1
|
DiNardo CD, Verma D, Baran N, Bhagat TD, Skwarska A, Lodi A, Saxena K, Cai T, Su X, Guerra VA, Poigaialwar G, Kuruvilla VM, Konoplev S, Gordon-Mitchell S, Pradhan K, Aluri S, Hackman GL, Chaudhry S, Collins M, Sweeney SR, Busquets J, Rathore AS, Deng Q, Green MR, Grant S, Demo S, Choudhary GS, Sahu S, Agarwal B, Spodek M, Thiruthuvanathan V, Will B, Steidl U, Tippett GD, Burger J, Borthakur G, Jabbour E, Pemmaraju N, Kadia T, Kornblau S, Daver NG, Naqvi K, Short NJ, Garcia-Manero G, Tiziani S, Verma A, Konopleva M. Glutaminase inhibition in combination with azacytidine in myelodysplastic syndromes: a phase 1b/2 clinical trial and correlative analyses. NATURE CANCER 2024; 5:1515-1533. [PMID: 39300320 DOI: 10.1038/s43018-024-00811-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/24/2024] [Indexed: 09/22/2024]
Abstract
Malignancies are reliant on glutamine as an energy source and a facilitator of aberrant DNA methylation. We demonstrate preclinical synergy of telaglenastat (CB-839), a selective glutaminase inhibitor, combined with azacytidine (AZA), followed by a single-arm, open-label, phase 1b/2 study in persons with advanced myelodysplastic syndrome (MDS). The dual primary endpoints evaluated clinical activity, safety and tolerability; secondary endpoints evaluated pharmacokinetics, pharmacodynamics, overall survival, event-free survival and duration of response. The dose-escalation study included six participants and the dose-expansion study included 24 participants. Therapy was well tolerated and led to an objective response rate of 70% with (marrow) complete remission in 53% of participants and a median overall survival of 11.6 months, with evidence of myeloid differentiation in responders determined by single-cell RNA sequencing. Glutamine transporter solute carrier family 38 member 1 in MDS stem cells was associated with clinical responses and predictive of worse prognosis in a large MDS cohort. These data demonstrate the safety and efficacy of CB-839 and AZA as a combined metabolic and epigenetic approach in MDS. ClinicalTrials.gov identifier: NCT03047993 .
Collapse
Affiliation(s)
- Courtney D DiNardo
- Departament of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Divij Verma
- Department of Medicine (Oncology), Blood Cancer Institute, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Natalia Baran
- Departament of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Section of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Tushar D Bhagat
- Department of Medicine (Oncology), Blood Cancer Institute, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anna Skwarska
- Department of Medicine (Oncology), Blood Cancer Institute, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alessia Lodi
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
- Dell Pediatric Research Institute, Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Kapil Saxena
- Departament of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tianyu Cai
- Departament of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoping Su
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Veronica A Guerra
- Departament of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gowri Poigaialwar
- Department of Medicine (Oncology), Blood Cancer Institute, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vinitha M Kuruvilla
- Departament of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sergej Konoplev
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shanisha Gordon-Mitchell
- Department of Medicine (Oncology), Blood Cancer Institute, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kith Pradhan
- Department of Medicine (Oncology), Blood Cancer Institute, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Srinivas Aluri
- Department of Medicine (Oncology), Blood Cancer Institute, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - G Lavender Hackman
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
- Dell Pediatric Research Institute, Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Sovira Chaudhry
- Department of Medicine (Oncology), Blood Cancer Institute, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Meghan Collins
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
- Dell Pediatric Research Institute, Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Shannon R Sweeney
- Dell Pediatric Research Institute, Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Institute for Cell and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Jonathan Busquets
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
- Dell Pediatric Research Institute, Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Atul Singh Rathore
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Qing Deng
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael R Green
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven Grant
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Susan Demo
- Calithera Biosciences, San Francisco, CA, USA
| | - Gaurav S Choudhary
- Department of Medicine (Oncology), Blood Cancer Institute, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Srabani Sahu
- Department of Medicine (Oncology), Blood Cancer Institute, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Mason Spodek
- Department of Medicine (Oncology), Blood Cancer Institute, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Victor Thiruthuvanathan
- Department of Medicine (Oncology), Blood Cancer Institute, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Britta Will
- Department of Medicine (Oncology), Blood Cancer Institute, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ulrich Steidl
- Department of Medicine (Oncology), Blood Cancer Institute, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - George D Tippett
- Departament of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jan Burger
- Departament of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gautam Borthakur
- Departament of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Departament of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naveen Pemmaraju
- Departament of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tapan Kadia
- Departament of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven Kornblau
- Departament of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval G Daver
- Departament of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kiran Naqvi
- Departament of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas J Short
- Departament of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guillermo Garcia-Manero
- Departament of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stefano Tiziani
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA.
- Dell Pediatric Research Institute, Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
- Institute for Cell and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA.
- Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, USA.
| | - Amit Verma
- Department of Medicine (Oncology), Blood Cancer Institute, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Marina Konopleva
- Departament of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Medicine (Oncology), Blood Cancer Institute, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
2
|
Tannoury M, Ayoub M, Dehgane L, Nemazanyy I, Dubois K, Izabelle C, Brousse A, Roos-Weil D, Maloum K, Merle-Béral H, Bauvois B, Saubamea B, Chapiro E, Nguyen-Khac F, Garnier D, Susin SA. ACOX1-mediated peroxisomal fatty acid oxidation contributes to metabolic reprogramming and survival in chronic lymphocytic leukemia. Leukemia 2024; 38:302-317. [PMID: 38057495 DOI: 10.1038/s41375-023-02103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is still an incurable disease, with many patients developing resistance to conventional and targeted therapies. To better understand the physiology of CLL and facilitate the development of innovative treatment options, we examined specific metabolic features in the tumor CLL B-lymphocytes. We observed metabolic reprogramming, characterized by a high level of mitochondrial oxidative phosphorylation activity, a low glycolytic rate, and the presence of C2- to C6-carnitine end-products revealing an unexpected, essential role for peroxisomal fatty acid beta-oxidation (pFAO). Accordingly, downmodulation of ACOX1 (a rate-limiting pFAO enzyme overexpressed in CLL cells) was enough to shift the CLL cells' metabolism from lipids to a carbon- and amino-acid-based phenotype. Complete blockade of ACOX1 resulted in lipid droplet accumulation and caspase-dependent death in CLL cells, including those from individuals with poor cytogenetic and clinical prognostic factors. In a therapeutic translational approach, ACOX1 inhibition spared non-tumor blood cells from CLL patients but led to the death of circulating, BCR-stimulated CLL B-lymphocytes and CLL B-cells receiving pro-survival stromal signals. Furthermore, a combination of ACOX1 and BTK inhibitors had a synergistic killing effect. Overall, our results highlight a less-studied but essential metabolic pathway in CLL and pave the way towards the development of new, metabolism-based treatment options.
Collapse
Affiliation(s)
- Mariana Tannoury
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
| | - Marianne Ayoub
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
| | - Léa Dehgane
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
| | - Ivan Nemazanyy
- Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR 3633, Platform for Metabolic Analyses, F-75015, Paris, France
| | - Kenza Dubois
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
| | - Charlotte Izabelle
- Faculté de Pharmacie, Université Paris Cité, PICMO, US 25 Inserm, UAR 3612 CNRS, F-75006, Paris, France
| | - Aurélie Brousse
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
| | - Damien Roos-Weil
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
- Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Clinique, F-75013, Paris, France
| | - Karim Maloum
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
- Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, F-75013, Paris, France
| | - Hélène Merle-Béral
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
| | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
| | - Bruno Saubamea
- Faculté de Pharmacie, Université Paris Cité, PICMO, US 25 Inserm, UAR 3612 CNRS, F-75006, Paris, France
| | - Elise Chapiro
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
- Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, F-75013, Paris, France
| | - Florence Nguyen-Khac
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
- Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, F-75013, Paris, France
| | - Delphine Garnier
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
| | - Santos A Susin
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| |
Collapse
|
3
|
Shapourian H, Ghanadian M, Eskandari N, Shokouhi A, Demirel GY, Bazhin AV, Ganjalikhani-Hakemi M. TIM-3/Galectin-9 interaction and glutamine metabolism in AML cell lines, HL-60 and THP-1. BMC Cancer 2024; 24:125. [PMID: 38267906 PMCID: PMC10809689 DOI: 10.1186/s12885-024-11898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND T cell immunoglobulin and mucin-domain containing-3 (TIM-3) is a cell surface molecule that was first discovered on T cells. However, recent studies revealed that it is also highly expressed in acute myeloid leukemia (AML) cells and it is related to AML progression. As, Glutamine appears to play a prominent role in malignant tumor progression, especially in their myeloid group, therefore, in this study we aimed to evaluate the relation between TIM-3/Galectin-9 axis and glutamine metabolism in two types of AML cell lines, HL-60 and THP-1. METHODS Cell lines were cultured in RPMI 1640 which supplemented with 10% FBS and 1% antibiotics. 24, 48, and 72 h after addition of recombinant Galectin-9 (Gal-9), RT-qPCR analysis, RP-HPLC and gas chromatography techniques were performed to evaluate the expression of glutaminase (GLS), glutamate dehydrogenase (GDH) enzymes, concentration of metabolites; Glutamate (Glu) and alpha-ketoglutarate (α-KG) in glutaminolysis pathway, respectively. Western blotting and MTT assay were used to detect expression of mammalian target of rapamycin complex (mTORC) as signaling factor, GLS protein and cell proliferation rate, respectively. RESULTS The most mRNA expression of GLS and GDH in HL-60 cells was seen at 72 h after Gal-9 treatment (p = 0.001, p = 0.0001) and in THP-1 cell line was observed at 24 h after Gal-9 addition (p = 0.001, p = 0.0001). The most mTORC and GLS protein expression in HL-60 and THP-1 cells was observed at 72 and 24 h after Gal-9 treatment (p = 0.0001), respectively. MTT assay revealed that Gal-9 could promote cell proliferation rate in both cell lines (p = 0.001). Glu concentration in HL-60 and α-KG concentration in both HL-60 (p = 0.03) and THP-1 (p = 0.0001) cell lines had a decreasing trend. But, Glu concentration had an increasing trend in THP-1 cell line (p = 0.0001). CONCLUSION Taken together, this study suggests TIM-3/Gal-9 interaction could promote glutamine metabolism in HL-60 and THP-1 cells and resulting in AML development.
Collapse
Affiliation(s)
- Hooriyeh Shapourian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mustafa Ghanadian
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahid Eskandari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abolfazl Shokouhi
- Department of Endocrine and metabolism research center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Alexandr V Bazhin
- Department of General, Visceral and Transplant Surgery, Ludwig Maximilians University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Mazdak Ganjalikhani-Hakemi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.
| |
Collapse
|
4
|
Wang Z, Li T, Li R, Cao B, Wang S, Fei X, Li C, Li G. Sijunzi Tang improves gefitinib resistance by regulating glutamine metabolism. Biomed Pharmacother 2023; 167:115438. [PMID: 37738796 DOI: 10.1016/j.biopha.2023.115438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/20/2023] [Accepted: 08/31/2023] [Indexed: 09/24/2023] Open
Abstract
Lung cancer is a major health concern and significant barrier to human well-being and social development. Although targeted therapy has shown remarkable progress in the treatment of lung cancer, the emergence of drug resistance has limited its clinical efficacy. Sijunzi Tang (SJZ) is a classical Chinese herbal formula known for tonifying qi and nourishing the lungs, has been recognized for its potential in lung cancer management. However, the underlying mechanism of its combined use with anti-cancer drugs remains unclear. Here, we investigated the anti-lung cancer efficacy and underlying mechanisms of the combination of gefitinib and SJZ in gefitinib-resistant human lung adenocarcinoma cells (PC-9/GR). We conducted in vitro and in vivo experiments using histopathology and targeted metabolomics approaches. Our results demonstrated that the combination of SJZ and gefitinib exhibited synergistic effects on tumor growth inhibition in PC-9/GR-bearing nude mice. Notably, the co-administration of SJZ and gefitinib synergistically promoted tumor cell apoptosis, potentially through the regulation of BAX and BCL-2 expression. Immunohistochemistry and western blot analysis found down-regulation of GLS, GS, and SLC1A5 expression in the co-administration group compared to the control and the individual treatment groups. Targeted metabolomics revealed significant alterations in the plasma glutamine metabolic markers glutamine, alanine, succinate, glutamate, and pyruvate. Of the glutamine metabolism markers measured in tumor tissues, glutamine and pyruvate demonstrated significant differences across the treatment groups. These findings suggest that administration of SJZ improves gefitinib resistance in the treatment of lung cancer without toxic effects. Moreover, SJZ may affect glutamine metabolism by regulating key targets involved in glutamine metabolism (SLC1A5, GLS, and GS) and modulating the levels of related metabolic markers, ultimately reducing gefitinib resistance.
Collapse
Affiliation(s)
- Zhihong Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Taifeng Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Ruisheng Li
- Research Center for Clinical and Translational Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bo Cao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Shiyuan Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China; Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaofei Fei
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Chunyu Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Guohui Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| |
Collapse
|
5
|
Boykov IN, Montgomery MM, Hagen JT, Aruleba RT, McLaughlin KL, Coalson HS, Nelson MA, Pereyra AS, Ellis JM, Zeczycki TN, Vohra NA, Tan SF, Cabot MC, Fisher-Wellman KH. Pan-tissue mitochondrial phenotyping reveals lower OXPHOS expression and function across cancer types. Sci Rep 2023; 13:16742. [PMID: 37798427 PMCID: PMC10556099 DOI: 10.1038/s41598-023-43963-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023] Open
Abstract
Targeting mitochondrial oxidative phosphorylation (OXPHOS) to treat cancer has been hampered due to serious side-effects potentially arising from the inability to discriminate between non-cancerous and cancerous mitochondria. Herein, comprehensive mitochondrial phenotyping was leveraged to define both the composition and function of OXPHOS across various murine cancers and compared to both matched normal tissues and other organs. When compared to both matched normal tissues, as well as high OXPHOS reliant organs like heart, intrinsic expression of the OXPHOS complexes, as well as OXPHOS flux were discovered to be consistently lower across distinct cancer types. Assuming intrinsic OXPHOS expression/function predicts OXPHOS reliance in vivo, these data suggest that pharmacologic blockade of mitochondrial OXPHOS likely compromises bioenergetic homeostasis in healthy oxidative organs prior to impacting tumor mitochondrial flux in a clinically meaningful way. Although these data caution against the use of indiscriminate mitochondrial inhibitors for cancer treatment, considerable heterogeneity was observed across cancer types with respect to both mitochondrial proteome composition and substrate-specific flux, highlighting the possibility for targeting discrete mitochondrial proteins or pathways unique to a given cancer type.
