1
|
Aziz M, Palariya D, Mehtab S, Zaidi MGH, Vasseghian Y. Enhanced production of bioethanol through supercritical carbon dioxide-mediated pretreatment and saccharification of dewaxed bagasse. Sci Rep 2024; 14:21450. [PMID: 39271743 PMCID: PMC11399341 DOI: 10.1038/s41598-024-70727-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
The pretreatment and saccharification of dewaxed bagasse (DWB) has been investigated under various reaction conditions ranging 2000 to 3200 psi, at 70 ± 1 °C in supercritical carbon dioxide (SCC). This has been in attempt to transform the DWB into fermentable sugar and bioethanol in high yields. The effect of SCC mediated pretreatment and enzymatic hydrolysis on structural and morphological alterations in DWB has been ascertained through diverse analytical methods. The sugar has been released through cellulase (40 FPU/mL) mediated enzymatic hydrolysis of pretreated DWB in sodium acetate buffer (pH 4.7) within 1 h at SCC 2800 psi, 70 ± 1 °C. The released sugar was subsequently fermented in the presence of yeast (Saccharomyces crevices, 135 CFU) at 28 ± 1 °C over 72 h to afford the bioethanol. The SCC mediated process conducted in acetic acid:water media (1:1) at 2800 psi, 70 ± 1 °C over 6 h has afforded the pretreated DWB with maximum yield towards the production of fermentable sugar and bioethanol. The production of fermentable sugar and bioethanol has been electrochemically estimated through cyclic voltammetry (CV) and square wave voltammetry (SWV) over glassy carbon electrode in KOH (0.1 M). The electrochemical methods were found selective and in close agreement for estimation of the yields (%) of fermentable sugars and bioethanol. The yield (%) of fermentable sugar estimated from CV and SWV were 80.10 ± 5.34 and 79.00 ± 5.09 respectively. Whereas the yield (%) of bioethanol estimated from CV and SWV were 81.30 ± 2.78% and 78.6 ± 1.25% respectively. Present investigation delivers a SCC mediated green and sustainable method of pretreatment of DWB to afford the enhanced saccharification, to produce bioethanol in high yields.
Collapse
Affiliation(s)
- Mohammad Aziz
- Department of Chemistry, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology Pantnagar, U.S Nagar, Uttarakhand, 263145, India
| | - Diksha Palariya
- Department of Chemistry, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology Pantnagar, U.S Nagar, Uttarakhand, 263145, India
| | - Sameena Mehtab
- Department of Chemistry, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology Pantnagar, U.S Nagar, Uttarakhand, 263145, India.
| | - M G H Zaidi
- Department of Chemistry, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology Pantnagar, U.S Nagar, Uttarakhand, 263145, India.
| | - Yasser Vasseghian
- Department of Chemical Engineering and Material Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Bregado JL, Tavares FW, Secchi AR, Segtovich ISV. Molecular dynamics of dissolution of a 36-chain cellulose Iβ microfibril at different temperatures above the critical pressure of water. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Mankar AR, Pandey A, Modak A, Pant KK. Pretreatment of lignocellulosic biomass: A review on recent advances. BIORESOURCE TECHNOLOGY 2021; 334:125235. [PMID: 33957458 DOI: 10.1016/j.biortech.2021.125235] [Citation(s) in RCA: 216] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 05/10/2023]
Abstract
Depleting fossil reserves and growing energy needs have raised the demand for an alternative and clean energy source. The use of ubiquitously available lignocellulosic biomass for developing economic and eco-friendly large scale biorefinery applications has provided the much-needed impetus in this regard. The pretreatment process is a vital step for biomass transformation into added value products such as sugars, biofuels, etc. Different pretreatment approaches are employed to overcome the recalcitrance of lignocellulosic biomass and expedite its disintegration into individual components- cellulose, hemicellulose, and lignin. The conventional pretreatment methods lack sustainability and practicability for industrial scale up. The review encompasses the recent advances in selective physical and chemical pretreatment approaches such as milling, extrusion, microwave, ammonia fibre explosion, eutectic solvents etc. The study will allow a deeper understanding of these pretreatment processes and increase their scope as sustainable technologies for developing modern biorefineries.
Collapse
Affiliation(s)
- Akshay R Mankar
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ashish Pandey
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Arindam Modak
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - K K Pant
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
4
|
Patel A, Shah AR. Integrated lignocellulosic biorefinery: Gateway for production of second generation ethanol and value added products. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2021. [DOI: 10.1016/j.jobab.2021.02.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
5
|
Escobar ELN, da Silva TA, Pirich CL, Corazza ML, Pereira Ramos L. Supercritical Fluids: A Promising Technique for Biomass Pretreatment and Fractionation. Front Bioeng Biotechnol 2020; 8:252. [PMID: 32391337 PMCID: PMC7191036 DOI: 10.3389/fbioe.2020.00252] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/11/2020] [Indexed: 11/17/2022] Open
Abstract
Lignocellulosic biomasses are primarily composed of cellulose, hemicelluloses and lignin and these biopolymers are bonded together in a heterogeneous matrix that is highly recalcitrant to chemical or biological conversion processes. Thus, an efficient pretreatment technique must be selected and applied to this type of biomass in order to facilitate its utilization in biorefineries. Classical pretreatment methods tend to operate under severe conditions, leading to sugar losses by dehydration and to the release of inhibitory compounds such as furfural (2-furaldehyde), 5-hydroxy-2-methylfurfural (5-HMF), and organic acids. By contrast, supercritical fluids can pretreat lignocellulosic materials under relatively mild pretreatment conditions, resulting in high sugar yields, low production of fermentation inhibitors and high susceptibilities to enzymatic hydrolysis while reducing the consumption of chemicals, including solvents, reagents, and catalysts. This work presents a review of biomass pretreatment technologies, aiming to deliver a state-of-art compilation of methods and results with emphasis on supercritical processes.
