1
|
Jiang Y, Chang Z, Xu Y, Zhan X, Wang Y, Gao M. Advances in molecular enzymology of β-1,3-glucanases: A comprehensive review. Int J Biol Macromol 2024; 279:135349. [PMID: 39242004 DOI: 10.1016/j.ijbiomac.2024.135349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/14/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
β-1,3-Glucanases are essential enzymes involved in the hydrolysis of β-1,3-glucans, with significant biological and industrial relevance. These enzymes are derived from diverse sources, including bacteria, fungi, plants, and animals, each exhibiting unique substrate specificities and biochemical properties. This review provides an in-depth analysis of the natural sources and ecological roles of β-1,3-glucanases, exploring their enzymatic properties such as optimal pH, temperature, molecular weight, isoelectric points, and kinetic parameters, which are crucial for understanding their functionality and stability. Advances in molecular enzymology are discussed, focusing on gene cloning, expression in systems like Escherichia coli and Pichia pastoris, and structural-functional relationships. The reaction mechanisms and the role of non-catalytic carbohydrate-binding modules in enhancing substrate hydrolysis are examined. Industrial applications of β-1,3-glucanases are highlighted, including the production of β-1,3-glucooligosaccharides, uses in the food industry, biological control of plant pathogens, and nutritional roles. This review aims to provide a foundation for future research, improving the efficiency and robustness of β-1,3-glucanases for various industrial applications.
Collapse
Affiliation(s)
- Yun Jiang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zepeng Chang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Ying Xu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiaobei Zhan
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yuying Wang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Minjie Gao
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Yeast engineered translucent cell wall to provide its endosymbiont cyanobacteria with light. Arch Microbiol 2020; 202:1317-1325. [PMID: 32140734 DOI: 10.1007/s00203-020-01835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 01/19/2020] [Accepted: 02/12/2020] [Indexed: 10/24/2022]
Abstract
In this study, relationship between translucent property of yeast cell wall and occurrence of cyanobacteria inside the yeast vacuole was examined. Microscopic observations on fruit yeast Candida tropicalis showed occurrence of bacterium-like bodies inside the yeast vacuole. Appearance of vacuoles as distinct cavities indicated the perfect harvesting of light by the yeast's cell wall. Transmission electron microscopy observation showed electron-dense outer and electron-lucent inner layers in yeast cell wall. Cyanobacteria-specific 16S rRNA gene was amplified from total DNA of yeast. Cultivation of yeast in distilled water led to excision of intracellular bacteria which grew on cyanobacteria-specific medium. Examination of wet mount and Gram-stained preparations of excised bacteria showed typical bead-like trichomes. Amplification of cyanobacteria-specific genes, 16S rRNA, cnfR and dxcf, confirmed bacterial identity as Leptolyngbya boryana. These results showed that translucent cell wall of yeast has been engineered through evolution for receiving light for vital activities of cyanobacteria.
Collapse
|
3
|
Heydari S, Siavoshi F, Ebrahimi H, Sarrafnejad A, Sharifi AH. Excision of endosymbiotic bacteria from yeast under aging and starvation stresses. INFECTION GENETICS AND EVOLUTION 2019; 78:104141. [PMID: 31839588 DOI: 10.1016/j.meegid.2019.104141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Abstract
Although infrequent in our laboratory, growth of bacterial colonies has been observed on top of the purified cultures of yeasts. In this study, the likelihood of bacterial excision from yeast under aging and starvation stresses was assessed using 10 gastric and 10 food-borne yeasts. Yeasts were identified as members of Candida or Saccharomyces genus by amplification and sequencing of D1/D2 region of 26S rDNA. For aging stress, yeasts were cultured on brain heart infusion agar supplemented with sheep blood and incubated at 30 °C for 3-4 weeks. For starvation stress, yeasts were inoculated into distilled water and incubated similarly. After seven days, starved yeasts were cultured on yeast extract glucose agar, incubated similarly and examined daily for appearance of bacterial colonies on top of the yeast's growth. Outgrowth of excised bacteria was observed on top of the cultures of 4 yeasts (Y1, Y3, Y13 and Y18) after 3-7 days. The excised bacteria (B1, B3, B13 and B18) were isolated and identified at the genus level according to their biochemical characteristics as well as amplification and sequencing of 16S rDNA. B1 (Arthrobacter) were excised from Y1 (Candida albicans) upon aging and B3 (Staphylococcus), B13 (Cellulomonas) and B18 (Staphylococcus) were excised from their respective yeasts; Y3 (Candida tropicalis), Y13 (Saccharomyces cerevisiae) and Y18 (Candida glabrata) upon starvation. DNA from yeasts was used for detection of 16S rDNA of their intracellular bacteria and sequencing. Amplified products from yeasts showed sequence similarity to those of excised bacteria. Under normal conditions, yeast exerts tight control on multiplication of its intracellular bacteria. However, upon aging and starvation the control is no longer effective and bacterial outgrowth occurs. Unlimited multiplication of excised bacteria might provide yeast with plenty of food in close vicinity. This could be an evolutionary dialogue between yeast and bacteria that ensures the survival of both partners.