Collapse
Affiliation(s)
- Ilya N Boykov
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - McLane M Montgomery
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - James T Hagen
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - Raphael T Aruleba
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - Kelsey L McLaughlin
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - Hannah S Coalson
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - Margaret A Nelson
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - Andrea S Pereyra
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - Jessica M Ellis
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - Tonya N Zeczycki
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Nasreen A Vohra
- Department of Surgery, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Su-Fern Tan
- Department of Medicine, Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Myles C Cabot
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Kelsey H Fisher-Wellman
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA.
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Carbó JM, Cornet-Masana JM, Cuesta-Casanovas L, Delgado-Martínez J, Banús-Mulet A, Clément-Demange L, Serra C, Catena J, Llebaria A, Esteve J, Risueño RM. A Novel Family of Lysosomotropic Tetracyclic Compounds for Treating Leukemia. Cancers (Basel) 2023; 15:1912. [PMID: 36980800 PMCID: PMC10047683 DOI: 10.3390/cancers15061912] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematological cancer characterized by poor prognosis and frequent relapses. Aside from specific mutation-related changes, in AML, the overall function of lysosomes and mitochondria is drastically altered to fulfill the elevated biomass and bioenergetic demands. On the basis of previous results, in silico drug discovery screening was used to identify a new family of lysosome-/mitochondria-targeting compounds. These novel tetracyclic hits, with a cationic amphiphilic structure, specifically eradicate leukemic cells by inducing both mitochondrial damage and apoptosis, and simultaneous lysosomal membrane leakiness. Lysosomal leakiness does not only elicit canonical lysosome-dependent cell death, but also activates the terminal differentiation of AML cells through the Ca2+-TFEB-MYC signaling axis. In addition to being an effective monotherapy, its combination with the chemotherapeutic arsenic trioxide (ATO) used in other types of leukemia is highly synergistic in AML cells, widening the therapeutic window of the treatment. Moreover, the compounds are effective in a wide panel of cancer cell lines and possess adequate pharmacological properties rendering them promising drug candidates for the treatment of AML and other neoplasias.
Collapse
Affiliation(s)
- José M. Carbó
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Barcelona, Spain
- Leukos Biotech, 08021 Barcelona, Spain
| | | | - Laia Cuesta-Casanovas
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Barcelona, Spain
- Faculty of Biosciences, Autonomous University of Barcelona, 08193 Barcelona, Spain
| | - Jennifer Delgado-Martínez
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Barcelona, Spain
- Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | | | | | - Carme Serra
- MCS, Laboratory of Medicinal Chemistry and Synthesis, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
- SIMChem, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Juanlo Catena
- MCS, Laboratory of Medicinal Chemistry and Synthesis, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
- SIMChem, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Amadeu Llebaria
- MCS, Laboratory of Medicinal Chemistry and Synthesis, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Jordi Esteve
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Barcelona, Spain
- Department of Hematology, Hospital Clínic, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Ruth M. Risueño
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Barcelona, Spain
| |
Collapse
|
7
|
Counteracting Colon Cancer by Inhibiting Mitochondrial Respiration and Glycolysis with a Selective PKCδ Activator. Int J Mol Sci 2023; 24:ijms24065710. [PMID: 36982784 PMCID: PMC10054007 DOI: 10.3390/ijms24065710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Metabolic reprogramming is a central hub in tumor development and progression. Therefore, several efforts have been developed to find improved therapeutic approaches targeting cancer cell metabolism. Recently, we identified the 7α-acetoxy-6β-benzoyloxy-12-O-benzoylroyleanone (Roy-Bz) as a PKCδ-selective activator with potent anti-proliferative activity in colon cancer by stimulating a PKCδ-dependent mitochondrial apoptotic pathway. Herein, we investigated whether the antitumor activity of Roy-Bz, in colon cancer, could be related to glucose metabolism interference. The results showed that Roy-Bz decreased the mitochondrial respiration in human colon HCT116 cancer cells, by reducing electron transfer chain complexes I/III. Consistently, this effect was associated with downregulation of the mitochondrial markers cytochrome c oxidase subunit 4 (COX4), voltage-dependent anion channel (VDAC) and mitochondrial import receptor subunit TOM20 homolog (TOM20), and upregulation of synthesis of cytochrome c oxidase 2 (SCO2). Roy-Bz also dropped glycolysis, decreasing the expression of critical glycolytic markers directly implicated in glucose metabolism such as glucose transporter 1 (GLUT1), hexokinase 2 (HK2) and monocarboxylate transporter 4 (MCT4), and increasing TP53-induced glycolysis and apoptosis regulator (TIGAR) protein levels. These results were further corroborated in tumor xenografts of colon cancer. Altogether, using a PKCδ-selective activator, this work evidenced a potential dual role of PKCδ in tumor cell metabolism, resulting from the inhibition of both mitochondrial respiration and glycolysis. Additionally, it reinforces the antitumor therapeutic potential of Roy-Bz in colon cancer by targeting glucose metabolism.
Collapse
|
8
|
Konopleva M, DiNardo C, Bhagat T, Baran N, Lodi A, Saxena K, Cai T, Su X, Skwarska A, Guerra V, Kuruvilla V, Konoplev S, Gordon-Mitchell S, Pradhan K, Aluri S, Collins M, Sweeney S, Busquet J, Rathore A, Deng Q, Green M, Grant S, Demo S, Choudhary G, Sahu S, Agarwal B, Spodek M, Thiruthuvanathan V, Will B, Steidl U, Tippett G, Burger J, Borthakur G, Jabbour E, Pemmaraju N, Kadia T, Komblau S, Daver N, Naqvi K, Short N, Garcia-Manero G, Tiziani S, Verma A. Glutaminase inhibition in combination with azacytidine in myelodysplastic syndromes: Clinical efficacy and correlative analyses. RESEARCH SQUARE 2023:rs.3.rs-2518774. [PMID: 36865338 PMCID: PMC9980221 DOI: 10.21203/rs.3.rs-2518774/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Malignancies can become reliant on glutamine as an alternative energy source and as a facilitator of aberrant DNA methylation, thus implicating glutaminase (GLS) as a potential therapeutic target. We demonstrate preclinical synergy of telaglenastat (CB-839), a selective GLS inhibitor, when combined with azacytidine (AZA), in vitro and in vivo, followed by a phase Ib/II study of the combination in patients with advanced MDS. Treatment with telaglenastat/AZA led to an ORR of 70% with CR/mCRs in 53% patients and a median overall survival of 11.6 months. scRNAseq and flow cytometry demonstrated a myeloid differentiation program at the stem cell level in clinical responders. Expression of non-canonical glutamine transporter, SLC38A1, was found to be overexpressed in MDS stem cells; was associated with clinical responses to telaglenastat/AZA and predictive of worse prognosis in a large MDS cohort. These data demonstrate the safety and efficacy of a combined metabolic and epigenetic approach in MDS.
Collapse
Affiliation(s)
| | | | | | | | - Alessia Lodi
- College of Natural Sciences, The University of Texas at Austin
| | - Kapil Saxena
- The University of Texas, MD Anderson Cancer Center
| | - Tianyu Cai
- The University of Texas, MD Anderson Cancer Center
| | - Xiaoping Su
- Dan L. Duncan Cancer Center and , Baylor College of Medicine
| | - Anna Skwarska
- Albert Einstein College of Medicine-Montefiore Medical Center
| | | | | | | | | | | | | | - Meghan Collins
- College of Natural Sciences, The University of Texas at Austin
| | - Shannon Sweeney
- Department of Nutritional Sciences, Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | | | - Atul Rathore
- Dell Medical School, The University of Texas at Austin
| | - Qing Deng
- The University of Texas MD Anderson Cancer Cent
| | | | - Steven Grant
- Department of Medicine, Virginia Commonwealth University
| | | | | | | | | | - Mason Spodek
- Albert Einstein College of Medicine-Montefiore Medical Center
| | | | | | | | | | | | | | | | | | - Tapan Kadia
- The University of Texas MD Anderson Cancer Center
| | | | - Naval Daver
- The University of Texas MD Anderson Cancer Center
| | - Kiran Naqvi
- The University of Texas, MD Anderson Cancer Center
| | | | | | - Stefano Tiziani
- Department of Nutritional Sciences, Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
9
|
Huang Z, Shen Y, Liu W, Yang Y, Guo L, Yan Q, Wei C, Guo Q, Fan X, Ma W. Berberine targets the electron transport chain complex I and reveals the landscape of OXPHOS dependency in acute myeloid leukemia with IDH1 mutation. Chin J Nat Med 2023; 21:136-145. [PMID: 36871981 DOI: 10.1016/s1875-5364(23)60391-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 03/07/2023]
Abstract
Metabolic reprogramming, a newly recognized trait of tumor biology, is an intensively studied prospect for oncology medicines. For numerous tumors and cancer cell subpopulations, oxidative phosphorylation (OXPHOS) is essential for their biosynthetic and bioenergetic functions. Cancer cells with mutations in isocitrate dehydrogenase 1 (IDH1) exhibit differentiation arrest, epigenetic and transcriptional reprogramming, and sensitivity to mitochondrial OXPHOS inhibitors. In this study, we report that berberine, which is widely used in China to treat intestinal infections, acted solely at the mitochondrial electron transport chain (ETC) complex I, and that its association with IDH1 mutant inhibitor (IDH1mi) AG-120 decreased mitochondrial activity and enhanced antileukemic effect in vitro andin vivo. Our study gives a scientific rationale for the therapy of IDH1 mutant acute myeloid leukemia (AML) patients using combinatory mitochondrial targeted medicines, particularly those who are resistant to or relapsing from IDH1mi.
Collapse
Affiliation(s)
- Zhe Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; Department of Pediatrics, the Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou 646000, China
| | - Yunfu Shen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Wenjun Liu
- Department of Pediatrics, the Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou 646000, China
| | - Yan Yang
- Department of Pediatrics, the Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou 646000, China
| | - Ling Guo
- Department of Pediatrics, the Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou 646000, China
| | - Qin Yan
- Department of Pediatrics, the Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou 646000, China
| | - Chengming Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Qulian Guo
- Department of Pediatrics, the Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou 646000, China
| | - Xianming Fan
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
10
|
Liao P, Chang N, Xu B, Qiu Y, Wang S, Zhou L, He Y, Xie X, Li Y. Amino acid metabolism: challenges and opportunities for the therapeutic treatment of leukemia and lymphoma. Immunol Cell Biol 2022; 100:507-528. [PMID: 35578380 DOI: 10.1111/imcb.12557] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/23/2022] [Accepted: 05/14/2022] [Indexed: 11/26/2022]
Abstract
Leukemia and lymphoma-the most common hematological malignant diseases-are often accompanied by complications such as drug resistance, refractory diseases and relapse. Amino acids (AAs) are important energy sources for malignant cells. Tumor-mediated AA metabolism is associated with the immunosuppressive properties of the tumor microenvironment, thereby assisting malignant cells to evade immune surveillance. Targeting abnormal AA metabolism in the tumor microenvironment may be an effective therapeutic approach to address the therapeutic challenges of leukemia and lymphoma. Here, we review the effects of glutamine, arginine and tryptophan metabolism on tumorigenesis and immunomodulation, and define the differences between tumor cells and immune effector cells. We also comment on treatments targeting these AA metabolism pathways in lymphoma and leukemia and discuss how these treatments have profound adverse effects on tumor cells, but leave the immune cells unaffected or mildly affected.
Collapse
Affiliation(s)
- Peiyun Liao
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ning Chang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Binyan Xu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Sheng Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lijuan Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanjie He
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoling Xie
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
11
|
Wagner A, Kosnacova H, Chovanec M, Jurkovicova D. Mitochondrial Genetic and Epigenetic Regulations in Cancer: Therapeutic Potential. Int J Mol Sci 2022; 23:ijms23147897. [PMID: 35887244 PMCID: PMC9321253 DOI: 10.3390/ijms23147897] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Mitochondria are dynamic organelles managing crucial processes of cellular metabolism and bioenergetics. Enabling rapid cellular adaptation to altered endogenous and exogenous environments, mitochondria play an important role in many pathophysiological states, including cancer. Being under the control of mitochondrial and nuclear DNA (mtDNA and nDNA), mitochondria adjust their activity and biogenesis to cell demands. In cancer, numerous mutations in mtDNA have been detected, which do not inactivate mitochondrial functions but rather alter energy metabolism to support cancer cell growth. Increasing evidence suggests that mtDNA mutations, mtDNA epigenetics and miRNA regulations dynamically modify signalling pathways in an altered microenvironment, resulting in cancer initiation and progression and aberrant therapy response. In this review, we discuss mitochondria as organelles importantly involved in tumorigenesis and anti-cancer therapy response. Tumour treatment unresponsiveness still represents a serious drawback in current drug therapies. Therefore, studying aspects related to genetic and epigenetic control of mitochondria can open a new field for understanding cancer therapy response. The urgency of finding new therapeutic regimens with better treatment outcomes underlines the targeting of mitochondria as a suitable candidate with new therapeutic potential. Understanding the role of mitochondria and their regulation in cancer development, progression and treatment is essential for the development of new safe and effective mitochondria-based therapeutic regimens.
Collapse
Affiliation(s)
- Alexandra Wagner
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Helena Kosnacova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Miroslav Chovanec
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
| | - Dana Jurkovicova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Correspondence:
| |
Collapse
|
12
|
Soltani M, Zhao Y, Xia Z, Ganjalikhani Hakemi M, Bazhin AV. The Importance of Cellular Metabolic Pathways in Pathogenesis and Selective Treatments of Hematological Malignancies. Front Oncol 2021; 11:767026. [PMID: 34868994 PMCID: PMC8636012 DOI: 10.3389/fonc.2021.767026] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/20/2021] [Indexed: 02/05/2023] Open
Abstract
Despite recent advancements in the treatment of hematologic malignancies and the emergence of newer and more sophisticated therapeutic approaches such as immunotherapy, long-term overall survival remains unsatisfactory. Metabolic alteration, as an important hallmark of cancer cells, not only contributes to the malignant transformation of cells, but also promotes tumor progression and metastasis. As an immune-escape mechanism, the metabolic adaptation of the bone marrow microenvironment and leukemic cells is a major player in the suppression of anti-leukemia immune responses. Therefore, metabolic rewiring in leukemia would provide promising opportunities for newer therapeutic interventions. Several therapeutic agents which affect essential bioenergetic pathways in cancer cells including glycolysis, β-oxidation of fatty acids and Krebs cycle, or anabolic pathways such as lipid biosynthesis and pentose phosphate pathway, are being tested in various types of cancers. So far, numerous preclinical or clinical trial studies using such metabolic agents alone or in combination with other remedies such as immunotherapy are in progress and have demonstrated promising outcomes. In this review, we aim to argue the importance of metabolic alterations and bioenergetic pathways in different types of leukemia and their vital roles in disease development. Designing treatments based on targeting leukemic cells vulnerabilities, particularly in nonresponsive leukemia patients, should be warranted.