Collapse
Affiliation(s)
- Estephanie Laura Nottar Escobar
- Applied Kinetics and Thermodynamics Laboratory, Department of Chemical Engineering, Federal University of Paraná, Curitiba, Brazil
| | - Thiago Alessandre da Silva
- Department of Chemistry, Research Center in Applied Chemistry, Federal University of Paraná, Curitiba, Brazil
| | - Cleverton Luiz Pirich
- Department of Chemistry, Research Center in Applied Chemistry, Federal University of Paraná, Curitiba, Brazil
| | - Marcos Lúcio Corazza
- Applied Kinetics and Thermodynamics Laboratory, Department of Chemical Engineering, Federal University of Paraná, Curitiba, Brazil
| | - Luiz Pereira Ramos
- Department of Chemistry, Research Center in Applied Chemistry, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
6
|
Brockkötter J, Jupke A. Modeling the fluid dynamics of a high-pressure extraction column. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.104636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Subcritical water hydrolysis of brewer’s spent grains: Selective production of hemicellulosic sugars (C-5 sugars). J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.11.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Wu XF, Zhou Q, Li MF, Li SX, Bian J, Peng F. Conversion of poplar into bio-oil via subcritical hydrothermal liquefaction: Structure and antioxidant capacity. BIORESOURCE TECHNOLOGY 2018; 270:216-222. [PMID: 30218938 DOI: 10.1016/j.biortech.2018.09.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Subcritical hydrothermal liquefaction of poplar was performed at 220-280 °C, and the liquid phase produced was extracted by ethyl acetate to obtain light oil (LO), which contained LO1 (water-soluble) and LO2 (ethyl acetate-soluble). The residue was further extracted with acetone to produce heavy oil (HO) and solid residue (SR). The highest bio-oil yield of 19.88% was obtained at 260 °C. The HO produced at 260 °C had the highest content of C (69.13%) and the higher heating value was 27.97 MJ/kg. The O/C and H/C ratios of LO were higher than those of HO due to less aromatics in LO. Oxidative inhibition rates of bio-oils, measured in DPPH-ethanol solution at a concentration of 0.1 mg/mL, reached 60.76% for LO1 while 90.29% and 90.85% for LO2 and HO, respectively. The bio-oil with good antioxidant activity can be utilized as an additive in bio-diesel to improve oxidation stability.
Collapse
Affiliation(s)
- Xiao-Fei Wu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Qian Zhou
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Ming-Fei Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Shu-Xian Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jing Bian
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
9
|
Zhao Y, Tan H, Xu Y, Zou L. Multi-level dissolution and hydrolysis of lignocellulosic waste with a semi-flow hydrothermal system. BIORESOURCE TECHNOLOGY 2016; 214:496-503. [PMID: 27176669 DOI: 10.1016/j.biortech.2016.04.135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 06/05/2023]
Abstract
The hydrothermal process is efficient in lignocellulosic conversion and is beneficial to potential bioethanol production. In batch- and flow-type processes, concurrent dissolution and hydrolysis of lignocellulose result in product loss and inhibitory intermediates. Therefore, multi-level hydrothermal conversion of corn stalks was implemented with a semi-flow system to provide different residence times to undissolved compounds and facilitate dissolution or hydrolysis at respective optimal conditions. First-stage dissolution dissolved amorphous hemicellulose and lignin at 195-200°C. Xylan, acid soluble lignin, and part of Klason lignin were dissolved without affecting glucan. In second-stage dissolution, the crystallinity of the undissolved materials suddenly decreased at 245-250°C. The cellulose dissolution ratio was higher than 75%. Soluble sugars were obtained after the hydrolysis of dissolved cellulose at 280°C. The results provide significant information on the multi-level hydrothermal process and its potential applications for recovering valuable chemicals from lignocellulosic waste.
Collapse
Affiliation(s)
- Yan Zhao
- School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Haobo Tan
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yingjie Xu
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Lei Zou
- School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
10
|
Effective Cleavage of β-1,4-Glycosidic Bond by Functional Micelle with l-Histidine Residue. Catal Letters 2016. [DOI: 10.1007/s10562-016-1745-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
|
12
|
Prado JM, Forster-Carneiro T, Rostagno MA, Follegatti-Romero LA, Maugeri Filho F, Meireles MAA. Obtaining sugars from coconut husk, defatted grape seed, and pressed palm fiber by hydrolysis with subcritical water. J Supercrit Fluids 2014. [DOI: 10.1016/j.supflu.2014.02.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|