP1) loss is specific to MPM and allows it to be distinguished from both benign mesothelial lesions and ovarian serous tumors. Cytoreductive surgery (CRS) with hyperthermic intraperitoneal chemotherapy (HIPEC) has become an increasingly important therapeutic approach, while systemic therapies are still being developed. Histology, Ki-67, completeness of cytoreduction, age, sex, and baseline thrombocytosis are commonly used to optimize patient selection for CRS with HIPEC. Additionally, it is well recognized that, compared to other subtypes, an epithelial morphology is associated with a favorable prognosis, whereas baseline thrombocytosis predicts an aggressive biologicalbehavior. Platelets and other immunologic cytokines have been evaluated as potential novel therapeutic targets. Epigenetic modifiers, including BAP1, SETD2 and DDX3X, are crucial in mesothelial tumorigenesis and provide opportunities for targeted treatment. Overexpression of the closely interacting phosphoinositide 3-kinase (PI3K) and the mammalian target of rapamycin (mTOR) pathways appears crucial in regulation of the malignant phenotype. The use of targeted therapies with PI3K-mTOR-based inhibitors requires further clinical assessment as a novel approach.
Collapse
Affiliation(s)
- Stergios Boussios
- Medway NHS Foundation Trust, Kent, UK (Stergios Boussios, Afroditi Karathanasi)
| | - Michele Moschetta
- Drug Development Unit, Sarah Cannon Research Institute, London, UK (Michele Moschetta)
| | | | - Alexandros K Tsiouris
- Department of Biological Applications & Technology, University of Ioannina, Ioannina, Greece (Alexandros K. Tsiouris, Foivos S. Kanellos)
| | - Foivos S Kanellos
- Department of Biological Applications & Technology, University of Ioannina, Ioannina, Greece (Alexandros K. Tsiouris, Foivos S. Kanellos)
| | - Konstantina Tatsi
- Gynecology Unit, General Hospital "G. Hatzikosta", Ioannina, Greece (Konstantina Tatsi)
| | - Konstantinos H Katsanos
- Department of Gastroenterology, University Hospital of Ioannina, Faculty of Medicine, School of Health Sciences, University of Ioannina, Greece (Konstantinos H. Katsanos, Dimitrios K. Christodoulou)
| | - Dimitrios K Christodoulou
- Department of Gastroenterology, University Hospital of Ioannina, Faculty of Medicine, School of Health Sciences, University of Ioannina, Greece (Konstantinos H. Katsanos, Dimitrios K. Christodoulou)
| |
Collapse
|
25
|
Transcriptomic response of breast cancer cells to anacardic acid. Sci Rep 2018; 8:8063. [PMID: 29795261 PMCID: PMC5966448 DOI: 10.1038/s41598-018-26429-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
Anacardic acid (AnAc), a potential dietary agent for preventing and treating breast cancer, inhibited the proliferation of estrogen receptor α (ERα) positive MCF-7 and MDA-MB-231 triple negative breast cancer cells. To characterize potential regulators of AnAc action, MCF-7 and MDA-MB-231 cells were treated for 6 h with purified AnAc 24:1n5 congener followed by next generation transcriptomic sequencing (RNA-seq) and network analysis. We reported that AnAc-differentially regulated miRNA transcriptomes in each cell line and now identify AnAc-regulated changes in mRNA and lncRNA transcript expression. In MCF-7 cells, 80 AnAc-responsive genes were identified, including lncRNA MIR22HG. More AnAc-responsive genes (886) were identified in MDA-MB-231 cells. Only six genes were commonly altered by AnAc in both cell lines: SCD, INSIG1, and TGM2 were decreased and PDK4, GPR176, and ZBT20 were increased. Modeling of AnAc-induced gene changes suggests that AnAc inhibits monounsaturated fatty acid biosynthesis in both cell lines and increases endoplasmic reticulum stress in MDA-MB-231 cells. Since modeling of downregulated genes implicated NFκB in MCF-7, we confirmed that AnAc inhibited TNFα-induced NFκB reporter activity in MCF-7 cells. These data identify new targets and pathways that may account for AnAc’s anti-proliferative and pro-apoptotic activity.