Collapse
Affiliation(s)
- Samira Heydari
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Farideh Siavoshi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran.
| | - Hoda Ebrahimi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Abdolfattah Sarrafnejad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Houshang Sharifi
- Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Biochemical characteristics and potential application of a novel ethanol and glucose-tolerant β-glucosidase secreted by Pichia guilliermondii G1.2. J Biotechnol 2019; 294:73-80. [DOI: 10.1016/j.jbiotec.2019.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/07/2019] [Indexed: 11/21/2022]
|
5
|
Gunyakti A, Asan-Ozusaglam M. Investigation of the potential use of Lactobacillus gasseri originated from human breast milk as food additive. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
6
|
Papageorgiou AC, Chen J, Li D. Crystal structure and biological implications of a glycoside hydrolase family 55 β-1,3-glucanase from Chaetomium thermophilum. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1030-1038. [PMID: 28479293 DOI: 10.1016/j.bbapap.2017.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 11/15/2022]
Abstract
Crystal structures of a β-1,3-glucanase from the thermophilic fungus Chaetomium thermophilum were determined at 1.20 and 1.42Å resolution in the free and glucose-bound form, respectively. This is the third structure of a family 55 glycoside hydrolase (GH55) member and the second from a fungus. Based on comparative structural studies and site-directed mutagenesis, Glu654 is proposed as the catalytic acid residue. The substrate binding cleft exhibits restricted access on one side, rendering the enzyme as an exo-β-1,3-glucanase as confirmed also by thin layer chromatography experiments. A lack of stacking interactions was found at the substrate binding cleft, suggesting that interactions at positions -1, +1 and +2 are sufficient to orientate the substrate. A binding pocket was identified that could explain binding of branched laminarin and accumulation of laminaritriose.
Collapse
Affiliation(s)
| | - Jinyin Chen
- Department of Mycology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Duochuan Li
- Department of Mycology, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
7
|
Baek SC, Ho TH, Lee HW, Jung WK, Gang HS, Kang LW, Kim H. Improvement of enzyme activity of β-1,3-1,4-glucanase from Paenibacillus sp. X4 by error-prone PCR and structural insights of mutated residues. Appl Microbiol Biotechnol 2017; 101:4073-4083. [PMID: 28180917 DOI: 10.1007/s00253-017-8145-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/16/2017] [Accepted: 01/22/2017] [Indexed: 11/29/2022]
Abstract
β-1,3-1,4-Glucanase (BGlc8H) from Paenibacillus sp. X4 was mutated by error-prone PCR or truncated using termination primers to improve its enzyme properties. The crystal structure of BGlc8H was determined at a resolution of 1.8 Å to study the possible roles of mutated residues and truncated regions of the enzyme. In mutation experiments, three clones of EP 2-6, 2-10, and 5-28 were finally selected that exhibited higher specific activities than the wild type when measured using their crude extracts. Enzyme variants of BG2-6, BG2-10, and BG5-28 were mutated at two, two, and six amino acid residues, respectively. These enzymes were purified homogeneously by Hi-Trap Q and CHT-II chromatography. Specific activity of BG5-28 was 2.11-fold higher than that of wild-type BGwt, whereas those of BG2-6 and BG2-10 were 0.93- and 1.19-fold that of the wild type, respectively. The optimum pH values and temperatures of the variants were nearly the same as those of BGwt (pH 5.0 and 40 °C, respectively). However, the half-life of the enzyme activity and catalytic efficiency (k cat/K m) of BG5-28 were 1.92- and 2.12-fold greater than those of BGwt at 40 °C, respectively. The catalytic efficiency of BG5-28 increased to 3.09-fold that of BGwt at 60 °C. These increases in the thermostability and catalytic efficiency of BG5-28 might be useful for the hydrolysis of β-glucans to produce fermentable sugars. Of the six mutated residues of BG5-28, five residues were present in mature BGlc8H protein, and two of them were located in the core scaffold of BGlc8H and the remaining three residues were in the substrate-binding pocket forming loop regions. In truncation experiments, three forms of C-terminal truncated BGlc8H were made, which comprised 360, 286, and 215 amino acid residues instead of the 409 residues of the wild type. No enzyme activity was observed for these truncated enzymes, suggesting the complete scaffold of the α6/α6-double-barrel structure is essential for enzyme activity.
Collapse
Affiliation(s)
- Seung Cheol Baek
- Department of Pharmacy, Sunchon National University, Suncheon, 57922, Republic of Korea.,Department of Agricultural Chemistry, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Thien-Hoang Ho
- Department of Biological Sciences, Konkuk University, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hyun Woo Lee
- Department of Pharmacy, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Won Kyeong Jung
- Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Hyo-Seung Gang
- Department of Agricultural Chemistry, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| | - Hoon Kim
- Department of Pharmacy, Sunchon National University, Suncheon, 57922, Republic of Korea. .,Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea.