Collapse
Affiliation(s)
- Mojdeh Soltani
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yue Zhao
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| |
Collapse
|
13
|
Gelpi M, Mikaeloff F, Knudsen AD, Benfeitas R, Krishnan S, Svenssson Akusjärvi S, Høgh J, Murray DD, Ullum H, Neogi U, Nielsen SD. The central role of the glutamate metabolism in long-term antiretroviral treated HIV-infected individuals with metabolic syndrome. Aging (Albany NY) 2021; 13:22732-22751. [PMID: 34635603 PMCID: PMC8544298 DOI: 10.18632/aging.203622] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/28/2021] [Indexed: 11/25/2022]
Abstract
Metabolic syndrome (MetS) is a significant factor for cardiometabolic comorbidities in people living with HIV (PLWH) and a barrier to healthy aging. The long-term consequences of HIV-infection and combination antiretroviral therapy (cART) in metabolic reprogramming are unknown. In this study, we investigated metabolic alterations in well-treated PLWH with MetS to identify potential mechanisms behind the MetS phenotype using advanced statistical and machine learning algorithms. We included 200 PLWH from the Copenhagen Comorbidity in HIV-infection (COCOMO) study. PLWH were grouped into PLWH with MetS (n = 100) defined according to the International Diabetes Federation (IDF) consensus worldwide definition of the MetS or without MetS (n = 100). The untargeted plasma metabolomics was performed using ultra-high-performance liquid chromatography/mass spectrometry (UHPLC/MS/MS) and immune-phenotyping of Glut1 (glucose transporter), xCT (glutamate/cysteine transporter) and MCT1 (pyruvate/lactate transporter) by flow cytometry. We applied several conventional approaches, machine learning algorithms, and linear classification models to identify the biologically relevant metabolites associated with MetS in PLWH. Of the 877 identified biochemicals, 9% (76/877) differed significantly between PLWH with and without MetS (false discovery rate < 0.05). The majority belonged to amino acid metabolism (43%). A consensus identification by combining supervised and unsupervised methods indicated 11 biomarkers of MetS phenotype in PLWH. A weighted co-expression network identified seven communities of positively intercorrelated metabolites. A single community contained six of the potential biomarkers mainly related to glutamate metabolism. Transporter expression identified altered xCT and MCT in both lymphocytic and monocytic cells. Combining metabolomics and immune-phenotyping indicated altered glutamate metabolism associated with MetS in PLWH, which has clinical significance.
Collapse
Affiliation(s)
- Marco Gelpi
- Department of Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Flora Mikaeloff
- The Systems Virology Laboratory, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm, Sweden
| | - Andreas D. Knudsen
- Department of Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Rui Benfeitas
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm S-10691, Sweden
| | - Shuba Krishnan
- The Systems Virology Laboratory, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm, Sweden
| | - Sara Svenssson Akusjärvi
- The Systems Virology Laboratory, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm, Sweden
| | - Julie Høgh
- Department of Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Daniel D. Murray
- Centre for Health and Infectious Diseases Research (CHIP), Rigshospitalet, Copenhagen DK-2100, Denmark
| | - Henrik Ullum
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ujjwal Neogi
- The Systems Virology Laboratory, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm, Sweden
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Susanne D. Nielsen
- Department of Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
14
|
Zavorka Thomas ME, Lu X, Talebi Z, Jeon JY, Buelow DR, Gibson AA, Uddin ME, Brinton LT, Nguyen J, Collins M, Lodi A, Sweeney SR, Campbell MJ, Sweet DH, Sparreboom A, Lapalombella R, Tiziani S, Baker SD. Gilteritinib Inhibits Glutamine Uptake and Utilization in FLT3-ITD-Positive AML. Mol Cancer Ther 2021; 20:2207-2217. [PMID: 34518298 DOI: 10.1158/1535-7163.mct-21-0071] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/17/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
Acute myeloid leukemia (AML) with an FLT3 internal tandem duplication (FLT3-ITD) mutation is an aggressive hematologic malignancy associated with frequent relapse and poor overall survival. The tyrosine kinase inhibitor gilteritinib is approved for the treatment of relapse/refractory AML with FLT3 mutations, yet its mechanism of action is not completely understood. Here, we sought to identify additional therapeutic targets that can be exploited to enhance gilteritinib's antileukemic effect. Based on unbiased transcriptomic analyses, we identified the glutamine transporter SNAT1 (SLC38A1) as a novel target of gilteritinib that leads to impaired glutamine uptake and utilization within leukemic cells. Using metabolomics and metabolic flux analyses, we found that gilteritinib decreased glutamine metabolism through the TCA cycle and cellular levels of the oncometabolite 2-hydroxyglutarate. In addition, gilteritinib treatment was associated with decreased ATP production and glutathione synthesis and increased reactive oxygen species, resulting in cellular senescence. Finally, we found that the glutaminase inhibitor CB-839 enhanced antileukemic effect of gilteritinib in ex vivo studies using human primary FLT3-ITD-positive AML cells harboring mutations in the enzyme isocitrate dehydrogenase, which catalyzes the oxidative decarboxylation of isocitrate, producing α-ketoglutarate. Collectively, this work has identified a previously unrecognized, gilteritinib-sensitive metabolic pathway downstream of SLC38A1 that causes decreased glutaminolysis and disruption of redox homeostasis. These findings provide a rationale for the development and therapeutic exploration of targeted combinatorial treatment strategies for this subset of relapse/refractory AML.
Collapse
Affiliation(s)
- Megan E Zavorka Thomas
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Xiyuan Lu
- Department of Nutritional Sciences and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Zahra Talebi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Jae Yoon Jeon
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Daelynn R Buelow
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Alice A Gibson
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Muhammad Erfan Uddin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Lindsey T Brinton
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Julie Nguyen
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia
| | - Meghan Collins
- Department of Nutritional Sciences and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Alessia Lodi
- Department of Nutritional Sciences and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Shannon R Sweeney
- Department of Nutritional Sciences and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Moray J Campbell
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Douglas H Sweet
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Stefano Tiziani
- Department of Nutritional Sciences and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Sharyn D Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
15
|
Nelson MAM, Fisher-Wellman KH. Mitochondrial Diagnostics: A Discovery-Based Biochemical Platform for Phenotyping Human Peripheral Blood Cell Mitochondria. Methods Mol Biol 2021; 2277:371-389. [PMID: 34080163 DOI: 10.1007/978-1-0716-1270-5_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In vitro experiments using permeabilized cells and/or isolated mitochondria represent a powerful biochemical tool for elucidating the role of the mitochondrion in driving disease. Such analyses have routinely been utilized across multiple scientific fields to shed valuable insight on mitochondrial-linked pathologies. The present chapter is intended to serve as a methodological blueprint for comprehensively phenotyping peripheral blood cell mitochondria. While primarily adapted for peripheral blood cells, the protocols outlined herein could easily be made amenable to most all cell types with minimal modifications.
Collapse
Affiliation(s)
- Margaret A M Nelson
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Kelsey H Fisher-Wellman
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA. .,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
16
|
Anderson NM, Qin X, Finan JM, Lam A, Athoe J, Missiaen R, Skuli N, Kennedy A, Saini AS, Tao T, Zhu S, Nissim I, Look AT, Qing G, Simon MC, Feng H. Metabolic Enzyme DLST Promotes Tumor Aggression and Reveals a Vulnerability to OXPHOS Inhibition in High-Risk Neuroblastoma. Cancer Res 2021; 81:4417-4430. [PMID: 34233924 DOI: 10.1158/0008-5472.can-20-2153] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 03/13/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022]
Abstract
High-risk neuroblastoma remains therapeutically challenging to treat, and the mechanisms promoting disease aggression are poorly understood. Here, we show that elevated expression of dihydrolipoamide S-succinyltransferase (DLST) predicts poor treatment outcome and aggressive disease in patients with neuroblastoma. DLST is an E2 component of the α-ketoglutarate (αKG) dehydrogenase complex, which governs the entry of glutamine into the tricarboxylic acid cycle (TCA) for oxidative decarboxylation. During this irreversible step, αKG is converted into succinyl-CoA, producing NADH for oxidative phosphorylation (OXPHOS). Utilizing a zebrafish model of MYCN-driven neuroblastoma, we demonstrate that even modest increases in DLST expression promote tumor aggression, while monoallelic dlst loss impedes disease initiation and progression. DLST depletion in human MYCN-amplified neuroblastoma cells minimally affected glutamine anaplerosis and did not alter TCA cycle metabolites other than αKG. However, DLST loss significantly suppressed NADH production and impaired OXPHOS, leading to growth arrest and apoptosis of neuroblastoma cells. In addition, multiple inhibitors targeting the electron transport chain, including the potent IACS-010759 that is currently in clinical testing for other cancers, efficiently reduced neuroblastoma proliferation in vitro. IACS-010759 also suppressed tumor growth in zebrafish and mouse xenograft models of high-risk neuroblastoma. Together, these results demonstrate that DLST promotes neuroblastoma aggression and unveils OXPHOS as an essential contributor to high-risk neuroblastoma. SIGNIFICANCE: These findings demonstrate a novel role for DLST in neuroblastoma aggression and identify the OXPHOS inhibitor IACS-010759 as a potential therapeutic strategy for this deadly disease.
Collapse
Affiliation(s)
- Nicole M Anderson
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiaodan Qin
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, The Center for Cancer Research, Boston University School of Medicine, Boston, Massachusetts
| | - Jennifer M Finan
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Andrew Lam
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, The Center for Cancer Research, Boston University School of Medicine, Boston, Massachusetts
| | - Jacob Athoe
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, The Center for Cancer Research, Boston University School of Medicine, Boston, Massachusetts
| | - Rindert Missiaen
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Nicolas Skuli
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Annie Kennedy
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Amandeep S Saini
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, The Center for Cancer Research, Boston University School of Medicine, Boston, Massachusetts
| | - Ting Tao
- National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shizhen Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Itzhak Nissim
- Division of Genetics and Metabolism, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Biochemistry, and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Guoliang Qing
- Frontier Science Center for Immunology & Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania. .,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hui Feng
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, The Center for Cancer Research, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
17
|
Very long chain fatty acid metabolism is required in acute myeloid leukemia. Blood 2021; 137:3518-3532. [PMID: 33720355 DOI: 10.1182/blood.2020008551] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/21/2021] [Indexed: 12/28/2022] Open
Abstract
Acute myeloid leukemia (AML) cells have an atypical metabolic phenotype characterized by increased mitochondrial mass, as well as a greater reliance on oxidative phosphorylation and fatty acid oxidation (FAO) for survival. To exploit this altered metabolism, we assessed publicly available databases to identify FAO enzyme overexpression. Very long chain acyl-CoA dehydrogenase (VLCAD; ACADVL) was found to be overexpressed and critical to leukemia cell mitochondrial metabolism. Genetic attenuation or pharmacological inhibition of VLCAD hindered mitochondrial respiration and FAO contribution to the tricarboxylic acid cycle, resulting in decreased viability, proliferation, clonogenic growth, and AML cell engraftment. Suppression of FAO at VLCAD triggered an increase in pyruvate dehydrogenase activity that was insufficient to increase glycolysis but resulted in adenosine triphosphate depletion and AML cell death, with no effect on normal hematopoietic cells. Together, these results demonstrate the importance of VLCAD in AML cell biology and highlight a novel metabolic vulnerability for this devastating disease.
Collapse
|
18
|
Nelson MAM, McLaughlin KL, Hagen JT, Coalson HS, Schmidt C, Kassai M, Kew KA, McClung JM, Neufer PD, Brophy P, Vohra NA, Liles D, Cabot MC, Fisher-Wellman KH. Intrinsic OXPHOS limitations underlie cellular bioenergetics in leukemia. eLife 2021; 10:e63104. [PMID: 34132194 PMCID: PMC8221809 DOI: 10.7554/elife.63104] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Currently there is great interest in targeting mitochondrial oxidative phosphorylation (OXPHOS) in cancer. However, notwithstanding the targeting of mutant dehydrogenases, nearly all hopeful 'mito-therapeutics' cannot discriminate cancerous from non-cancerous OXPHOS and thus suffer from a limited therapeutic index. Using acute myeloid leukemia (AML) as a model, herein, we leveraged an in-house diagnostic biochemical workflow to identify 'actionable' bioenergetic vulnerabilities intrinsic to cancerous mitochondria. Consistent with prior reports, AML growth and proliferation was associated with a hyper-metabolic phenotype which included increases in basal and maximal respiration. However, despite having nearly 2-fold more mitochondria per cell, clonally expanding hematopoietic stem cells, leukemic blasts, as well as chemoresistant AML were all consistently hallmarked by intrinsic OXPHOS limitations. Remarkably, by performing experiments across a physiological span of ATP free energy, we provide direct evidence that leukemic mitochondria are particularly poised to consume ATP. Relevant to AML biology, acute restoration of oxidative ATP synthesis proved highly cytotoxic to leukemic blasts, suggesting that active OXPHOS repression supports aggressive disease dissemination in AML. Together, these findings argue against ATP being the primary output of leukemic mitochondria and provide proof-of-principle that restoring, rather than disrupting, OXPHOS may represent an untapped therapeutic avenue for combatting hematological malignancy and chemoresistance.
