1
|
Gkouveris I, Hadaya D, Soundia A, Bezouglaia O, Chau Y, Dry SM, Pirih FQ, Aghaloo TL, Tetradis S. Vasculature submucosal changes at early stages of osteonecrosis of the jaw (ONJ). Bone 2019; 123:234-245. [PMID: 30953717 PMCID: PMC6763394 DOI: 10.1016/j.bone.2019.03.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/16/2019] [Accepted: 03/22/2019] [Indexed: 02/09/2023]
Abstract
Osteonecrosis of the jaw (ONJ), a rare, but potentially severe side effect of anti-resorptive medications, presents as exposed bone in the maxillofacial region lasting for at least 8 weeks. While clinical experience and animal models concur in finding that systemic antiresorptive treatment in conjunction with local risk factors, such as tooth extraction or dental disease may lead to ONJ development, the subclinical molecular changes that precede bone exposure remain poorly understood. The identification of these changes is not only important in understanding disease pathophysiology, but could provide potential for treatment development. Here, we evaluated the early stages of ONJ utilizing a model of experimental periodontitis (EP) in mice treated with two different types of antiresorptives, targeting potential changes in vasculature, hypoxia, oxidative stress, and apoptosis. Antiresorptive treatment in animals with EP increased levels of empty osteocytic lacunae and increased ONJ prevalence compared to Veh animals. The arteriole and venule network seen around EP areas was diminished in animals treated with antiresorptives. Higher levels of vascular endothelial growth factor A (VEGF-A) and vascular cell adhesion protein-1 (VCAM-1) were observed 1-week following EP in treated animals. Finally, levels of hypoxia, oxidative stress, and apoptosis remained high in antiresorptive treated animals with EP through the duration of the experiment. Together, our data point to subclinical vasculature organizational disturbances that subsequently affect levels of hypoxia, oxidative stress, and apoptosis in the area of developing ONJ.
Collapse
Affiliation(s)
- Ioannis Gkouveris
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Danny Hadaya
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Akrivoula Soundia
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Olga Bezouglaia
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Yee Chau
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Sarah M Dry
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Flavia Q Pirih
- Division of Constitutive and Regenerative Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Tara L Aghaloo
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA.
| | - Sotirios Tetradis
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA.
| |
Collapse
|
2
|
Nazıroğlu M, Braidy N. Thermo-Sensitive TRP Channels: Novel Targets for Treating Chemotherapy-Induced Peripheral Pain. Front Physiol 2017; 8:1040. [PMID: 29326595 PMCID: PMC5733463 DOI: 10.3389/fphys.2017.01040] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022] Open
Abstract
Abnormal Ca2+ channel physiology, expression levels, and hypersensitivity to heat have been implicated in several pain states following treatment with chemotherapeutic agents. As members of the Ca2+ permeable transient receptor potential (TRP), five of the channels (TRPV1-4 and TRPM2) are activated by different heat temperatures, and two of the channels (TRPA1 and TRPM8) are activated by cold temperature. Accumulating evidences indicates that antagonists of TRPA1 and TRPM8 may protect against cisplatin, oxaliplatin, and paclitaxel-induced mitochondrial oxidative stress, inflammation, cold allodynia, and hyperalgesia. TRPV1 was responsible from the cisplatin-induced heat hyperalgesia and mechanical allodynia in the sensory neurons. TRPA1, TRPM8, and TRPV2 protein expression levels were mostly increased in the dorsal root (DRG) and trigeminal ganglia by these treatments. There is a debate on direct or oxaliplatin-induced oxidative cold stress dependent TRPA1 and TRPV4 activation in the DRG. Involvement of molecular pathways such as cysteine groups, glutathione metabolism, anandamide, cAMP, lipopolysaccharide, proteinase-activated receptor 2, and mitogen-activated protein kinase were also indicated in the oxaliplatin and paclitaxel-induced cold allodynia. In this review, we summarized results of five temperature-regulated TRP channels (TRPA1, TRPM8, TRPV1, TRPV2, and TRPV4) as novel targets for treating chemotherapy-induced peripheral pain
Collapse
Affiliation(s)
- Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
3
|
Liu Y, Li W, Guo M, Li C, Qiu C. Protective Role of Selenium Compounds on the Proliferation, Apoptosis, and Angiogenesis of a Canine Breast Cancer Cell Line. Biol Trace Elem Res 2016; 169:86-93. [PMID: 26051789 DOI: 10.1007/s12011-015-0387-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 05/26/2015] [Indexed: 12/27/2022]
Abstract
We herein examined the effects of different doses, forms, and compatibilities of selenium on a canine mammary gland tumor cell line, CTM1211, and explored the related mechanisms. Three selenium compounds, sodium selenite (SSE), methylseleninic acid (MSA), and methylselenocysteine (MSC), were selected for these experiments, and cyclophosphamide (CTX) served as a positive control. In the cell viability assay, the cell viability of each group at 48/72 h decreased significantly compared with the control group (p < 0.05), and the cell viability of the CTX + MSA group was lower than that of CTX and MSA groups (p < 0.05). Moreover, the inhibitory effect of selenium on cell proliferation was time-dependent but not concentration-dependent. In the cell apoptosis assay, the apoptosis values of each group increased significantly compared with the control group, and the apoptosis values of the CTX + MSA group increased the most significantly (p < 0.01). The protein and mRNA expression levels of vascular endothelial growth factor-alpha (VEGF-alpha), angiopoietin-2 (Ang-2), and hypoxia inducible factor-1 alpha (HIF-1 alpha) were downregulated in each group, while that of phosphatase and tensin homolog (PTEN) were upregulated (p < 0.05). In conclusion, these three selenium compounds, especially MSA, could significantly inhibit the viability and growth of the CTM1211 cell line, which is partly due to the induction of apoptosis and regulation of tumor angiogenesis.