| |
Collapse
|
8
|
Elgharbi F, Ben Hlima H, Ameri R, Bejar S, Hmida-sayari A. A trimeric and thermostable lichenase from B. pumilus US570 strain: Biochemical and molecular characterization. Int J Biol Macromol 2017; 95:273-280. [DOI: 10.1016/j.ijbiomac.2016.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022]
|
9
|
Castillo NA, Valdez AL, Fariña JI. Microbial production of scleroglucan and downstream processing. Front Microbiol 2015; 6:1106. [PMID: 26528259 PMCID: PMC4606123 DOI: 10.3389/fmicb.2015.01106] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/25/2015] [Indexed: 02/04/2023] Open
Abstract
Synthetic petroleum-based polymers and natural plant polymers have the disadvantage of restricted sources, in addition to the non-biodegradability of the former ones. In contrast, eco-sustainable microbial polysaccharides, of low-cost and standardized production, represent an alternative to address this situation. With a strong global market, they attracted worldwide attention because of their novel and unique physico-chemical properties as well as varied industrial applications, and many of them are promptly becoming economically competitive. Scleroglucan, a β-1,3-β-1,6-glucan secreted by Sclerotium fungi, exhibits high potential for commercialization and may show different branching frequency, side-chain length, and/or molecular weight depending on the producing strain or culture conditions. Water-solubility, viscosifying ability and wide stability over temperature, pH and salinity make scleroglucan useful for different biotechnological (enhanced oil recovery, food additives, drug delivery, cosmetic and pharmaceutical products, biocompatible materials, etc.), and biomedical (immunoceutical, antitumor, etc.) applications. It can be copiously produced at bioreactor scale under standardized conditions, where a high exopolysaccharide concentration normally governs the process optimization. Operative and nutritional conditions, as well as the incidence of scleroglucan downstream processing will be discussed in this chapter. The relevance of using standardized inocula from selected strains and experiences concerning the intricate scleroglucan scaling-up will be also herein outlined.
Collapse
Affiliation(s)
- Natalia A Castillo
- Laboratorio de Biotecnología Fúngica, Planta Piloto de Procesos Industriales Microbiológicos-CONICET San Miguel de Tucumán, Argentina ; Cátedra de Micología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán San Miguel de Tucumán, Argentina
| | - Alejandra L Valdez
- Laboratorio de Biotecnología Fúngica, Planta Piloto de Procesos Industriales Microbiológicos-CONICET San Miguel de Tucumán, Argentina ; Cátedra de Microbiología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán San Miguel de Tucumán, Argentina
| | - Julia I Fariña
- Laboratorio de Biotecnología Fúngica, Planta Piloto de Procesos Industriales Microbiológicos-CONICET San Miguel de Tucumán, Argentina ; Cátedra de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca San Fernando del Valle de Catamarca, Argentina
| |
Collapse
|
10
|
Papageorgiou AC, Li D. Expression, purification and crystallization of a family 55 β-1,3-glucanase from Chaetomium thermophilum. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2015; 71:680-3. [PMID: 26057795 DOI: 10.1107/s2053230x15006366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/29/2015] [Indexed: 11/10/2022]
Abstract
A β-1,3-glucanase from the thermophilic fungus Chaetomium thermophilum was overexpressed in Pichia pastoris, purified and crystallized in the presence of 1.8 M sodium/potassium phosphate pH 6.8 as a precipitant. Data to 2.0 Å resolution were collected in-house at 293 K from a single crystal. The crystal was found to belong to space group P2(1), with unit-cell parameters a = 64.1, b = 85.8, c = 68.5 Å, β = 93.1° and one molecule in the asymmetric unit.
Collapse
Affiliation(s)
- Anastassios C Papageorgiou
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistokatu 6, 20521 Turku, Finland
| | - Duochuan Li
- Department of Environmental Biology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| |
Collapse
|
11
|
Cerda LA, Valenzuela SV, Diaz P, Pastor FIJ. New GH16 β-glucanase fromPaenibacillus barcinonensisBP-23 releases a complex pattern of mixed-linkage oligomers from barley glucan. Biotechnol Appl Biochem 2015; 63:51-6. [DOI: 10.1002/bab.1348] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/08/2014] [Indexed: 01/19/2023]
Affiliation(s)
| | | | - Pilar Diaz
- Department of Microbiology; Faculty of Biology; University of Barcelona; Barcelona Spain
| | | |
Collapse
|
12
|
Pei H, Guo X, Yang W, Lv J, Chen Y, Cao Y. Directed evolution of a β-1,3-1,4-glucanase fromBacillus subtilisMA139 for improving thermal stability and other characteristics. J Basic Microbiol 2015; 55:869-78. [DOI: 10.1002/jobm.201400664] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 02/22/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Honglei Pei
- National Key Laboratory of Animal Nutrition; China Agricultural University; Beijing PR China
| | - Xiaojing Guo
- National Key Laboratory of Animal Nutrition; China Agricultural University; Beijing PR China
| | - Wenhan Yang
- National Key Laboratory of Animal Nutrition; China Agricultural University; Beijing PR China
| | - Junnan Lv
- National Key Laboratory of Animal Nutrition; China Agricultural University; Beijing PR China
| | - Yiqun Chen
- National Key Laboratory of Animal Nutrition; China Agricultural University; Beijing PR China
| | - Yunhe Cao
- National Key Laboratory of Animal Nutrition; China Agricultural University; Beijing PR China
| |
Collapse
|
13
|
Kim DU, Kim HJ, Jeong YS, Na HB, Cha YL, Koo BC, Kim J, Yun HD, Lee JK, Kim H. Enhanced saccharification of reed and rice straws by the addition of β-1,3-1,4-glucanase with broad substrate specificity and calcium ion. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13765-015-0013-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Characterization of a GH family 8 β-1,3-1,4-glucanase with distinctive broad substrate specificity from Paenibacillus sp. X4. Biotechnol Lett 2014; 37:643-55. [DOI: 10.1007/s10529-014-1724-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/28/2014] [Indexed: 02/03/2023]