Collapse
Affiliation(s)
- Margaret AM Nelson
- Department of Physiology, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
- East Carolina Diabetes and Obesity Institute, East Carolina UniversityGreenvilleUnited States
| | - Kelsey L McLaughlin
- Department of Physiology, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
- East Carolina Diabetes and Obesity Institute, East Carolina UniversityGreenvilleUnited States
| | - James T Hagen
- Department of Physiology, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
- East Carolina Diabetes and Obesity Institute, East Carolina UniversityGreenvilleUnited States
| | - Hannah S Coalson
- Department of Physiology, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
- East Carolina Diabetes and Obesity Institute, East Carolina UniversityGreenvilleUnited States
| | - Cameron Schmidt
- Department of Physiology, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
- East Carolina Diabetes and Obesity Institute, East Carolina UniversityGreenvilleUnited States
| | - Miki Kassai
- East Carolina Diabetes and Obesity Institute, East Carolina UniversityGreenvilleUnited States
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
| | - Kimberly A Kew
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
| | - Joseph M McClung
- Department of Physiology, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
- East Carolina Diabetes and Obesity Institute, East Carolina UniversityGreenvilleUnited States
- Department of Cardiovascular Sciences, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
| | - P Darrell Neufer
- East Carolina Diabetes and Obesity Institute, East Carolina UniversityGreenvilleUnited States
| | - Patricia Brophy
- East Carolina Diabetes and Obesity Institute, East Carolina UniversityGreenvilleUnited States
| | - Nasreen A Vohra
- Department of Surgery, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
| | - Darla Liles
- Department of Internal Medicine, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
| | - Myles C Cabot
- East Carolina Diabetes and Obesity Institute, East Carolina UniversityGreenvilleUnited States
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
| | - Kelsey H Fisher-Wellman
- Department of Physiology, Brody School of Medicine, East Carolina UniversityGreenvilleUnited States
- East Carolina Diabetes and Obesity Institute, East Carolina UniversityGreenvilleUnited States
| |
Collapse
|
19
|
Stockard B, Bhise N, Shin M, Guingab-Cagmat J, Garrett TJ, Pounds S, Lamba JK. Cellular Metabolomics Profiles Associated With Drug Chemosensitivity in AML. Front Oncol 2021; 11:678008. [PMID: 34178663 PMCID: PMC8222790 DOI: 10.3389/fonc.2021.678008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/04/2021] [Indexed: 01/03/2023] Open
Abstract
Background Acute myeloid leukemia (AML) is a hematological malignancy with a dismal prognosis. For over four decades, AML has primarily been treated by cytarabine combined with an anthracycline. Although a significant proportion of patients achieve remission with this regimen, roughly 40% of children and 70% of adults relapse. Over 90% of patients with resistant or relapsed AML die within 3 years. Thus, relapsed and resistant disease following treatment with standard therapy are the most common clinical failures that occur in treating this disease. In this study, we evaluated the relationship between AML cell line global metabolomes and variation in chemosensitivity. Methods We performed global metabolomics on seven AML cell lines with varying chemosensitivity to cytarabine and the anthracycline doxorubicin (MV4.11, KG-1, HL-60, Kasumi-1, AML-193, ME1, THP-1) using ultra-high performance liquid chromatography - mass spectrometry (UHPLC-MS). Univariate and multivariate analyses were performed on the metabolite peak intensity values from UHPLC-MS using MetaboAnalyst to identify cellular metabolites associated with drug chemosensitivity. Results A total of 1,624 metabolic features were detected across the leukemic cell lines. Of these, 187 were annotated to known metabolites. With respect to doxorubicin, we observed significantly greater abundance of a carboxylic acid (1-aminocyclopropane-1-carboxylate) and several amino acids in resistant cell lines. Pathway analysis found enrichment of several amino acid biosynthesis and metabolic pathways. For cytarabine resistance, nine annotated metabolites were significantly different in resistance vs. sensitive cell lines, including D-raffinose, guanosine, inosine, guanine, aldopentose, two xenobiotics (allopurinol and 4-hydroxy-L-phenylglycine) and glucosamine/mannosamine. Pathway analysis associated these metabolites with the purine metabolic pathway. Conclusion Overall, our results demonstrate that metabolomics differences contribute toward drug resistance. In addition, it could potentially identify predictive biomarkers for chemosensitivity to various anti-leukemic drugs. Our results provide opportunity to further explore these metabolites in patient samples for association with clinical response.
Collapse
Affiliation(s)
- Bradley Stockard
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Neha Bhise
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Miyoung Shin
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Joy Guingab-Cagmat
- Southeast Center for Integrated Metabolomics, University of Florida, Gainesville, FL, United States
| | - Timothy J Garrett
- Southeast Center for Integrated Metabolomics, University of Florida, Gainesville, FL, United States
| | - Stanley Pounds
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN, United States
| | - Jatinder K Lamba
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, United States.,University of Florida Health Cancer Center, Gainesville, FL, United States.,Center for Pharmacogenetics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
20
|
Ushio-Fukai M, Ash D, Nagarkoti S, Belin de Chantemèle EJ, Fulton DJR, Fukai T. Interplay Between Reactive Oxygen/Reactive Nitrogen Species and Metabolism in Vascular Biology and Disease. Antioxid Redox Signal 2021; 34:1319-1354. [PMID: 33899493 PMCID: PMC8418449 DOI: 10.1089/ars.2020.8161] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS; e.g., superoxide [O2•-] and hydrogen peroxide [H2O2]) and reactive nitrogen species (RNS; e.g., nitric oxide [NO•]) at the physiological level function as signaling molecules that mediate many biological responses, including cell proliferation, migration, differentiation, and gene expression. By contrast, excess ROS/RNS, a consequence of dysregulated redox homeostasis, is a hallmark of cardiovascular disease. Accumulating evidence suggests that both ROS and RNS regulate various metabolic pathways and enzymes. Recent studies indicate that cells have mechanisms that fine-tune ROS/RNS levels by tight regulation of metabolic pathways, such as glycolysis and oxidative phosphorylation. The ROS/RNS-mediated inhibition of glycolytic pathways promotes metabolic reprogramming away from glycolytic flux toward the oxidative pentose phosphate pathway to generate nicotinamide adenine dinucleotide phosphate (NADPH) for antioxidant defense. This review summarizes our current knowledge of the mechanisms by which ROS/RNS regulate metabolic enzymes and cellular metabolism and how cellular metabolism influences redox homeostasis and the pathogenesis of disease. A full understanding of these mechanisms will be important for the development of new therapeutic strategies to treat diseases associated with dysregulated redox homeostasis and metabolism. Antioxid. Redox Signal. 34, 1319-1354.
Collapse
Affiliation(s)
- Masuko Ushio-Fukai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Medicine (Cardiology) and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Dipankar Ash
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Medicine (Cardiology) and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Sheela Nagarkoti
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Medicine (Cardiology) and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Eric J Belin de Chantemèle
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Medicine (Cardiology) and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - David J R Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Tohru Fukai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| |
Collapse
|
21
|
Khalaf K, Hana D, Chou JTT, Singh C, Mackiewicz A, Kaczmarek M. Aspects of the Tumor Microenvironment Involved in Immune Resistance and Drug Resistance. Front Immunol 2021; 12:656364. [PMID: 34122412 PMCID: PMC8190405 DOI: 10.3389/fimmu.2021.656364] [Citation(s) in RCA: 209] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment (TME) is a complex and ever-changing "rogue organ" composed of its own blood supply, lymphatic and nervous systems, stroma, immune cells and extracellular matrix (ECM). These complex components, utilizing both benign and malignant cells, nurture the harsh, immunosuppressive and nutrient-deficient environment necessary for tumor cell growth, proliferation and phenotypic flexibility and variation. An important aspect of the TME is cellular crosstalk and cell-to-ECM communication. This interaction induces the release of soluble factors responsible for immune evasion and ECM remodeling, which further contribute to therapy resistance. Other aspects are the presence of exosomes contributed by both malignant and benign cells, circulating deregulated microRNAs and TME-specific metabolic patterns which further potentiate the progression and/or resistance to therapy. In addition to biochemical signaling, specific TME characteristics such as the hypoxic environment, metabolic derangements, and abnormal mechanical forces have been implicated in the development of treatment resistance. In this review, we will provide an overview of tumor microenvironmental composition, structure, and features that influence immune suppression and contribute to treatment resistance.
Collapse
Affiliation(s)
- Khalil Khalaf
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Doris Hana
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Jadzia Tin-Tsen Chou
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Chandpreet Singh
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Andrzej Mackiewicz
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
22
|
Conjugation of Natural Triterpenic Acids with Delocalized Lipophilic Cations: Selective Targeting Cancer Cell Mitochondria. J Pers Med 2021; 11:jpm11060470. [PMID: 34070567 PMCID: PMC8226687 DOI: 10.3390/jpm11060470] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Currently, a new line of research on mitochondria-targeted anticancer drugs is actively developing in the field of biomedicine and medicinal chemistry. The distinguishing features of this universal target for anticancer agents include presence of mitochondria in the overwhelming majority, if not all types of transformed cells, crucial importance of these cytoplasmic organelles in energy production, regulation of cell death pathways, as well as generation of reactive oxygen species and maintenance of calcium homeostasis. Hence, mitochondriotropic anticancer mitocan agents, acting through mitochondrial destabilization, have good prospects in cancer therapy. Available natural pentacyclic triterpenoids are considered promising scaffolds for development of new mitochondria-targeted anticancer agents. These secondary metabolites affect the mitochondria of tumor cells and initiate formation of reactive oxygen species. The present paper focuses on the latest research outcomes of synthesis and study of cytotoxic activity of conjugates of pentacyclic triterpenoids with some mitochondria-targeted cationic lipophilic molecules and highlights the advantages of applying them as novel mitocan agents compared to their prototype natural triterpenic acids.
Collapse
|
23
|
Genome-wide identification and characterization of perirenal adipose tissue microRNAs in rabbits fed a high-fat diet. Biosci Rep 2021; 41:228333. [PMID: 33851695 PMCID: PMC8082595 DOI: 10.1042/bsr20204297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 01/03/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenous single-stranded RNA molecules that play an important role in gene regulation in animals by pairing with target gene mRNA. Extensive evidence shows that miRNAs are key players in metabolic regulation and the development of obesity. However, the systemic understanding of miRNAs in the adipogenesis of obese rabbits need further investigation. Here, seven small RNA libraries from rabbits fed either a standard normal diet (SND; n=3) or high-fat diet (HFD; n=4) were constructed and sequenced. Differentially expressed (DE) miRNAs were identified using the edgeR data analysis package from R. Software miRanda and RNAhybrid were used to predict the target genes of miRNAs. To further explore the functions of DE miRNAs, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed. A total of 81449996 clean reads were obtained from the seven libraries, of which, 52 known DE miRNAs (24 up-regulated, 28 down-regulated) and 31 novel DE miRNAs (14 up-regulated, 17 down-regulated) were identified. GO enrichment analysis revealed that the DE miRNAs target genes were involved in intermediate filament cytoskeleton organization, intermediate filament-based process, and α-tubulin binding. DE miRNAs were involved in p53 signaling, linoleic acid metabolism, and other adipogenesis-related KEGG pathways. Our study further elucidates the possible functions of DE miRNAs in rabbit adipogenesis, contributing to the understanding of rabbit obesity.
Collapse
|
24
|
Yücel B, Ada S. Leukemia Cells Resistant to Glutamine Deprivation Express Glutamine Synthetase (GS) Protein. Turk J Haematol 2021; 39:22-28. [PMID: 33882633 PMCID: PMC8886269 DOI: 10.4274/tjh.galenos.2021.2021.0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective: Low glutamine levels have been shown in tumor environments for several cancer subtypes. Therefore, it has been suggested that cancer cells rewire their metabolism to adopt low nutrient levels for survival and proliferation. Although glutamine is a non-essential amino acid and can be synthesized de novo, many cancer cells including malignant hematopoietic cells have been indicated to be addicted to glutamine. This study aimed to investigate the proliferation of leukemia cell lines in glutamine-deprived conditions. Materials and Methods: Cell proliferation of K562, NB-4, and HL-60 cells was determined by calculating cell numbers in normal vs. low glutamine media. Changes in mRNA expressions were investigated using qRT-PCR. The glutamine synthetase (GS)-encoding GLUL gene was knocked out (KO) in HL-60 cells using the CRISPR/Cas9 method and protein expression was evaluated with immunoblotting. Results: The proliferation of all cell lines was decreased in glutamine-deprived medium. GS protein expression was increased in glutamine-limited medium although the mRNA level did not change. Increased protein expression was confirmed with inhibition of new protein synthesis by treating cells with cycloheximide. To further investigate the role of GS protein, the GS-encoding GLUL gene was KO in HL-60 cells using the CRISPR/Cas9 method. GS KO cells proliferated less compared to control cells in glutamine-limited medium. Conclusion: Our results indicate that upregulated GS protein expression is responsible for glutamine addiction of leukemia cell lines. Exploiting the genetic and metabolic mechanisms responsible for GS protein expression could lead to the identification of new anti-cancer drug targets.
Collapse
Affiliation(s)
- Burcu Yücel
- Istanbul Medeniyet University, Medical Faculty, Department of Medical Biology, İstanbul, Turkey
| | - Saniye Ada
- Istanbul Medeniyet University, Medical Faculty, Department of Medical Biochemistry, İstanbul, Turkey
| |
Collapse
|
25
|
Chun KS, Kim DH, Surh YJ. Role of Reductive versus Oxidative Stress in Tumor Progression and Anticancer Drug Resistance. Cells 2021; 10:cells10040758. [PMID: 33808242 PMCID: PMC8065762 DOI: 10.3390/cells10040758] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/20/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Redox homeostasis is not only essential for the maintenance of normal physiological functions, but also plays an important role in the growth, survival, and therapy resistance of cancer cells. Altered redox balance and consequent disruption of redox signaling are implicated in the proliferation and progression of cancer cells and their resistance to chemo- and radiotherapy. The nuclear factor erythroid 2 p45-related factor (Nrf2) is the principal stress-responsive transcription factor that plays a pivotal role in maintaining cellular redox homeostasis. Aberrant Nrf2 overactivation has been observed in many cancerous and transformed cells. Uncontrolled amplification of Nrf2-mediated antioxidant signaling results in reductive stress. Some metabolic pathways altered due to reductive stress have been identified as major contributors to tumorigenesis. This review highlights the multifaceted role of reductive stress in cancer development and progression.
Collapse
Affiliation(s)
- Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42691, Korea;
| | - Do-Hee Kim
- Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon, Gyeonggi-do 16227, Korea
- Correspondence: (D.-H.K.); (Y.-J.S.)