Collapse
Affiliation(s)
- Yuzhi Liu
- Huazhong Agricultural University, Wuhan, China.
| | - Wenyu Li
- Huazhong Agricultural University, Wuhan, China
| | - Mengyao Guo
- Huazhong Agricultural University, Wuhan, China
| | - Chengye Li
- Huazhong Agricultural University, Wuhan, China
| | | |
Collapse
|
4
|
New benzimidazole acridine derivative induces human colon cancer cell apoptosis in vitro via the ROS-JNK signaling pathway. Acta Pharmacol Sin 2015; 36:1074-84. [PMID: 26235743 DOI: 10.1038/aps.2015.44] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/20/2015] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the mechanisms underlying anticancer action of the benzimidazole acridine derivative N-{(1H-benzo[d]imidazol-2-yl)methyl}-2-butylacridin-9-amine(8m) against human colon cancer cells in vitro. METHODS Human colon cancer cell lines SW480 and HCT116 were incubated in the presence of 8m, and then the cell proliferation and apoptosis were measured. The expression of apoptotic/signaling genes and proteins was detected using RT-PCR and Western blotting. ROS generation and mitochondrial membrane depolarization were visualized with fluorescence microscopy. RESULTS 8m dose-dependently suppressed the proliferation of SW480 and HCT116 cells with IC50 values of 6.77 and 3.33 μmol/L, respectively. 8m induced apoptosis of HCT116 cells, accompanied by down-regulation of Bcl-2, up-regulation of death receptor-5 (DR5), truncation of Bid, cleavage of PARP, and activation of caspases (including caspase-8 and caspase-9 as well as the downstream caspases-3 and caspase-7). Moreover, 8m selectively activated JNK and p38 without affecting ERK in HCT116 cells. Knockout of JNK1, but not p38, attenuated 8m-induced apoptosis. In addition, 8m induced ROS production and mitochondrial membrane depolarization in HCT116 cells. Pretreatment with the antioxidants N-acetyl cysteine or glutathione attenuated 8m-induced apoptosis and JNK activation in HCT116 cells. CONCLUSION The new benzimidazole acridine derivative, 8m exerts anticancer activity against human colon cancer cells in vitro by inducing both intrinsic and extrinsic apoptosis pathways via the ROS-JNK1 pathway.
Collapse
|
5
|
Çiğ B, Nazıroğlu M. Investigation of the effects of distance from sources on apoptosis, oxidative stress and cytosolic calcium accumulation via TRPV1 channels induced by mobile phones and Wi-Fi in breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2756-65. [PMID: 25703814 DOI: 10.1016/j.bbamem.2015.02.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 02/02/2015] [Accepted: 02/10/2015] [Indexed: 12/17/2022]
Abstract
TRPV1 is a Ca2+ permeable channel and gated by noxious heat, oxidative stress and capsaicin (CAP). Some reports have indicated that non-ionized electromagnetic radiation (EMR)-induces heat and oxidative stress effects. We aimed to investigate the effects of distance from sources on calcium signaling, cytosolic ROS production, cell viability, apoptosis, plus caspase-3 and -9 values induced by mobile phones and Wi-Fi in breast cancer cells MCF-7 human breast cancer cell lines were divided into A, B, C and D groups as control, 900, 1800 and 2450 MHz groups, respectively. Cells in Group A were used as control and were kept in cell culture conditions without EMR exposure. Groups B, C and D were exposed to the EMR frequencies at different distances (0 cm, 1 cm, 5 cm, 10 cm, 20 cm and 25 cm) for 1h before CAP stimulation. The cytosolic ROS production, Ca2+ concentrations, apoptosis, caspase-3 and caspase-9 values were higher in groups B, C and D than in A group at 0 cm, 1 cm and 5 cm distances although cell viability (MTT) values were increased by the distances. There was no statistically significant difference in the values between control, 20 and 25 cm. Wi-Fi and mobile phone EMR placed within 10 cm of the cells induced excessive oxidative responses and apoptosis via TRPV1-induced cytosolic Ca2+ accumulation in the cancer cells. Using cell phones and Wi-Fi sources which are farther away than 10 cm may provide useful protection against oxidative stress, apoptosis and overload of intracellular Ca2+. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Bilal Çiğ
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Mustafa Nazıroğlu
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey; Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey.