|
15
|
Chaari F, Belghith-Fendri L, Blibech M, Driss D, Ellouzi SZ, sameh M, Ellouz-Chaabouni S. Biochemical characterization of a lichenase from Penicillium occitanis Pol6 and its potential application in the brewing industry. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.02.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Cheng R, Chen J, Yu X, Wang Y, Wang S, Zhang J. Recombinant production and characterization of full-length and truncated β-1,3-glucanase PglA from Paenibacillus sp. S09. BMC Biotechnol 2013; 13:105. [PMID: 24283345 PMCID: PMC4219603 DOI: 10.1186/1472-6750-13-105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 11/24/2013] [Indexed: 11/12/2022] Open
Abstract
Background β-1,3-Glucanases catalyze the hydrolysis of glucan polymers containing β-1,3-linkages. These enzymes are of great biotechnological, agricultural and industrial interest. The applications of β-1,3-glucanases is well established in fungal disease biocontrol, yeast extract production and wine extract clarification. Thus, the identification and characterization of novel β-1,3-glucanases with high catalytic efficiency and stability is of particular interest. Results A β-1,3-glucanase gene designated PglA was cloned from a newly isolated strain Paenibacillus sp. S09. The gene PglA contained a 2631-bp open reading frame encoding a polypeptide of 876 amino acids which shows 76% identity with the β-1,3-glucanase (BglH) from Bacillus circulans IAM1165. The encoded protein PglA is composed of a signal peptide, an N-terminal leader region, a glycoside hydrolase family 16 (GH16) catalytic domain and a C-terminal immunoglobulin like (Ig-like) domain. The Escherichia coli expression system of PglA and five truncated derivatives containing one or two modules was constructed to investigate the role of catalytic and non-catalytic modules. The pH for optimal activity of the enzymes was slightly affected (pH 5.5-6.5) by the presence of different modules. However, the temperature for optimal activity was strongly influenced by the C-terminal domain and ranged from 50 to 60°C. Deletion of C-terminal domain resulted in obviously enhancing enzymatic thermostability. Specific activity assay indicated that PglA specifically hydrolyzes β-1,3-glucan. Insoluble β-1,3-glucan binding and hydrolysis were boosted by the presence of N-and C-terminal domains. Kinetic analysis showed that the presence of N-and C-terminus enhances the substrate affinity and catalytic efficiency of the catalytic domain toward laminarin. Carbohydrate-binding assay directly confirmed the binding capabilities of the N-and C-terminal domains. Conclusions This study provides new insight into the impacts of non-catalytic modules on enzymatic properties of β-1,3-glucanase. Activity comparison of full-length PglA and truncated forms revealed the negative effect of C-terminal region on thermal stability of the enzyme. Both the N-and C-terminal domains exerted strong binding activity toward insoluble β-1,3-glucan, and could be classified into CBM families.
Collapse
Affiliation(s)
- Rui Cheng
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei, Nanjing 210094, China.
| | | | | | | | | | | |
Collapse
|
17
|
Bwanganga Tawaba JC, Destain J, Malumba Kamba P, Béra F, Thonart P. Effect of the use of dilute alkaline prior to Bacillus subtilis-based biocontrol steeping and germination conditions on red sorghum malt β-glucanase activities and residual β-glucans. J Cereal Sci 2013. [DOI: 10.1016/j.jcs.2013.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Characterisation of a novel Bacillus sp. SJ-10 β-1,3–1,4-glucanase isolated from jeotgal, a traditional Korean fermented fish. Bioprocess Biosyst Eng 2013; 36:721-7. [DOI: 10.1007/s00449-013-0896-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 01/15/2013] [Indexed: 11/25/2022]
|
19
|
Wojtkowiak A, Witek K, Hennig J, Jaskolski M. Two high-resolution structures of potato endo-1,3-β-glucanase reveal subdomain flexibility with implications for substrate binding. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:713-23. [PMID: 22683794 DOI: 10.1107/s090744491200995x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 03/06/2012] [Indexed: 11/11/2022]
Abstract
Endo-1,3-β-glucanases are widely distributed among bacteria, fungi and higher plants. They are responsible for hydrolysis of the glycosidic bond in specific polysaccharides with tracts of unsubstituted β-1,3-linked glucosyl residues. The plant enzymes belong to glycoside hydrolase family 17 (GH17) and are also members of class 2 of pathogenesis-related (PR) proteins. X-ray diffraction data were collected to 1.40 and 1.26 Å resolution from two crystals of endo-1,3-β-glucanase from Solanum tuberosum (potato, cultivar Désirée) which, despite having a similar packing framework, represented two separate crystal forms. In particular, they differed in the Matthews coefficient and are consequently referred to as higher density (HD; 1.40 Å resolution) and lower density (LD; 1.26 Å resolution) forms. The general fold of the protein resembles that of other known plant endo-1,3-β-glucanases and is defined by a (β/α)(8)-barrel with an additional subdomain built around the C-terminal half of the barrel. The structures revealed high flexibility of the subdomain, which forms part of the catalytic cleft. Comparison with structures of other GH17 endo-1,3-β-glucanases revealed differences in the arrangement of the secondary-structure elements in this region, which can be correlated with sequence variability and may suggest distinct substrate-binding patterns. The crystal structures revealed an unusual packing mode, clearly visible in the LD structure, caused by the presence of the C-terminal His(6) tag, which extends from the compact fold of the enzyme molecule and docks in the catalytic cleft of a neighbouring molecule. In this way, an infinite chain of His-tag-linked protein molecules is formed along the c direction.