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea
- Correspondence: (D.-H.K.); (Y.-J.S.)
| |
Collapse
|
26
|
Xu D, Ning N, Xu Y, Xia W, Liu D, Chen H, Kong MG. Effect of He Plasma Jet Versus Surface Plasma on the Metabolites of Acute Myeloid Leukemia Cells. Front Oncol 2021; 11:552480. [PMID: 33816218 PMCID: PMC8010173 DOI: 10.3389/fonc.2021.552480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Cold atmospheric plasma, including plasma jet and surface plasma, can promote the apoptosis of cancer cells without causing significant damage to surrounding normal cells, which was hopeful to be applied to the clinical cancer therapy. However, experimental plasma devices used directly to clinical experiments has challenges in technology and methods, especially the difference in killing tumor cells efficiency of these two common plasma sources. Therefore, it is great necessity to explore the differences in treating tumors between different plasma sources. This paper achieved good killing efficiency by using two kinds of cold atmospheric plasma generating devices, namely plasma jet and surface plasma treatment along acute myeloid leukemia (AML). The results showed that the He plasma jet kills leukemia cells more efficiently than surface plasma with the same voltage and frequency and the same time. By GC-TOFMS and metabolomics analysis, this paper compared the differential metabolites of leukemia cells treated by two plasma devices and the key metabolic pathways closely related to differential metabolites. Simultaneously, we found alanine, aspartate and glutamate metabolism was most correlated with a key differential metabolite, glutamine. It was found that the glutaminase activity of He plasma jet group was lower than that of surface plasma group, which might be a reason for He plasma jet group to kill tumor cells better. It was also worth noting that relative quantity of glucose metabolites of plasma jet treatment group was lower than that of surface plasma treatment group. This study provides the basis for clinical trials for future.
Collapse
Affiliation(s)
- Dehui Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, China
| | - Ning Ning
- The School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yujing Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, China
| | - Wenjie Xia
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, China
| | - Dingxin Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, China
| | - Hailan Chen
- Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| | - Michael G Kong
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, China.,Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States.,Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, United States
| |
Collapse
|
27
|
Antioxidants and Therapeutic Targets in Ovarian Clear Cell Carcinoma. Antioxidants (Basel) 2021; 10:antiox10020187. [PMID: 33525614 PMCID: PMC7911626 DOI: 10.3390/antiox10020187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 01/04/2023] Open
Abstract
Ovarian clear cell carcinomas (OCCCs) are resistant to conventional anti-cancer drugs; moreover, the prognoses of advanced or recurrent patients are extremely poor. OCCCs often arise from endometriosis associated with strong oxidative stress. Of note, the stress involved in OCCCs can be divided into the following two categories: (a) carcinogenesis from endometriosis to OCCC and (b) factors related to treatment after carcinogenesis. Antioxidants can reduce the risk of OCCC formation by quenching reactive oxygen species (ROS); however, the oxidant stress-tolerant properties assist in the survival of OCCC cells when the malignant transformation has already occurred. Moreover, the acquisition of oxidative stress resistance is also involved in the cancer stemness of OCCC. This review summarizes the recent advances in the process and prevention of carcinogenesis, the characteristic nature of tumors, and the treatment of post-refractory OCCCs, which are highly linked to oxidative stress. Although therapeutic approaches should still be improved against OCCCs, multi-combinatorial treatments including nucleic acid-based drugs directed to the transcriptional profile of each OCCC are expected to improve the outcomes of patients.
Collapse
|
28
|
Rezinciuc S, Bezavada L, Bahadoran A, Duan S, Wang R, Lopez-Ferrer D, Finkelstein D, McGargill MA, Green DR, Pasa-Tolic L, Smallwood HS. Dynamic metabolic reprogramming in dendritic cells: An early response to influenza infection that is essential for effector function. PLoS Pathog 2020; 16:e1008957. [PMID: 33104753 PMCID: PMC7707590 DOI: 10.1371/journal.ppat.1008957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/01/2020] [Accepted: 09/03/2020] [Indexed: 01/19/2023] Open
Abstract
Infection with the influenza virus triggers an innate immune response that initiates the adaptive response to halt viral replication and spread. However, the metabolic response fueling the molecular mechanisms underlying changes in innate immune cell homeostasis remain undefined. Although influenza increases parasitized cell metabolism, it does not productively replicate in dendritic cells. To dissect these mechanisms, we compared the metabolism of dendritic cells to that of those infected with active and inactive influenza A virus and those treated with toll-like receptor agonists. Using quantitative mass spectrometry, pulse chase substrate utilization assays and metabolic flux measurements, we found global metabolic changes in dendritic cells 17 hours post infection, including significant changes in carbon commitment via glycolysis and glutaminolysis, as well as mitochondrial respiration. Influenza infection of dendritic cells led to a metabolic phenotype distinct from that induced by TLR agonists, with significant resilience in terms of metabolic plasticity. We identified c-Myc as one transcription factor modulating this response. Restriction of c-Myc activity or mitochondrial substrates significantly changed the immune functions of dendritic cells, such as reducing motility and T cell activation. Transcriptome analysis of inflammatory dendritic cells isolated following influenza infection showed similar metabolic reprogramming occurs in vivo. Thus, early in the infection process, dendritic cells respond with global metabolic restructuring, that is present in inflammatory lung dendritic cells after infection, and this is important for effector function. These findings suggest metabolic switching in dendritic cells plays a vital role in initiating the immune response to influenza infection. Dendritic cells are critical in mounting an effective immune response to influenza infection by initiating the immune response to influenza and activating the adaptive response to mediate viral clearance and manifest immune memory for protection against subsequent infections. We found dendritic cells undergo a profound metabolic shift after infection. They alter the concentration and location of hundreds of proteins, including c-Myc, facilitating a shift to a highly glycolytic phenotype that is also flexible in terms of fueling respiration. Nonetheless, we found limiting access to specific metabolic pathways or substrates diminished key immune functions. We previously described an immediate, fixed hypermetabolic state in infected respiratory epithelial cells. Here we present data indicating the metabolic response of dendritic cells is increased yet flexible, distinct from what we previously showed for epithelial cells. Additionally, we demonstrate dendritic cells tailor their metabolic response to the pathogen or TLR stimulus. This metabolic reprogramming occurs rapidly in vitro and is sustained in inflammatory dendritic cells in vivo for at least 9 days following influenza infection. These studies introduce the possibility of modulating the immune response to viral infection using customized metabolic therapy to enhance or diminish the function of specific cells.
Collapse
Affiliation(s)
- Svetlana Rezinciuc
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Lavanya Bezavada
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Azadeh Bahadoran
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Susu Duan
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital, The Ohio State University School of Medicine, Columbus, Ohio, United States of America
| | - Daniel Lopez-Ferrer
- Chromatography and Mass Spectrometry Division, Thermo Fisher Scientific, CA, United States of America
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Maureen A. McGargill
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Douglas R. Green
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Ljiljana Pasa-Tolic
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Heather S. Smallwood
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
29
|
Zhao F, Sun L, Yang N, Zheng W, Shen P, Huang Y, Lu Y. Increased release of microvesicles containing mitochondria is associated with the myeloid differentiation of AML-M5 leukaemia cells. Exp Cell Res 2020; 395:112213. [DOI: 10.1016/j.yexcr.2020.112213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022]
|
30
|
Yang YJ, Liu MM, Zhang Y, Wang ZE, Dan-Wu, Fan SJ, Wei Y, Xia L, Peng X. Effectiveness and mechanism study of glutamine on alleviating hypermetabolism in burned rats. Nutrition 2020; 79-80:110934. [PMID: 32847775 DOI: 10.1016/j.nut.2020.110934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/14/2020] [Accepted: 06/21/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES This study aimed to explore the effects of glutamine on hypermetabolic reactions in burned rats and its underlying mechanism. METHODS Fifty-five Sprague-Dawley rats were randomly divided into three groups, namely, the control (C), burned (B), and burned + glutamine (B + G) groups. Rats in the glutamine treatment group were supplemented with 1 g glutamine per kg body weight. Changes in body weight and resting energy expenditure in all groups were observed daily. Blood glucose and glucose tolerance level were measured on days 1, 3, 7, 10 and 14 after burn injury. On days 7 and 14 after injury, the rats were sacrificed, and the weight and protein content of the skeletal muscle were measured. Moreover, the level of glutamine, inflammatory mediator, nicotinamide adenine dinucleotide phosphate (NADPH), glutathione, and the activity of glutamine metabolic enzymes were measured. RESULTS The hypermetabolic reaction after burn injury was significantly inhibited by glutamine administration, and the range of variations in the resting energy expenditure and body weight indicators was narrowed remarkably (P < 0.05 or 0.01), whereas the weight and protein content of the skeletal muscle returned to normal (P < 0.05 or 0.01). Glutamine could increase glutaminase activity in various tissues, promote the utilization of glutamine, and appropriately reduce the degree of organ damage and inflammatory response (P < 0.05 or 0.01). Furthermore, glutamine could promote the synthesis of the reducing substances NADPH and glutathione (P < 0.05 or 0.01). CONCLUSIONS Glutamine administration effectively reduces hypermetabolic reactions by promoting NADPH synthesis, inhibiting oxidative stress, and improving glutamine utilization after burn injury.
Collapse
Affiliation(s)
- Yong-Jun Yang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing China
| | - Man-Man Liu
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing China
| | - Yong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing China
| | - Zi En Wang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing China; Department of Burns, Union Hospital, Fujian Medical University, Fuzhou China
| | - Dan-Wu
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing China
| | - Shi-Jun Fan
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing China
| | - Yan Wei
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing China
| | - Lin Xia
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing China
| | - Xi Peng
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing China; Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing China; Department of Burns, Union Hospital, Fujian Medical University, Fuzhou China; Shriners Burns Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
31
|
Acute myeloid leukemia sensitivity to metabolic inhibitors: glycolysis showed to be a better therapeutic target. Med Oncol 2020; 37:72. [PMID: 32725458 DOI: 10.1007/s12032-020-01394-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022]
Abstract
Cancer cells alter their metabolism by switching from glycolysis to oxidative phosphorylation (OXPHOS), regardless of oxygen availability. Metabolism may be a molecular target in acute myeloid leukemia (AML), where mutations in metabolic genes have been described. This study evaluated glycolysis and OXPHOS as therapeutic targets. The sensitivity to 2-deoxy-D-glucose (2-DG; glycolysis inhibitor) and oligomycin (OXPHOS inhibitor) was tested in six AML cell lines (HEL, HL-60, K-562, KG-1, NB-4, THP-1). These cells were characterized for IDH1/2 exon 4 mutations, reactive oxygen species, and mitochondrial membrane potential. Metabolic activity was assessed by resazurin assay, whereas cell death and cell cycle were assessed by flow cytometry. Glucose uptake and metabolism-related gene expression were analyzed by 18F-FDG and RT-PCR/qPCR, respectively. No IDH1/2 exon 4 mutations were detected. HEL cells had the highest 18F-FDG uptake and peroxides/superoxide anion levels, whereas THP-1 showed the lowest. 2-DG reduced metabolic activity in all cell lines with HEL, KG-1, and NB-4 being the most sensitive cells. Oligomycin decreased metabolic activity in a cell line-dependent manner, the THP-1 resistant and HL-60 being the most sensitive. Both inhibitors induced apoptosis and cell cycle arrest in a cell line- and compound-dependent manner. 2-DG decreased 18F-FDG uptake in HEL, HL-60, KG-1, and NB-4, while oligomycin increased the uptake in K-562. Metabolism gene expression had different responses to treatments. In conclusion, HEL and KG-1 show to be more glycolytic, whereas HL-60 was more OXPHOS dependent. Results suggest that AML cells reprogram their metabolism to overcome OXPHOS inhibition suggesting that glycolysis may be a better therapeutic target.
Collapse
|
32
|
Ramalho R, Rao M, Zhang C, Agrati C, Ippolito G, Wang FS, Zumla A, Maeurer M. Immunometabolism: new insights and lessons from antigen-directed cellular immune responses. Semin Immunopathol 2020; 42:279-313. [PMID: 32519148 PMCID: PMC7282544 DOI: 10.1007/s00281-020-00798-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023]
Abstract
Modulation of immune responses by nutrients is an important area of study in cellular biology and clinical sciences in the context of cancer therapies and anti-pathogen-directed immune responses in health and disease. We review metabolic pathways that influence immune cell function and cellular persistence in chronic infections. We also highlight the role of nutrients in altering the tissue microenvironment with lessons from the tumor microenvironment that shapes the quality and quantity of cellular immune responses. Multiple layers of biological networks, including the nature of nutritional supplements, the genetic background, previous exposures, and gut microbiota status have impact on cellular performance and immune competence against molecularly defined targets. We discuss how immune metabolism determines the differentiation pathway of antigen-specific immune cells and how these insights can be explored to devise better strategies to strengthen anti-pathogen-directed immune responses, while curbing unwanted, non-productive inflammation.
Collapse
Affiliation(s)
- Renata Ramalho
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM, U4585 FCT), Applied Nutrition Studies Group G.E.N.A.-IUEM), Instituto Universitário Egas Moniz, Egas Moniz Higher Education School, Monte de Caparica, Portugal
| | - Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Chao Zhang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | | | | | - Fu-Sheng Wang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Alimuddin Zumla
- Division of Infection and Immunity, University College London and NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, UK
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal.
- I Medizinische Klinik, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
33
|
Donoso-Bustamante V, Borrego EA, Schiaffino-Bustamante Y, Gutiérrez DA, Millas-Vargas JP, Fuentes-Retamal S, Correa P, Carrillo I, Aguilera RJ, Miranda D, Chávez-Báez I, Pulgar R, Urra FA, Varela-Ramírez A, Araya-Maturana R. An acylhydroquinone derivative produces OXPHOS uncoupling and sensitization to BH3 mimetic ABT-199 (Venetoclax) in human promyelocytic leukemia cells. Bioorg Chem 2020; 100:103935. [PMID: 32454391 DOI: 10.1016/j.bioorg.2020.103935] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/02/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022]
Abstract
Since cancer cells have different mitochondrial bioenergetic requirements than non-cancerous cells, therapeutic inhibition of its mitochondrial functionality continues to be an important target for anticancer drug discovery. In this study, a series of acylhydroquinones with different acyl-chain length, and their chlorinated derivatives, in the aromatic ring, synthesized by Fries rearrangement under microwave irradiation, were evaluated for their anticancer activity in two leukemia cell lines. Findings from the primary and secondary screening of the 18 acylhydroquinones, tested at 5 µM on acute promyelocytic leukemia HL-60 and acute lymphoblastic leukemia CEM cells lines, identified an acylchlorohydroquinone (12) with a highly selective anti-proliferative effect toward HL-60 cells. This compound induced S-phase arrest in the cell cycle progression of HL-60 cells with insignificant toxicity on leukemic CEM cells and non-cancerous Hs27 cells. In HL-60 leukemic cells, 12 triggered increased mitochondrial NADH oxidation, increased respiration in presence of oligomycin (state 4o), mitochondrial depolarization, and ROS production, suggesting an uncoupling of OXPHOS. This provoked a metabolic adaptation dependent on AMPK/ACC/autophagy axis, having the mitochondrial β-oxidation a pro-survival role since the combination of 12 and etomoxir, a carnitine palmitoyl-transferase (CPT) inhibitor promoted extensive HL-60 cell death. Finally, 12-induced metabolic stress sensitized to HL-60 cells to cell death by the FDA-approved anti-leukemic drug ABT-199, a BH3 mimetic. Therefore, our results suggest that acylchlorohydroquinone is a promising scaffold in anti-promyelocytic leukemia drug research.