Collapse
|
26
|
Bromelain-Functionalized Multiple-Wall Lipid-Core Nanocapsules: Formulation, Chemical Structure and Antiproliferative Effect Against Human Breast Cancer Cells (MCF-7). Pharm Res 2016; 34:438-452. [PMID: 27981451 DOI: 10.1007/s11095-016-2074-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 11/28/2016] [Indexed: 12/20/2022]
Abstract
PURPOSE This study was conducted a promising approach to surface functionalization developed for lipid-core nanocapsules and the merit to pursue new strategies to treat solid tumors. METHODS Bromelain-functionalized multiple-wall lipid-core nanocapsules (Bro-MLNC-Zn) were produced by self-assembling following three steps of interfacial reactions. Physicochemical and structural characteristics, in vitro proteolytic activity (casein substrate) and antiproliferative activity (breast cancer cells, MCF-7) were determined. RESULTS Bro-MLNC-Zn had z-average diameter of 135 nm and zeta potential of +23 mV. The complex is formed by a Zn-N chemical bond and a chelate with hydroxyl and carboxyl groups. Bromelain complexed at the nanocapsule surface maintained its proteolytic activity and showed anti-proliferative effect against human breast cancer cells (MCF-7) (72.6 ± 1.2% at 1.250 μg mL-1 and 65.5 ± 5.5% at 0.625 μg mL-1). Comparing Bro-MLNC-Zn and bromelain solution, the former needed a dose 160-folds lower than the latter for a similar effect. Tripan blue dye assay corroborated the results. CONCLUSIONS The surface functionalization approach produced an innovative formulation having a much higher anti-proliferative effect than the bromelain solution, even though both in vitro proteolytic activity were similar, opening up a great opportunity for further studies in nanomedicine.
Collapse
|
27
|
Abstract
Oral squamous cell carcinoma (OSCC) is a multistep process which is modulated by several endogenous and environmental factors. Epigenetic changes have been found to be equally responsible for OSCC as genetic changes. A plethora of genes showing hypermethylation have been discovered in OSCC. Since these changes are reversible, a lot of emphasis is on using the natural compounds for their ability to cause demethylation which could lead to reactivation of the inactivated tumor suppressor genes. This review encompasses the promoter hypermethylation of tumor suppressor genes in OSCC and its possible reversal using natural compounds. In addition, new compounds which could be screened for their demethylating ability have also been proposed.
Collapse
|
28
|
Gani MBA, Nasiri R, Hamzehalipour Almaki J, Majid FAA, Marvibaigi M, Amini N, Chermahini SH, Mashudin M. In Vitro Antiproliferative Activity of Fresh Pineapple Juices on Ovarian and Colon Cancer Cell Lines. Int J Pept Res Ther 2015. [DOI: 10.1007/s10989-015-9462-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Amini A, Masoumi-Moghaddam S, Morris DL. Pseudomyxoma peritonei: current chemotherapy and the need for mucin-directed strategies. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1006627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
Raza A, Huang WC, Takabe K. Advances in the management of peritoneal mesothelioma. World J Gastroenterol 2014; 20:11700-11712. [PMID: 25206274 PMCID: PMC4155360 DOI: 10.3748/wjg.v20.i33.11700] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 03/21/2014] [Accepted: 06/05/2014] [Indexed: 02/06/2023] Open
Abstract
Malignant peritoneal mesothelioma (PM) is an infrequent disease which has historically been associated with a poor prognosis. Given its long latency period and non-specific symptomatology, a diagnosis of PM can be suggested by occupational exposure history, but ultimately relies heavily on imaging and diagnostic biopsy. Early treatment options including palliative operative debulking, intraperitoneal chemotherapy, and systemic chemotherapy have marginally improved the natural course of the disease with median survival being approximately one year. The advent of cytoreduction (CRS) with hyperthermic intraperitoneal chemotherapy (HIPEC) has dramatically improved survival outcomes with wide median survival estimates between 2.5 to 9 years; these studies however remain largely heterogeneous, with differing study populations, tumor biology, and specific treatment regimens. More recent investigations have explored extent of cytoreduction, repeated operative intervention, and choice of chemotherapy but have been unable to offer definitive conclusions. CRS and HIPEC remain morbid procedures with complication rates ranging between 30% to 46% in larger series. Accordingly, an increasing interest in identifying molecular targets and developing targeted therapies is emerging. Among such novel targets is sphingosine kinase 1 (SphK1) which regulates the production of sphingosine-1-phosphate, a biologically active lipid implicated in various cancers including malignant mesothelioma. The known action of specific SphK inhibitors may warrant further exploration in peritoneal disease.