Collapse
Affiliation(s)
- Agnieszka Wojtkowiak
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | | | | | | |
Collapse
|
20
|
Potential application of two thermostable lichenases from a newly isolated Bacillus licheniformis UEB CF: Purification and characterization. Process Biochem 2012. [DOI: 10.1016/j.procbio.2011.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
21
|
Expression of novel β-glucanase Cel12A from Stachybotrys atra in bacterial and fungal hosts. Fungal Biol 2012; 116:443-51. [PMID: 22385626 DOI: 10.1016/j.funbio.2012.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 01/12/2012] [Accepted: 01/17/2012] [Indexed: 11/23/2022]
Abstract
β-glucanase Cel12A from Stachybotrys atra has been cloned and expressed in Aspergillus niger. The purified enzyme showed high activity of β-1,3-1,4-mixed glucans, was also active on carboxymethylcellulose (CMC), while it did not hydrolyze crystalline cellulose or β-1,3 glucans as laminarin. Cel12A showed a marked substrate preference for β-1,3-1,4 glucans, showing maximum activity on barley β-glucans (27.69 U mg(-1)) while the activity on CMC was much lower (0.51 U mg(-1)). Analysis by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), isoelectric focussing (IEF), and zymography showed the recombinant enzyme has apparent molecular weight of 24 kDa and a pI of 8.2. Optimal temperature and pH for enzyme activity were 50°C and pH 6.5. Thin layer chromatography analysis showed that major hydrolysis products from barley β-glucan and lichean were 3-O-β-cellotriosyl-D-glucose and 3-O-β-cellobiosyl-D-glucose, while glucose and cellobiose were released in smaller amounts. The amino acid sequence deduced from cel12A revealed that it is a single domain enzyme belonging to the GH12 family, a family that contains several endoglucanases with substrate preference for β-1,3-1,4 glucans. We believe that S. atra Cel12A should be considered as a lichenase-like or nontypical endoglucanase.
Collapse
|
22
|
Vatandoust A, Ragaee S, Wood PJ, Tosh SM, Seetharaman K. Detection, Localization, and Variability of Endogenous β-Glucanase in Wheat Kernels. Cereal Chem 2012. [DOI: 10.1094/cchem-07-11-0084] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Azadeh Vatandoust
- Department of Food Science, Ontario College of Agriculture, University of Guelph, Guelph, Ontario, N1G 2W1
| | - Sanaa Ragaee
- Department of Food Science, Ontario College of Agriculture, University of Guelph, Guelph, Ontario, N1G 2W1
- Corresponding author. Phone: (519) 824-4120 ext. 52624. Fax: (519) 824-6631. E-mail:
| | - Peter J. Wood
- Agriculture and Agri-Food Canada, Guelph Food Research Centre, Guelph, ON N1G 5C9
| | - Susan M. Tosh
- Agriculture and Agri-Food Canada, Guelph Food Research Centre, Guelph, ON N1G 5C9
| | - Koushik Seetharaman
- Department of Food Science, Ontario College of Agriculture, University of Guelph, Guelph, Ontario, N1G 2W1
| |
Collapse
|
23
|
Giese EC, Dekker RF, Scarminio IS, Barbosa AM, da Silva R. Comparison of β-1,3-glucanase production by Botryosphaeria rhodina MAMB-05 and Trichoderma harzianum Rifai and its optimization using a statistical mixture-design. Biochem Eng J 2011. [DOI: 10.1016/j.bej.2010.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Jiang C, Hao ZY, Jin K, Li SX, Che ZQ, Ma GF, Wu B. Identification of a metagenome-derived β-glucosidase from bioreactor contents. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2009.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Guo Q, Zhang W, Ma LL, Chen QH, Chen JC, Zhang HB, Ruan H, He GQ. A food-grade industrial arming yeast expressing beta-1,3-1,4-glucanase with enhanced thermal stability. J Zhejiang Univ Sci B 2010; 11:41-51. [PMID: 20043351 DOI: 10.1631/jzus.b0900185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aim of this work was to construct a novel food-grade industrial arming yeast displaying beta-1,3-1,4-glucanase and to evaluate the thermal stability of the glucanase for practical application. For this purpose, a bi-directional vector containing galactokinase (GAL1) and phosphoglycerate kinase 1 (PGK1) promoters in different orientations was constructed. The beta-1,3-1,4-glucanase gene from Bacillus subtilis was fused to alpha-agglutinin and expressed under the control of the GAL1 promoter. alpha-galactosidase induced by the constitutive PGK1 promoter was used as a food-grade selection marker. The feasibility of the alpha-galactosidase marker was confirmed by the growth of transformants harboring the constructed vector on a medium containing melibiose as a sole carbon source, and by the clear halo around the transformants in Congo-red plates owing to the expression of beta-1,3-1,4-glucanase. The analysis of beta-1,3-1,4-glucanase activity in cell pellets and in the supernatant of the recombinant yeast strain revealed that beta-1,3-1,4-glucanase was successfully displayed on the cell surface of the yeast. The displayed beta-1,3-1,4-glucanase activity in the recombinant yeast cells increased immediately after the addition of galactose and reached 45.1 U/ml after 32-h induction. The thermal stability of beta-1,3-1,4-glucanase displayed in the recombinant yeast cells was enhanced compared with the free enzyme. These results suggest that the constructed food-grade yeast has the potential to improve the brewing properties of beer.