Collapse
Affiliation(s)
- Viviana Donoso-Bustamante
- Instituto de Química de Recursos Naturales, Universidad de Talca, Chile; Programa de Investigación Asociativa en Cáncer Gástrico, Universidad de Talca, Chile
| | - Edgar A Borrego
- Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, USA
| | | | - Denisse A Gutiérrez
- Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, USA
| | - Juan Pablo Millas-Vargas
- Instituto de Química de Recursos Naturales, Universidad de Talca, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Sebastián Fuentes-Retamal
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Programa de Investigación Asociativa en Cáncer Gástrico, Universidad de Talca, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Pablo Correa
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Ileana Carrillo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Renato J Aguilera
- Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, USA
| | - Dante Miranda
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Ignacio Chávez-Báez
- Network for Snake Venom Research and Drug Discovery, Santiago, Chile; Laboratorio de Genómica y Genética de Interacciones Biológicas, INTA-Universidad de Chile, Santiago, Chile
| | - Rodrigo Pulgar
- Network for Snake Venom Research and Drug Discovery, Santiago, Chile; Laboratorio de Genómica y Genética de Interacciones Biológicas, INTA-Universidad de Chile, Santiago, Chile
| | - Félix A Urra
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile.
| | - Armando Varela-Ramírez
- Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, USA.
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, Universidad de Talca, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile.
| |
Collapse
|
34
|
Lin Q, He Y, Wang X, Zhang Y, Hu M, Guo W, He Y, Zhang T, Lai L, Sun Z, Yi Z, Liu M, Chen Y. Targeting Pyruvate Carboxylase by a Small Molecule Suppresses Breast Cancer Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903483. [PMID: 32382484 PMCID: PMC7201266 DOI: 10.1002/advs.201903483] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 05/29/2023]
Abstract
Rapid metabolism differentiates cancer cells from normal cells and relies on anaplerotic pathways. However, the mechanisms of anaplerosis-associated enzymes are rarely understood. The lack of potent and selective antimetabolism drugs restrains further clinical investigations. A small molecule ZY-444 ((N 4-((5-(4-(benzyloxy)phenyl)-2-thiophenyl)methyl)-N 2-isobutyl-2,4-pyrimidinediamine) is discovered to inhibit cancer cell proliferation specifically, having potent efficacies against tumor growth, metastasis, and recurrence. ZY-444 binds to cellular pyruvate carboxylase (PC), a key anaplerotic enzyme of the tricarboxylic acid cycle, and inactivates its catalytic activity. PC inhibition suppresses breast cancer growth and metastasis through inhibiting the Wnt/β-catenin/Snail signaling pathway. Lower PC expression in patient tumors is correlated with significant survival benefits. Comparative profiles of PC expression in cancer versus normal tissues implicate the tumor selectivity of ZY-444. Overall, ZY-444 holds promise therapeutically as an anti-cancer metabolism agent.
Collapse
Affiliation(s)
- Qingxiang Lin
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
| | - Yuan He
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
- Joint Center for Translational MedicineSouthern Medical University Affiliated Fengxian HospitalShanghai201499P. R. China
| | - Xue Wang
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
| | - Yong Zhang
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
| | - Meichun Hu
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
| | - Weikai Guo
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
| | - Yundong He
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
| | - Tao Zhang
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
| | - Li Lai
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
| | - Zhenliang Sun
- Joint Center for Translational MedicineSouthern Medical University Affiliated Fengxian HospitalShanghai201499P. R. China
| | - Zhengfang Yi
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
- Joint Center for Translational MedicineSouthern Medical University Affiliated Fengxian HospitalShanghai201499P. R. China
| | - Mingyao Liu
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
| | - Yihua Chen
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P. R. China
| |
Collapse
|
35
|
Kou L, Jiang X, Huang H, Lin X, Zhang Y, Yao Q, Chen R. The role of transporters in cancer redox homeostasis and cross-talk with nanomedicines. Asian J Pharm Sci 2020; 15:145-157. [PMID: 32373196 PMCID: PMC7193452 DOI: 10.1016/j.ajps.2020.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/03/2019] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor cell usually exhibits high levels of reactive oxygen species and adaptive antioxidant system due to the metabolic, genetic, and microenvironment-associated alterations. The altered redox homeostasis can promote tumor progression, development, and treatment resistance. Several membrane transporters are involved in the resetting redox homeostasis and play important roles in tumor progression. Therefore, targeting the involved transporters to disrupt the altered redox balance emerges as a viable strategy for cancer therapy. In addition, nanomedicines have drawn much attention in the past decades. Using nanomedicines to target or reset the redox homeostasis alone or combined with other therapies has brought convincing data in cancer treatment. In this review, we will introduce the altered redox balance in cancer metabolism and involved transporters, and highlight the recent advancements of redox-modulating nanomedicines for cancer treatment.
Collapse
Affiliation(s)
- Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xinyu Jiang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Huirong Huang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xinlu Lin
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Youting Zhang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Qing Yao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan, Wenzhou 325035, China
- Corresponding author. Wenzhou Medical University, University Town, Wenzhou 325035, China. Tel: +86 18958969225
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Corresponding author. Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, China. Tel: +86 13806890233
| |
Collapse
|
36
|
Epperly R, Gottschalk S, Velasquez MP. A Bump in the Road: How the Hostile AML Microenvironment Affects CAR T Cell Therapy. Front Oncol 2020; 10:262. [PMID: 32185132 PMCID: PMC7058784 DOI: 10.3389/fonc.2020.00262] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/14/2020] [Indexed: 12/19/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells targeting CD19 have been successful treating patients with relapsed/refractory B cell acute lymphoblastic leukemia (ALL) and B cell lymphomas. However, relapse after CAR T cell therapy is still a challenge. In addition, preclinical and early clinical studies targeting acute myeloid leukemia (AML) have not been as successful. This can be attributed in part to the presence of an AML microenvironment that has a dampening effect on the antitumor activity of CAR T cells. The AML microenvironment includes cellular interactions, soluble environmental factors, and structural components. Suppressive immune cells including myeloid derived suppressor cells and regulatory T cells are known to inhibit T cell function. Environmental factors contributing to T cell exhaustion, including immune checkpoints, anti-inflammatory cytokines, chemokines, and metabolic alterations, impact T cell activity, persistence, and localization. Lastly, structural factors of the bone marrow niche, secondary lymphoid organs, and extramedullary sites provide opportunities for CAR T cell evasion by AML blasts, contributing to treatment resistance and relapse. In this review we discuss the effect of the AML microenvironment on CAR T cell function. We highlight opportunities to enhance CAR T cell efficacy for AML through manipulating, targeting, and evading the anti-inflammatory leukemic microenvironment.
Collapse
Affiliation(s)
- Rebecca Epperly
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - M. Paulina Velasquez
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
37
|
Potential Applications of NRF2 Modulators in Cancer Therapy. Antioxidants (Basel) 2020; 9:antiox9030193. [PMID: 32106613 PMCID: PMC7139512 DOI: 10.3390/antiox9030193] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 01/17/2023] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (NRF2)-Kelch-like ECH-associated protein 1 (KEAP1) regulatory pathway plays an essential role in protecting cells and tissues from oxidative, electrophilic, and xenobiotic stress. By controlling the transactivation of over 500 cytoprotective genes, the NRF2 transcription factor has been implicated in the physiopathology of several human diseases, including cancer. In this respect, accumulating evidence indicates that NRF2 can act as a double-edged sword, being able to mediate tumor suppressive or pro-oncogenic functions, depending on the specific biological context of its activation. Thus, a better understanding of the mechanisms that control NRF2 functions and the most appropriate context of its activation is a prerequisite for the development of effective therapeutic strategies based on NRF2 modulation. In line of principle, the controlled activation of NRF2 might reduce the risk of cancer initiation and development in normal cells by scavenging reactive-oxygen species (ROS) and by preventing genomic instability through decreased DNA damage. In contrast however, already transformed cells with constitutive or prolonged activation of NRF2 signaling might represent a major clinical hurdle and exhibit an aggressive phenotype characterized by therapy resistance and unfavorable prognosis, requiring the use of NRF2 inhibitors. In this review, we will focus on the dual roles of the NRF2-KEAP1 pathway in cancer promotion and inhibition, describing the mechanisms of its activation and potential therapeutic strategies based on the use of context-specific modulation of NRF2.
Collapse
|
38
|
Sun DL, Poddar S, Pan RD, Rosser EW, Abt ER, Van Valkenburgh J, Le TM, Lok V, Hernandez SP, Song J, Li J, Turlik A, Chen X, Cheng CA, Chen W, Mona CE, Stuparu AD, Vergnes L, Reue K, Damoiseaux R, Zink JI, Czernin J, Donahue TR, Houk KN, Jung ME, Radu CG. Isoquinoline thiosemicarbazone displays potent anticancer activity with in vivo efficacy against aggressive leukemias. RSC Med Chem 2020; 11:392-410. [PMID: 33479645 DOI: 10.1039/c9md00594c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/12/2020] [Indexed: 11/21/2022] Open
Abstract
A potent class of isoquinoline-based α-N-heterocyclic carboxaldehyde thiosemicarbazone (HCT) compounds has been rediscovered; based upon this scaffold, three series of antiproliferative agents were synthesized through iterative rounds of methylation and fluorination modifications, with anticancer activities being potentiated by physiologically relevant levels of copper. The lead compound, HCT-13, was highly potent against a panel of pancreatic, small cell lung carcinoma, prostate cancer, and leukemia models, with IC50 values in the low-to-mid nanomolar range. Density functional theory (DFT) calculations showed that fluorination at the 6-position of HCT-13 was beneficial for ligand-copper complex formation, stability, and ease of metal-center reduction. Through a chemical genomics screen, we identify DNA damage response/replication stress response (DDR/RSR) pathways, specifically those mediated by ataxia-telangiectasia and Rad3-related protein kinase (ATR), as potential compensatory mechanism(s) of action following HCT-13 treatment. We further show that the cytotoxicity of HCT-13 is copper-dependent, that it promotes mitochondrial electron transport chain (mtETC) dysfunction, induces production of reactive oxygen species (ROS), and selectively depletes guanosine nucleotide pools. Lastly, we identify metabolic hallmarks for therapeutic target stratification and demonstrate the in vivo efficacy of HCT-13 against aggressive models of acute leukemias in mice.
Collapse
Affiliation(s)
- Daniel L Sun
- Department of Molecular and Medical Pharmacology , University of California, Los Angeles , California 90095 , USA . .,Ahmanson Translational Imaging Division , University of California, Los Angeles , California 90095 , USA.,Department of Chemistry and Biochemistry , University of California, Los Angeles , California 90095 , USA .
| | - Soumya Poddar
- Department of Molecular and Medical Pharmacology , University of California, Los Angeles , California 90095 , USA . .,Ahmanson Translational Imaging Division , University of California, Los Angeles , California 90095 , USA
| | - Roy D Pan
- Department of Molecular and Medical Pharmacology , University of California, Los Angeles , California 90095 , USA . .,Ahmanson Translational Imaging Division , University of California, Los Angeles , California 90095 , USA.,Department of Chemistry and Biochemistry , University of California, Los Angeles , California 90095 , USA .
| | - Ethan W Rosser
- Department of Molecular and Medical Pharmacology , University of California, Los Angeles , California 90095 , USA . .,Ahmanson Translational Imaging Division , University of California, Los Angeles , California 90095 , USA.,Department of Chemistry and Biochemistry , University of California, Los Angeles , California 90095 , USA .
| | - Evan R Abt
- Department of Molecular and Medical Pharmacology , University of California, Los Angeles , California 90095 , USA . .,Ahmanson Translational Imaging Division , University of California, Los Angeles , California 90095 , USA
| | - Juno Van Valkenburgh
- Department of Molecular and Medical Pharmacology , University of California, Los Angeles , California 90095 , USA . .,Ahmanson Translational Imaging Division , University of California, Los Angeles , California 90095 , USA.,Department of Chemistry and Biochemistry , University of California, Los Angeles , California 90095 , USA .
| | - Thuc M Le
- Department of Molecular and Medical Pharmacology , University of California, Los Angeles , California 90095 , USA . .,Ahmanson Translational Imaging Division , University of California, Los Angeles , California 90095 , USA
| | - Vincent Lok
- Department of Molecular and Medical Pharmacology , University of California, Los Angeles , California 90095 , USA .
| | - Selena P Hernandez
- Department of Chemistry and Biochemistry , University of California, Los Angeles , California 90095 , USA .
| | - Janet Song
- Department of Molecular and Medical Pharmacology , University of California, Los Angeles , California 90095 , USA .
| | - Joanna Li
- Department of Molecular and Medical Pharmacology , University of California, Los Angeles , California 90095 , USA .
| | - Aneta Turlik
- Department of Chemistry and Biochemistry , University of California, Los Angeles , California 90095 , USA .
| | - Xiaohong Chen
- Department of Chemistry and Biochemistry , University of California, Los Angeles , California 90095 , USA .
| | - Chi-An Cheng
- Department of Chemistry and Biochemistry , University of California, Los Angeles , California 90095 , USA . .,Department of Bioengineering , University of California, Los Angeles , CA 90095 , USA
| | - Wei Chen
- Department of Chemistry and Biochemistry , University of California, Los Angeles , California 90095 , USA .