| |
Collapse
|
6
|
Teng Y, Zou L, Huang M, Chen Y. Molecular interaction mechanism between 2-mercaptobenzimidazole and copper-zinc superoxide dismutase. PLoS One 2014; 9:e106003. [PMID: 25157630 PMCID: PMC4144957 DOI: 10.1371/journal.pone.0106003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 07/31/2014] [Indexed: 11/19/2022] Open
Abstract
2-Mercaptobenzimidazole (MBI) is widely utilized as a corrosion inhibitor, copper-plating brightener and rubber accelerator. The residue of MBI in the environment is potentially harmful. In the present work, the toxic interaction of MBI with the important antioxidant enzyme copper-zinc superoxide dismutase (Cu/ZnSOD) was investigated using spectroscopic and molecular docking methods. MBI can interact with Cu/ZnSOD to form an MBI-Cu/ZnSOD complex. The binding constant, number of binding sites and thermodynamic parameters were measured, which indicated that MBI could spontaneously bind with Cu/ZnSOD with one binding site through hydrogen bonds and van der Waals forces. MBI bound into the Cu/ZnSOD interface of two subdomains, which caused some microenvironmental and secondary structure changes of Cu/ZnSOD and further resulted in the inhibition of Cu/ZnSOD activity. This work provides direct evidence at a molecular level to show that exposure to MBI could induce changes in the structure and function of the enzyme Cu/ZnSOD. The estimated methods in this work may be applied to probe molecular interactions of biomacromolecules and other pollutants and drugs.
Collapse
Affiliation(s)
- Yue Teng
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province, PR China
- * E-mail:
| | - Luyi Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province, PR China
| | - Ming Huang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province, PR China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, Nanjing, Jiangsu Province, PR China
| |
Collapse
|
7
|
Kahya MC, Nazıroğlu M, Çiğ B. Selenium reduces mobile phone (900 MHz)-induced oxidative stress, mitochondrial function, and apoptosis in breast cancer cells. Biol Trace Elem Res 2014; 160:285-93. [PMID: 24965080 DOI: 10.1007/s12011-014-0032-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/26/2014] [Indexed: 12/29/2022]
Abstract
Exposure to mobile phone-induced electromagnetic radiation (EMR) may affect biological systems by increasing free oxygen radicals, apoptosis, and mitochondrial depolarization levels although selenium may modulate the values in cancer. The present study was designed to investigate the effects of 900 MHz radiation on the antioxidant redox system, apoptosis, and mitochondrial depolarization levels in MDA-MB-231 breast cancer cell line. Cultures of the cancer cells were divided into four main groups as controls, selenium, EMR, and EMR + selenium. In EMR groups, the cells were exposed to 900 MHz EMR for 1 h (SAR value of the EMR was 0.36 ± 0.02 W/kg). In selenium groups, the cells were also incubated with sodium selenite for 1 h before EMR exposure. Then, the following values were analyzed: (a) cell viability, (b) intracellular ROS production, (c) mitochondrial membrane depolarization, (d) cell apoptosis, and (e) caspase-3 and caspase-9 values. Selenium suppressed EMR-induced oxidative cell damage and cell viability (MTT) through a reduction of oxidative stress and restoring mitochondrial membrane potential. Additionally, selenium indicated anti-apoptotic effects, as demonstrated by plate reader analyses of apoptosis levels and caspase-3 and caspase-9 values. In conclusion, 900 MHz EMR appears to induce apoptosis effects through oxidative stress and mitochondrial depolarization although incubation of selenium seems to counteract the effects on apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Mehmet Cemal Kahya
- Department of Biophysics, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
| | | | | |
Collapse
|