Collapse
Affiliation(s)
- Qin Guo
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ishida T, Fushinobu S, Kawai R, Kitaoka M, Igarashi K, Samejima M. Crystal structure of glycoside hydrolase family 55 {beta}-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J Biol Chem 2009; 284:10100-9. [PMID: 19193645 DOI: 10.1074/jbc.m808122200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Glycoside hydrolase family 55 consists of beta-1,3-glucanases mainly from filamentous fungi. A beta-1,3-glucanase (Lam55A) from the Basidiomycete Phanerochaete chrysosporium hydrolyzes beta-1,3-glucans in the exo-mode with inversion of anomeric configuration and produces gentiobiose in addition to glucose from beta-1,3/1,6-glucans. Here we report the crystal structure of Lam55A, establishing the three-dimensional structure of a member of glycoside hydrolase 55 for the first time. Lam55A has two beta-helical domains in a single polypeptide chain. These two domains are separated by a long linker region but are positioned side by side, and the overall structure resembles a rib cage. In the complex, a gluconolactone molecule is bound at the bottom of a pocket between the two beta-helical domains. Based on the position of the gluconolactone molecule, Glu-633 appears to be the catalytic acid, whereas the catalytic base residue could not be identified. The substrate binding pocket appears to be able to accept a gentiobiose unit near the cleavage site, and a long cleft runs from the pocket, in accordance with the activity of this enzyme toward various beta-1,3-glucan oligosaccharides. In conclusion, we provide important features of the substrate-binding site at the interface of the two beta-helical domains, demonstrating an unexpected variety of carbohydrate binding modes.
Collapse
Affiliation(s)
- Takuya Ishida
- Departments of Biomaterials Sciences and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Fariña JI, Viñarta SC, Cattaneo M, Figueroa LIC. Structural stability of Sclerotium rolfsii ATCC 201126 beta-glucan with fermentation time: a chemical, infrared spectroscopic and enzymatic approach. J Appl Microbiol 2008; 106:221-32. [PMID: 19054236 DOI: 10.1111/j.1365-2672.2008.03995.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS Sclerotium rolfsii ATCC 201126 exopolysaccharides (EPSs) recovered at 48 h (EPS I) and 72 h (EPS II) of fermentation, with differences in rheological parameters, hydrogel topography, salt tolerance, antisyneresis, emulsifying and suspending properties, were subjected to a polyphasic characterization in order to detect structural divergences. METHODS AND RESULTS Fermenter-scale production led to productivity (P(r)) and yield (Y(P/C)) values higher at 48 h (P(r) = 0.542 g l(-1) h(-1); Y(P/C) = 0.74) than at 72 h (P(r) = 0.336 g l(-1) h(-1); Y(P/C) = 0.50). Both EPSs were neutral glucose-homopolysaccharides with a beta-(1,3)-glycosidic backbone and single beta-(1,6)-glucopyranosyl sidechains regularly attached every three residues in the main chain, as revealed by chemical analyses. The infra-red diagnostic peak at 890 cm(-1) confirmed beta-glycosidic linkages, while gentiobiose released by beta-(1,3)-glucanases confirmed single beta-1,6-glycosidic branching for both EPSs. CONCLUSIONS The true modular repeating unit of S. rolfsii ATCC 201126 scleroglucan could be resolved. Structural stability was corroborated and no structural differences could be detected as to account for the variations in EPSs behaviour. SIGNIFICANCE AND IMPACT OF THE STUDY Recovery of S. rolfsii ATCC 201126 scleroglucan at 48 h might be considered based on better fermentation kinetic parameters and no detrimental effects on EPS structural features.
Collapse
Affiliation(s)
- J I Fariña
- PROIMI-CONICET (Planta Piloto de Procesos Industriales Microbiológicos), Tucumán, Argentina.
| | | | | | | |
Collapse
|
28
|
Abstract
Enzymatic methods provide a convenient alternative for overcoming technical disadvantages of mechanical disruption. Protocols for protein extraction from bacteria and Saccharomyces cerevisiae using lytic enzymes are presented in this chapter. Adaptation of the yeast protocol to a microtiter plate format makes this protocol amenable for proteomic applications and high-throughput screening of libraries expressing genetic variants in yeast. This methodology can also be applied to bacteria.