| | - Christine E Mona
- Department of Molecular and Medical Pharmacology , University of California, Los Angeles , California 90095 , USA . .,Ahmanson Translational Imaging Division , University of California, Los Angeles , California 90095 , USA
| | - Andreea D Stuparu
- Department of Molecular and Medical Pharmacology , University of California, Los Angeles , California 90095 , USA . .,Ahmanson Translational Imaging Division , University of California, Los Angeles , California 90095 , USA
| | - Laurent Vergnes
- Department of Human Genetics , David Geffen School of Medicine , University of California, Los Angeles , California 90095 , USA
| | - Karen Reue
- Department of Human Genetics , David Geffen School of Medicine , University of California, Los Angeles , California 90095 , USA.,Molecular Biology Institute , University of California, Los Angeles , California 90095 , USA
| | - Robert Damoiseaux
- UCLA Metabolomic Center , University of California, Los Angeles , Los Angeles , California 90095 , USA
| | - Jeffrey I Zink
- Department of Chemistry and Biochemistry , University of California, Los Angeles , California 90095 , USA .
| | - Johannes Czernin
- Department of Molecular and Medical Pharmacology , University of California, Los Angeles , California 90095 , USA . .,Ahmanson Translational Imaging Division , University of California, Los Angeles , California 90095 , USA
| | - Timothy R Donahue
- Department of Molecular and Medical Pharmacology , University of California, Los Angeles , California 90095 , USA . .,Ahmanson Translational Imaging Division , University of California, Los Angeles , California 90095 , USA.,Department of Surgery , University of California, Los Angeles , CA 90095 , USA
| | - Kendall N Houk
- Department of Chemistry and Biochemistry , University of California, Los Angeles , California 90095 , USA .
| | - Michael E Jung
- Department of Chemistry and Biochemistry , University of California, Los Angeles , California 90095 , USA .
| | - Caius G Radu
- Department of Molecular and Medical Pharmacology , University of California, Los Angeles , California 90095 , USA . .,Ahmanson Translational Imaging Division , University of California, Los Angeles , California 90095 , USA
| |
Collapse
|
39
|
Gaál Z, Csernoch L. Impact of Sirtuin Enzymes on the Altered Metabolic Phenotype of Malignantly Transformed Cells. Front Oncol 2020; 10:45. [PMID: 32117717 PMCID: PMC7033489 DOI: 10.3389/fonc.2020.00045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/10/2020] [Indexed: 12/19/2022] Open
Abstract
Sirtuins compose a unique collection of histone deacetylase enzymes that have a wide variety of enzymatic activities and regulate diverse cell functions such as cellular metabolism, longevity and energy homeostasis, mitochondrial function, and biogenesis. Impaired sirtuin functions or alterations of their expression levels may result in several pathological conditions and contribute to the altered metabolic phenotype of malignantly transformed cells in a significant manner. In the twenty-first century, principles of personalized anticancer treatment need to involve not only the evaluation of changes of the genetic material, but also the mapping of epigenetic and metabolic alterations, to both of which the contribution of sirtuin enzymes is fundamental. Since sirtuins are central players in the maintenance of cellular energy and metabolic homeostasis, they are key elements in the development of metabolic transformation of cancer cells referred to as the Warburg effect. Although its most well-known features are enhanced glycolysis and excessive lactate production, Warburg effect has several aspects involving both carbohydrate, lipid, and amino acid metabolism, among which different tumor types have different preferences. Therefore, energy supply of cancer cells can be impaired by a growing number of antimetabolite agents, for which appropriate vectors are strongly needed. However, data are controversial about their tumor suppressor or oncogenic properties, the biological effects of sirtuin enzymes strongly depend on the tissue microenvironment (TME) in which they are expressed. Immune cells are regarded as key players of TME. Sirtuins regulate the survival, activation, metabolism, and mitochondrial function of these cells, therefore, they are not only single elements, but key regulators of the network that determines anticancer immunity. Altered metabolism of tumor cells induces changes in the gene expression pattern of cells in TME, due to altered concentrations of metabolite cofactors of epigenetic modifiers including sirtuins. In summary, epigenetic and metabolic alterations in malignant diseases are influenced by sirtuins in a significant manner, and should be treated in a personalized approach. Since they often develop in early stages of cancer, broad examination of these alterations is required at time of the diagnosis in order to provide a personalized combination of distinct therapeutic agents.
Collapse
Affiliation(s)
- Zsuzsanna Gaál
- Institute-Clinic of Pediatrics, Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
40
|
Metabolic reprogramming and disease progression in cancer patients. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165721. [PMID: 32057942 DOI: 10.1016/j.bbadis.2020.165721] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/22/2020] [Accepted: 02/09/2020] [Indexed: 12/19/2022]
Abstract
Genomics has contributed to the treatment of a fraction of cancer patients. However, there is a need to profile the proteins that define the phenotype of cancer and its pathogenesis. The reprogramming of metabolism is a major trait of the cancer phenotype with great potential for prognosis and targeted therapy. This review overviews the major changes reported in the steady-state levels of proteins of metabolism in primary carcinomas, paying attention to those enzymes that correlate with patients' survival. The upregulation of enzymes of glycolysis, pentose phosphate pathway, lipogenesis, glutaminolysis and the antioxidant defense is concurrent with the downregulation of mitochondrial proteins involved in oxidative phosphorylation, emphasizing the potential of mitochondrial metabolism as a promising therapeutic target in cancer. We stress that high-throughput quantitative expression profiling of differentially expressed proteins in large cohorts of carcinomas paired with normal tissues will accelerate translation of metabolism to a successful personalized medicine in cancer.
Collapse
|
41
|
Gammon ST, Pisaneschi F, Bandi ML, Smith MG, Sun Y, Rao Y, Muller F, Wong F, De Groot J, Ackroyd J, Mawlawi O, Davies MA, Vashisht Gopal Y, Di Francesco ME, Marszalek JR, Dewhirst M, Piwnica-Worms D. Mechanism-Specific Pharmacodynamics of a Novel Complex-I Inhibitor Quantified by Imaging Reversal of Consumptive Hypoxia with [ 18F]FAZA PET In Vivo. Cells 2019; 8:cells8121487. [PMID: 31766580 PMCID: PMC6952969 DOI: 10.3390/cells8121487] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022] Open
Abstract
Tumors lack a well-regulated vascular supply of O2 and often fail to balance O2 supply and demand. Net O2 tension within many tumors may not only depend on O2 delivery but also depend strongly on O2 demand. Thus, tumor O2 consumption rates may influence tumor hypoxia up to true anoxia. Recent reports have shown that many human tumors in vivo depend primarily on oxidative phosphorylation (OxPhos), not glycolysis, for energy generation, providing a driver for consumptive hypoxia and an exploitable vulnerability. In this regard, IACS-010759 is a novel high affinity inhibitor of OxPhos targeting mitochondrial complex-I that has recently completed a Phase-I clinical trial in leukemia. However, in solid tumors, the effective translation of OxPhos inhibitors requires methods to monitor pharmacodynamics in vivo. Herein, 18F-fluoroazomycin arabinoside ([18F]FAZA), a 2-nitroimidazole-based hypoxia PET imaging agent, was combined with a rigorous test-retest imaging method for non-invasive quantification of the reversal of consumptive hypoxia in vivo as a mechanism-specific pharmacodynamic (PD) biomarker of target engagement for IACS-010759. Neither cell death nor loss of perfusion could account for the IACS-010759-induced decrease in [18F]FAZA retention. Notably, in an OxPhos-reliant melanoma tumor, a titration curve using [18F]FAZA PET retention in vivo yielded an IC50 for IACS-010759 (1.4 mg/kg) equivalent to analysis ex vivo. Pilot [18F]FAZA PET scans of a patient with grade IV glioblastoma yielded highly reproducible, high-contrast images of hypoxia in vivo as validated by CA-IX and GLUT-1 IHC ex vivo. Thus, [18F]FAZA PET imaging provided direct evidence for the presence of consumptive hypoxia in vivo, the capacity for targeted reversal of consumptive hypoxia through the inhibition of OxPhos, and a highly-coupled mechanism-specific PD biomarker ready for translation.
Collapse
Affiliation(s)
- Seth T. Gammon
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.T.G.); (F.P.); (Y.R.); (F.M.); (J.A.)
| | - Federica Pisaneschi
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.T.G.); (F.P.); (Y.R.); (F.M.); (J.A.)
| | - Madhavi L. Bandi
- Translational Research to Advance Therapeutics and Innovation in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.L.B.); (M.G.S.); (Y.S.); (J.R.M.)
| | - Melinda G. Smith
- Translational Research to Advance Therapeutics and Innovation in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.L.B.); (M.G.S.); (Y.S.); (J.R.M.)
| | - Yuting Sun
- Translational Research to Advance Therapeutics and Innovation in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.L.B.); (M.G.S.); (Y.S.); (J.R.M.)
| | - Yi Rao
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.T.G.); (F.P.); (Y.R.); (F.M.); (J.A.)
| | - Florian Muller
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.T.G.); (F.P.); (Y.R.); (F.M.); (J.A.)
| | - Franklin Wong
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - John De Groot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX,77030, USA;
| | - Jeffrey Ackroyd
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.T.G.); (F.P.); (Y.R.); (F.M.); (J.A.)
| | - Osama Mawlawi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Michael A. Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.A.D.)
| | - Y.N. Vashisht Gopal
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.A.D.)
| | - M. Emilia Di Francesco
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Joseph R. Marszalek
- Translational Research to Advance Therapeutics and Innovation in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.L.B.); (M.G.S.); (Y.S.); (J.R.M.)
| | - Mark Dewhirst
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA;
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.T.G.); (F.P.); (Y.R.); (F.M.); (J.A.)
- Correspondence: ; Tel.: +1-713-745-0850; Fax: +1-713-745-7540
| |
Collapse
|
42
|
Liu T, Peng XC, Li B. The Metabolic Profiles in Hematological Malignancies. Indian J Hematol Blood Transfus 2019; 35:625-634. [PMID: 31741613 DOI: 10.1007/s12288-019-01107-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/25/2019] [Indexed: 11/24/2022] Open
Abstract
Leukemia is one of the most aggressive hematological malignancies. Leukemia stem cells account for the poor prognosis and relapse of the disease. Decades of investigations have been performed to figure out how to eradicate the leukemia stem cells. It has also been known that cancer cells especially solid cancer cells use energy differently than most of the cell types. The same thing happens to leukemia. Since there are metabolic differences between the hematopoietic stem cells and their immediate descendants, we aim at manipulating the energy sources with which that could have an effect on leukemia stem cells while sparing the normal blood cells. In this review we summarize the metabolic characteristics of distinct leukemias such as acute myeloid leukemia, chronic myeloid leukemia, T cell lymphoblastic leukemia, B-cell lymphoblastic leukemia, chronic lymphocytic leukemia and other leukemia associated hematological malignancies such as multiple myeloma and myelodysplastic syndrome. A better understanding of the metabolic profiles in distinct leukemias might provide novel perspectives and shed light on novel metabolic targeting strategies towards the clinical treatment of leukemias.
Collapse
Affiliation(s)
- Tao Liu
- Department of Pathology, People's Hospital of Longhua, Shenzhen, 518131 People's Republic of China
| | - Xing-Chun Peng
- Department of Pathology, People's Hospital of Longhua, Shenzhen, 518131 People's Republic of China
| | - Bin Li
- 2Department of Pathology, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai Clinical Center, CAS, Huaihai Road 966, Shanghai City, 200031 Shanghai People's Republic of China
| |
Collapse
|
43
|
Libby CJ, McConathy J, Darley-Usmar V, Hjelmeland AB. The Role of Metabolic Plasticity in Blood and Brain Stem Cell Pathophysiology. Cancer Res 2019; 80:5-16. [PMID: 31575548 DOI: 10.1158/0008-5472.can-19-1169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/04/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023]
Abstract
Our understanding of intratumoral heterogeneity in cancer continues to evolve, with current models incorporating single-cell signatures to explore cell-cell interactions and differentiation state. The transition between stem and differentiation states in nonneoplastic cells requires metabolic plasticity, and this plasticity is increasingly recognized to play a central role in cancer biology. The insights from hematopoietic and neural stem cell differentiation pathways were used to identify cancer stem cells in leukemia and gliomas. Similarly, defining metabolic heterogeneity and fuel-switching signals in nonneoplastic stem cells may also give important insights into the corresponding molecular mechanisms controlling metabolic plasticity in cancer. These advances are important, because metabolic adaptation to anticancer therapeutics is rooted in this inherent metabolic plasticity and is a therapeutic challenge to be overcome.
Collapse
Affiliation(s)
- Catherine J Libby
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jonathan McConathy
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Victor Darley-Usmar
- Mitochondrial Medicine Laboratory, Center for Free Radical Biology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anita B Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
44
|
Mattes K, Vellenga E, Schepers H. Differential redox-regulation and mitochondrial dynamics in normal and leukemic hematopoietic stem cells: A potential window for leukemia therapy. Crit Rev Oncol Hematol 2019; 144:102814. [PMID: 31593878 DOI: 10.1016/j.critrevonc.2019.102814] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/12/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
The prognosis for many patients with acute myeloid leukemia (AML) is poor, mainly due to disease relapse driven by leukemia stem cells (LSCs). Recent studies have highlighted the unique metabolic properties of LSCs, which might represent opportunities for LSC-selective targeting. LSCs characteristically have low levels of reactive oxygen species (ROS), which apparently result from a combination of low mitochondrial activity and high activity of ROS-removing pathways such as autophagy. Due to this low activity, LSCs are highly dependent on mitochondrial regulatory mechanisms. These include the anti-apoptotic protein BCL-2, which also has crucial roles in regulating the mitochondrial membrane potential, and proteins involved in mitophagy. Here we review the different pathways that impact mitochondrial activity and redox-regulation, and highlight their relevance for the functionality of both HSCs and LSCs. Additionally, novel AML therapy strategies that are based on interference with those pathways, including the promising BCL-2 inhibitor Venetoclax, are summarized.
Collapse
Affiliation(s)
- Katharina Mattes
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Edo Vellenga
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Hein Schepers
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
45
|
Chapuis N, Poulain L, Birsen R, Tamburini J, Bouscary D. Rationale for Targeting Deregulated Metabolic Pathways as a Therapeutic Strategy in Acute Myeloid Leukemia. Front Oncol 2019; 9:405. [PMID: 31192118 PMCID: PMC6540604 DOI: 10.3389/fonc.2019.00405] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022] Open
Abstract
Metabolic reprogramming is a common cancer cell phenotype as it sustains growth and proliferation. Targeting metabolic activities offers a wide range of therapeutic possibilities which are applicable to acute myeloid leukemia (AML). Indeed, in addition to the IDH1/2-mutated AML model which established the proof-of-concept for specifically targeting metabolic adaptations in AML, several recent reports have expanded the scope of such strategies in these diseases. This review highlights recent findings on metabolic deregulation in AML and summarizes their implications in leukemogenesis.