Collapse
|
31
|
Amini A, Masoumi-Moghaddam S, Ehteda A, Morris DL. Secreted mucins in pseudomyxoma peritonei: pathophysiological significance and potential therapeutic prospects. Orphanet J Rare Dis 2014; 9:71. [PMID: 24886459 PMCID: PMC4013295 DOI: 10.1186/1750-1172-9-71] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/22/2014] [Indexed: 12/22/2022] Open
Abstract
Pseudomyxoma peritonei (PMP, ORPHA26790) is a clinical syndrome characterized by progressive dissemination of mucinous tumors and mucinous ascites in the abdomen and pelvis. PMP is a rare disease with an estimated incidence of 1-2 out of a million. Clinically, PMP usually presents with a variety of unspecific signs and symptoms, including abdominal pain and distention, ascites or even bowel obstruction. It is also diagnosed incidentally at surgical or non-surgical investigations of the abdominopelvic viscera. PMP is a neoplastic disease originating from a primary mucinous tumor of the appendix with a distinctive pattern of the peritoneal spread. Computed tomography and histopathology are the most reliable diagnostic modalities. The differential diagnosis of the disease includes secondary peritoneal carcinomatoses and some rare peritoneal conditions. Optimal elimination of mucin and the mucin-secreting tumor comprises the current standard of care for PMP offered in specialized centers as visceral resections and peritonectomy combined with intraperitoneal chemotherapy. This multidisciplinary approach has reportedly provided a median survival rate of 16.3 years, a median progression-free survival rate of 8.2 years and 10- and 15-year survival rates of 63% and 59%, respectively. Despite its indolent, bland nature as a neoplasm, PMP is a debilitating condition that severely impacts quality of life. It tends to be diagnosed at advanced stages and frequently recurs after treatment. Being ignored in research, however, PMP remains a challenging, enigmatic entity. Clinicopathological features of the PMP syndrome and its morbid complications closely correspond with the multifocal distribution of the secreted mucin collections and mucin-secreting implants. Novel strategies are thus required to facilitate macroscopic, as well as microscopic, elimination of mucin and its source as the key components of the disease. In this regard, MUC2, MUC5AC and MUC5B have been found as the secreted mucins of relevance in PMP. Development of mucin-targeted therapies could be a promising avenue for future research which is addressed in this article.
Collapse
Affiliation(s)
- Afshin Amini
- Department of Surgery, St George Hospital, The University of New South Wales, Level 3, Clinical Sciences (WR Pitney) Building, Gray Street, Kogarah, Sydney, NSW 2217, Australia
| | - Samar Masoumi-Moghaddam
- Department of Surgery, St George Hospital, The University of New South Wales, Level 3, Clinical Sciences (WR Pitney) Building, Gray Street, Kogarah, Sydney, NSW 2217, Australia
| | - Anahid Ehteda
- Department of Surgery, St George Hospital, The University of New South Wales, Level 3, Clinical Sciences (WR Pitney) Building, Gray Street, Kogarah, Sydney, NSW 2217, Australia
| | - David Lawson Morris
- Department of Surgery, St George Hospital, The University of New South Wales, Level 3, Clinical Sciences (WR Pitney) Building, Gray Street, Kogarah, Sydney, NSW 2217, Australia
| |
Collapse
|
32
|
Anticancer effect of bromelain with and without cisplatin or 5-FU on malignant peritoneal mesothelioma cells. Anticancer Drugs 2014; 25:150-60. [PMID: 24366282 DOI: 10.1097/cad.0000000000000039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Malignant peritoneal mesothelioma (MPM) is a rare neoplasm of the peritoneum, causally related to asbestos exposure. Nonspecific symptoms with a late diagnosis results in poor survival (<1 year). Treatment with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy has improved survival in some patients (median 3-5 years). Hence, new therapies are urgently needed. MUC1 is a glycosylation-dependent protein that confers tumours with invasiveness, metastasis and chemoresistance. Bromelain (cysteine proteinase) hydrolyses glycosidic bonds. Therefore, we investigated the antitumour effect of bromelain on MUC1-expressing MPM cell lines. MUC1 expressions in cells were assessed using immunofluorescent probes with cells grown on cover slips and western blot analysis on cell lysates. The cell lines were treated with various concentrations of bromelain and after 4 and 72 h, their viability was assessed using standard sulforhodamine assays. The cells were also treated with combinations of bromelain and cytotoxic drugs (cisplatin or 5-FU) and their viability was assessed at 72 h. Finally, with western blotting, the effects of bromelain on cellular survival proteins were investigated. PET cells expressed more MUC1 compared with YOU cells. The cell viability of both PET and YOU cells was adversely affected by bromelain, with PET cells being slightly resistant. The addition of bromelain increased the cytotoxicity of cisplatin significantly in both cell lines. However, 5-FU with bromelain did not show any significant increase in cytotoxicity. Bromelain-induced cell death is by apoptosis and autophagy. Bromelain has the potential of being developed as a therapeutic agent in MPM.
Collapse
|