Collapse
|
29
|
Breccia J, Castro G, Baigorí M, Siñeriz F. Screening of xylanolytic bacteria using a colour plate method. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1365-2672.1995.tb03086.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Huang H, Yang P, Luo H, Tang H, Shao N, Yuan T, Wang Y, Bai Y, Yao B. High-level expression of a truncated 1,3-1,4-beta-D-glucanase from Fibrobacter succinogenes in Pichia pastoris by optimization of codons and fermentation. Appl Microbiol Biotechnol 2007; 78:95-103. [PMID: 18080120 DOI: 10.1007/s00253-007-1290-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 11/14/2007] [Accepted: 11/15/2007] [Indexed: 11/25/2022]
Abstract
1,3-1,4-beta-D-glucanase is an important endoglycosidase in the brewing and animal feed industries. To achieve high-level expression of recombinant glucanase in Pichia pastoris, we designed sequences encoding the alpha-factor signal peptide from Saccharomyces cerevisiae and the truncated 1,3-1,4-beta-D-glucanase from Fibrobacter succinogenes as a whole. The codons encoding the 52 amino acids of the signal peptide and 106 residues of the glucanase protein were optimized for expression in P. pastoris; 189 nucleotides were changed. The G + C content was adjusted to 48-49%, and AT-rich stretches were eliminated to avoid premature termination. The messenger ribonucleic acid secondary structure near the AUG start codon was also adjusted to ensure efficient translation; the resulting glucanase production was twofold higher compared with that achieved with gene structure optimization alone. We also propose a new fermentation strategy for the induction phase, in which 5/95% glycerol/methanol mixed feed was used in days 1-3 and 100% methanol was used on days 4-6. By comparison with methanol feed and glycerol/methanol-mixed feed alone, the yield of recombinant glucanase increased by 38.5 and 16.5%, respectively. The expressed optimized recombinant 1,3-1,4-beta-D-glucanase constituted approximately 90% of the total secreted protein, reaching up to 3 g l(-1) in the medium.
Collapse
Affiliation(s)
- Huoqing Huang
- Department of Microbial Engineering, Feed Research Institute, Chinese Academy of Agricultural Sciences, no. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Teng D, Fan Y, Yang YL, Tian ZG, Luo J, Wang JH. Codon optimization of Bacillus licheniformis beta-1,3-1,4-glucanase gene and its expression in Pichia pastoris. Appl Microbiol Biotechnol 2007; 74:1074-83. [PMID: 17216453 DOI: 10.1007/s00253-006-0765-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2006] [Revised: 11/13/2006] [Accepted: 11/14/2006] [Indexed: 10/23/2022]
Abstract
Beta-1,3-1,4-glucanase (EC3.2.1.73) as an important industrial enzyme has been widely used in the brewing and animal feed additive industry. To improve expression efficiency of recombinant beta-1,3-1,4-glucanase from Bacillus licheniformis EGW039(CGMCC 0635) in methylotrophic yeast Pichia pastoris GS115, the DNA sequence encoding beta-1,3-1,4-glucanase was designed and synthesized based on the codon bias of P. pastoris, the codons encoding 96 amino acids were optimized, in which a total of 102 nucleotides were changed, the G+C ratio was simultaneously increased from 43.6 to 45.5%. At shaking flask level, beta-1,3-1,4-glucanase activity is 67.9 and 52.3 U ml(-1) with barley beta-glucan and lichenan as substrate, respectively. At laboratory fermentor level, the secreted protein concentration is approximately 250 mg l(-1). The beta-1,3-1,4-glucanase activity is 333.7 and 256.7 U ml(-1) with barley beta-glucan and lichenan as substrate, respectively; however, no activity of this enzyme on cellulose is observed. Compared to the nonoptimized control, expression level of the optimized beta-1,3-1,4-glucanase based on preferred codons in P. pastoris shown a 10-fold higher level. The codon-optimized enzyme was approximately 53.8% of the total secreted protein. The optimal acidity and temperature of this recombinant enzyme were pH 6.0 and 45 degrees C, respectively.
Collapse
Affiliation(s)
- Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | | | | | | | | | | |
Collapse
|
32
|
Ferrer P. Revisiting the Cellulosimicrobium cellulans yeast-lytic beta-1,3-glucanases toolbox: a review. Microb Cell Fact 2006; 5:10. [PMID: 16545129 PMCID: PMC1458353 DOI: 10.1186/1475-2859-5-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Accepted: 03/17/2006] [Indexed: 11/10/2022] Open
Abstract
Cellulosimicrobium cellulans (also known with the synonyms Cellulomonas cellulans, Oerskovia xanthineolytica, and Arthrobacter luteus) is an actinomycete that excretes yeast cell wall lytic enzyme complexes containing endo-beta-1,3-glucanases [EC 3.2.1.39 and 3.2.1.6] as key constituents. Three genes encoding endo-beta-1,3-glucanases from two C. cellulans strains have been cloned and characterised over the past years. The betaglII and betaglIIA genes from strain DSM 10297 (also known as O. xanthineolytica LL G109) encoded proteins of 40.8 and 28.6 kDa, respectively, whereas the beta-1,3-glucanase gene from strain ATCC 21606 (also known as A. luteus 73-14) encoded a 54.5 kDa protein. Alignment of their deduced amino acid sequences reveal that betaglII and betaglIIA have catalytic domains assigned to family 16 of glycosyl hydrolases, whereas the catalytic domain from the 54.5 kDa glucanase belongs to family 64. Notably, both betaglII and the 54.5 kDa beta-1,3-glucanase are multidomain proteins, having a lectin-like C-terminal domain that has been assigned to family 13 of carbohydrate binding modules, and that confers to beta-1,3-glucanases the ability to lyse viable yeast cells. Furthermore, betaglII may also undergo posttranslational proteolytic processing of its C-terminal domain, resulting in a truncated enzyme retaining its glucanase activity but with very low yeast-lytic activity. In this review, the diversity in terms of structural and functional characteristics of the C. cellulans beta-1,3-glucanases has been compiled and compared.