Collapse
Affiliation(s)
- Nicolas Chapuis
- INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR8104, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Service d'Hématologie Biologique, Paris, France
| | - Laury Poulain
- INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR8104, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France
| | - Rudy Birsen
- INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR8104, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France
| | - Jerome Tamburini
- INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR8104, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Service d'Hématologie Clinique, Paris, France
| | - Didier Bouscary
- INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR8104, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Service d'Hématologie Clinique, Paris, France
| |
Collapse
|
46
|
Castelli G, Pelosi E, Testa U. Emerging Therapies for Acute Myelogenus Leukemia Patients Targeting Apoptosis and Mitochondrial Metabolism. Cancers (Basel) 2019; 11:E260. [PMID: 30813354 PMCID: PMC6406361 DOI: 10.3390/cancers11020260] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023] Open
Abstract
Acute Myelogenous Leukemia (AML) is a malignant disease of the hematopoietic cells, characterized by impaired differentiation and uncontrolled clonal expansion of myeloid progenitors/precursors, resulting in bone marrow failure and impaired normal hematopoiesis. AML comprises a heterogeneous group of malignancies, characterized by a combination of different somatic genetic abnormalities, some of which act as events driving leukemic development. Studies carried out in the last years have shown that AML cells invariably have abnormalities in one or more apoptotic pathways and have identified some components of the apoptotic pathway that can be targeted by specific drugs. Clinical results deriving from studies using B-cell lymphoma 2 (BCL-2) inhibitors in combination with standard AML agents, such as azacytidine, decitabine, low-dose cytarabine, provided promising results and strongly support the use of these agents in the treatment of AML patients, particularly of elderly patients. TNF-related apoptosis-inducing ligand (TRAIL) and its receptors are frequently deregulated in AML patients and their targeting may represent a promising strategy for development of new treatments. Altered mitochondrial metabolism is a common feature of AML cells, as supported through the discovery of mutations in the isocitrate dehydrogenase gene and in mitochondrial electron transport chain and of numerous abnormalities of oxidative metabolism existing in AML subgroups. Overall, these observations strongly support the view that the targeting of mitochondrial apoptotic or metabolic machinery is an appealing new therapeutic perspective in AML.
Collapse
Affiliation(s)
- Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
47
|
Molina JR, Sun Y, Protopopova M, Gera S, Bandi M, Bristow C, McAfoos T, Morlacchi P, Ackroyd J, Agip ANA, Al-Atrash G, Asara J, Bardenhagen J, Carrillo CC, Carroll C, Chang E, Ciurea S, Cross JB, Czako B, Deem A, Daver N, de Groot JF, Dong JW, Feng N, Gao G, Gay J, Do MG, Greer J, Giuliani V, Han J, Han L, Henry VK, Hirst J, Huang S, Jiang Y, Kang Z, Khor T, Konoplev S, Lin YH, Liu G, Lodi A, Lofton T, Ma H, Mahendra M, Matre P, Mullinax R, Peoples M, Petrocchi A, Rodriguez-Canale J, Serreli R, Shi T, Smith M, Tabe Y, Theroff J, Tiziani S, Xu Q, Zhang Q, Muller F, DePinho RA, Toniatti C, Draetta GF, Heffernan TP, Konopleva M, Jones P, Di Francesco ME, Marszalek JR. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat Med 2018; 24:1036-1046. [PMID: 29892070 DOI: 10.1038/s41591-018-0052-4] [Citation(s) in RCA: 585] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/27/2018] [Indexed: 12/19/2022]
Abstract
Metabolic reprograming is an emerging hallmark of tumor biology and an actively pursued opportunity in discovery of oncology drugs. Extensive efforts have focused on therapeutic targeting of glycolysis, whereas drugging mitochondrial oxidative phosphorylation (OXPHOS) has remained largely unexplored, partly owing to an incomplete understanding of tumor contexts in which OXPHOS is essential. Here, we report the discovery of IACS-010759, a clinical-grade small-molecule inhibitor of complex I of the mitochondrial electron transport chain. Treatment with IACS-010759 robustly inhibited proliferation and induced apoptosis in models of brain cancer and acute myeloid leukemia (AML) reliant on OXPHOS, likely owing to a combination of energy depletion and reduced aspartate production that leads to impaired nucleotide biosynthesis. In models of brain cancer and AML, tumor growth was potently inhibited in vivo following IACS-010759 treatment at well-tolerated doses. IACS-010759 is currently being evaluated in phase 1 clinical trials in relapsed/refractory AML and solid tumors.
Collapse
Affiliation(s)
- Jennifer R Molina
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Co-Clinical Trials, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuting Sun
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Co-Clinical Trials, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marina Protopopova
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Co-Clinical Trials, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sonal Gera
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Co-Clinical Trials, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Madhavi Bandi
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Co-Clinical Trials, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher Bristow
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Co-Clinical Trials, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy McAfoos
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pietro Morlacchi
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Agilent Technologies Inc., Lexington, MA, USA
| | - Jeffrey Ackroyd
- Department of Cancer Imaging Systems, University of Texas MD Cancer Center, Houston, TX, USA
| | - Ahmed-Noor A Agip
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge, UK
| | - Gheath Al-Atrash
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John Asara
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jennifer Bardenhagen
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caroline C Carrillo
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher Carroll
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edward Chang
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Co-Clinical Trials, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stefan Ciurea
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason B Cross
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Barbara Czako
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Angela Deem
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Co-Clinical Trials, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John Frederick de Groot
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian-Wen Dong
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ningping Feng
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Co-Clinical Trials, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guang Gao
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Co-Clinical Trials, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason Gay
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Co-Clinical Trials, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mary Geck Do
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer Greer
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Virginia Giuliani
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Co-Clinical Trials, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Han
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Co-Clinical Trials, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lina Han
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Verlene K Henry
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Judy Hirst
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge, UK
| | - Sha Huang
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yongying Jiang
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhijun Kang
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tin Khor
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Co-Clinical Trials, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sergej Konoplev
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yu-Hsi Lin
- Department of Cancer Imaging Systems, University of Texas MD Cancer Center, Houston, TX, USA
| | - Gang Liu
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alessia Lodi
- Department of Nutritional Sciences, University of Texas at Austin, Austin, TX, USA
| | - Timothy Lofton
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Helen Ma
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mikhila Mahendra
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Co-Clinical Trials, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Polina Matre
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Mullinax
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Co-Clinical Trials, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Peoples
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Co-Clinical Trials, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alessia Petrocchi
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaime Rodriguez-Canale
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Riccardo Serreli
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge, UK
| | - Thomas Shi
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Co-Clinical Trials, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Melinda Smith
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Co-Clinical Trials, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yoko Tabe
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Next Generation Hematology Laboratory Medicine, Department of Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Jay Theroff
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stefano Tiziani
- Department of Nutritional Sciences, University of Texas at Austin, Austin, TX, USA
| | - Quanyun Xu
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Zhang
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Florian Muller
- Department of Cancer Imaging Systems, University of Texas MD Cancer Center, Houston, TX, USA
| | - Ronald A DePinho
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carlo Toniatti
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Co-Clinical Trials, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Giulio F Draetta
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Co-Clinical Trials, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy P Heffernan
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Co-Clinical Trials, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marina Konopleva
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Philip Jones
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M Emilia Di Francesco
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph R Marszalek
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for Co-Clinical Trials, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
48
|
Matre P, Velez J, Jacamo R, Qi Y, Su X, Cai T, Chan SM, Lodi A, Sweeney SR, Ma H, Davis RE, Baran N, Haferlach T, Su X, Flores ER, Gonzalez D, Konoplev S, Samudio I, DiNardo C, Majeti R, Schimmer AD, Li W, Wang T, Tiziani S, Konopleva M. Inhibiting glutaminase in acute myeloid leukemia: metabolic dependency of selected AML subtypes. Oncotarget 2018; 7:79722-79735. [PMID: 27806325 PMCID: PMC5340236 DOI: 10.18632/oncotarget.12944] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/13/2016] [Indexed: 02/06/2023] Open
Abstract
Metabolic reprogramming has been described as a hallmark of transformed cancer cells. In this study, we examined the role of the glutamine (Gln) utilization pathway in acute myeloid leukemia (AML) cell lines and primary AML samples. Our results indicate that a subset of AML cell lines is sensitive to Gln deprivation. Glutaminase (GLS) is a mitochondrial enzyme that catalyzes the conversion of Gln to glutamate. One of the two GLS isoenzymes, GLS1 is highly expressed in cancer and encodes two different isoforms: kidney (KGA) and glutaminase C (GAC). We analyzed mRNA expression of GLS1 splicing variants, GAC and KGA, in several large AML datasets and identified increased levels of expression in AML patients with complex cytogenetics and within specific molecular subsets. Inhibition of glutaminase by allosteric GLS inhibitor bis-2-(5-phenylacetamido-1, 2, 4-thiadiazol-2-yl) ethyl sulfide or by novel, potent, orally bioavailable GLS inhibitor CB-839 reduced intracellular glutamate levels and inhibited growth of AML cells. In cell lines and patient samples harboring IDH1/IDH2 (Isocitrate dehydrogenase 1 and 2) mutations, CB-839 reduced production of oncometabolite 2-hydroxyglutarate, inducing differentiation. These findings indicate potential utility of glutaminase inhibitors in AML therapy, which can inhibit cell growth, induce apoptosis and/or differentiation in specific leukemia subtypes.
Collapse
Affiliation(s)
- Polina Matre
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Juliana Velez
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rodrigo Jacamo
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuan Qi
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoping Su
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tianyu Cai
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven M Chan
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Alessia Lodi
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Shannon R Sweeney
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Helen Ma
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard Eric Davis
- Lymphoma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalia Baran
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Xiaohua Su
- Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elsa Renee Flores
- Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Doriann Gonzalez
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sergej Konoplev
- Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ismael Samudio
- The Centre for Drug Research and Development Biologics, Vancouver, British Columbia, Canada
| | - Courtney DiNardo
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ravi Majeti
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Aaron D Schimmer
- Medical Biophysics, Princess Margaret Hospital / Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - Weiqun Li
- Analytical Chemistry, Pharmacology, Spectroscopy, Calithera Biosciences, South San Francisco, CA, USA
| | - Taotao Wang
- Analytical Chemistry, Pharmacology, Spectroscopy, Calithera Biosciences, South San Francisco, CA, USA
| | - Stefano Tiziani
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Marina Konopleva
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
49
|
Inhibition of glucose metabolism prevents glycosylation of the glutamine transporter ASCT2 and promotes compensatory LAT1 upregulation in leukemia cells. Oncotarget 2018; 7:46371-46383. [PMID: 27344174 PMCID: PMC5216804 DOI: 10.18632/oncotarget.10131] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/29/2016] [Indexed: 02/07/2023] Open
Abstract
Leukemia cells are highly dependent on glucose and glutamine as bioenergetic and biosynthetic fuels. Inhibition of the metabolism of glucose but also of glutamine is thus proposed as a therapeutic modality to block leukemia cell growth. Since glucose also supports protein glycosylation, we wondered whether part of the growth inhibitory effects resulting from glycolysis inhibition could indirectly result from a defect in glycosylation of glutamine transporters. We found that ASCT2/SLC1A5, a major glutamine transporter, was indeed deglycosylated upon glucose deprivation and 2-deoxyglucose exposure in HL-60 and K-562 leukemia cells. Inhibition of glycosylation by these modalities as well as by the bona fide glycosylation inhibitor tunicamycin however marginally influenced glutamine transport and did not impact on ASCT2 subcellular location. This work eventually unraveled the dispensability of ASCT2 to support HL-60 and K-562 leukemia cell growth and identified the upregulation of the neutral amino acid antiporter LAT1/SLC7A5 as a mechanism counteracting the inhibition of glycosylation. Pharmacological inhibition of LAT1 increased the growth inhibitory effects and the inactivation of the mTOR pathway resulting from glycosylation defects, an effect further emphasized during the regrowth period post-treatment with tunicamycin. In conclusion, this study points towards the underestimated impact of glycosylation inhibition in the interpretation of metabolic alterations resulting from glycolysis inhibition, and identifies LAT1 as a therapeutic target to prevent compensatory mechanisms induced by alterations in the glycosylating process.
Collapse
|
50
|
Glutaminase inhibition improves FLT3 inhibitor therapy for acute myeloid leukemia. Exp Hematol 2017; 58:52-58. [PMID: 28947392 DOI: 10.1016/j.exphem.2017.09.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/02/2017] [Accepted: 09/13/2017] [Indexed: 01/15/2023]
Abstract
Acute myeloid leukemia (AML) is a blood cancer that is poorly responsive to conventional cytotoxic chemotherapy and a diagnosis of AML is usually fatal. More effective and better-tolerated therapies for AML are desperately needed. Activating mutations in FMS-like tyrosine kinase 3 (FLT3) are one of the most frequently observed genetic defects in AML. FLT3 inhibitors have shown impressive anti-leukemic activity in clinical trials; however, sustained remissions using these inhibitors as monotherapy have not been achieved. Our previous studies have implicated impaired glutamine metabolism in response to FLT3 inhibitors as a dominant factor causing AML cell death. In this study, we have employed metabolic flux analysis to examine the effects of FLT3 inhibition on glutamine utilization in FLT3-mutated AML cells using stable isotope tracers. We found that the FLT3 inhibitor AC220 inhibited glutamine flux into the antioxidant factor glutathione profoundly due to defective glutamine import. We also found that the glutaminase inhibitor CB-839 similarly impaired glutathione production by effectively blocking flux of glutamine into glutamate. Moreover, the combination of AC220 with CB-839 synergized to deplete glutathione, induce mitochondrial reactive oxygen species, and cause loss of viability through apoptotic cell death. In vivo, glutaminase inhibition with CB-839 facilitated leukemic cell elimination by AC220 and improved survival significantly in a patient-derived xenograft AML mouse model. Therefore, targeting glutaminase in combination with FLT3 may represent an effective therapeutic strategy for improving treatment of FLT3-mutated AML.
Collapse
|