Collapse
Affiliation(s)
- Pau Ferrer
- Department of Chemical Engineering, Universitat Autònoma de Barcelona, 08193- Bellaterra (Cerdanyola del Vallès), Spain.
| |
Collapse
|
33
|
Teng D, Wang JH, Fan Y, Yang YL, Tian ZG, Luo J, Yang GP, Zhang F. Cloning of beta-1,3-1,4-glucanase gene from Bacillus licheniformis EGW039 (CGMCC 0635) and its expression in Escherichia coli BL21 (DE3). Appl Microbiol Biotechnol 2006; 72:705-12. [PMID: 16470364 DOI: 10.1007/s00253-006-0329-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2005] [Revised: 01/07/2006] [Accepted: 01/08/2006] [Indexed: 10/25/2022]
Abstract
Beta-1,3-1,4-glucanase has been applied in the brewing and animal feed additive industry. It can effectively improve digestibility of barley-based diets and reduce enteritis. It also reduces viscosity during mashing for high-quality brewers malt. The aim of this work is to clone beta-1,3-1,4-glucanase-encoding gene and express it heterogeneously. The gene was amplified by polymerase chain reaction using Bacillus licheniformis genomic DNA as the template and ligated into the expression vector pET28a. The recombinant vector was transformed into Escherichia coli. The estimated molecular weight of the recombinant enzyme with a six-His tag at the N terminus was about 28 kDa, and its activities in cell lysate supernatant were 1,286 and 986 U ml(-1) for 1% (w/v) barley beta-glucan and 1% (w/v) lichenan, respectively. Accordingly, the specific activities were 2,479 and 1,906 U mg(-1) for these two substrates. The expression level of recombinant beta-1,3-1,4-glucanase was about 60.9% of the total protein and about 12.5% of the total soluble protein in crude cell lysate supernatant. Acidity and temperature optimal for this recombinant enzyme was pH 5.6 and 40 degrees C, respectively.
Collapse
Affiliation(s)
- Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Beijing 100081, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Amey RC, Mills PR, Bailey A, Foster GD. Investigating the role of a Verticillium fungicola beta-1,6-glucanase during infection of Agaricus bisporus using targeted gene disruption. Fungal Genet Biol 2003; 39:264-75. [PMID: 12892639 DOI: 10.1016/s1087-1845(03)00061-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Studies on the mycopathogen Verticillium fungicola have shown the up-regulation of beta-1,6-glucanases when grown in the presence of host cell walls and host cell wall components including chitin. These cell-wall-degrading enzymes are hypothesized to contribute to the pathogenic ability of mycopathogens. A beta-1,6-glucanase gene, VfGlu1, showing high similarity to beta-1,6-glucanase genes from Hypocrea virens, Neotyphodium sp., and Trichoderma harzianum, was isolated using degenerate PCR from V. fungicola, a serious mycopathogen of the cultivated mushroom Agaricus bisporus. Agrobacterium-mediated transformation of V. fungicola using homologous DNA from VfGlu1 resulted in homologous integration at the VfGlu1 locus in 75% of transformants, generating mutants disrupted in the VfGlu1 gene. VfGlu1 mutants displayed reduced virulence and diminished ability to utilize chitin as a carbon source, implicating VfGlu1 in the disease process. Agrobacterium-mediated transformation affords an efficient technique for the disruption of genes associated with disease symptom development in the complex V. fungicola-A. bisporus interaction.
Collapse
Affiliation(s)
- Richard C Amey
- School of Biological Sciences, University of Bristol, Woodland Road, BS8 1UG Bristol, UK
| | | | | | | |
Collapse
|
35
|
Palumbo JD, Sullivan RF, Kobayashi DY. Molecular characterization and expression in Escherichia coli of three beta-1,3-glucanase genes from Lysobacter enzymogenes strain N4-7. J Bacteriol 2003; 185:4362-70. [PMID: 12867444 PMCID: PMC165785 DOI: 10.1128/jb.185.15.4362-4370.2003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lysobacter enzymogenes strain N4-7 produces multiple biochemically distinct extracellular beta-1,3-glucanase activities. The gluA, gluB, and gluC genes, encoding enzymes with beta-1,3-glucanase activity, were identified by a reverse-genetics approach following internal amino acid sequence determination of beta-1,3-glucanase-active proteins partially purified from culture filtrates of strain N4-7. Analysis of gluA and gluC gene products indicates that they are members of family 16 glycoside hydrolases that have significant sequence identity to each other throughout the catalytic domain but that differ structurally by the presence of a family 6 carbohydrate-binding domain within the gluC product. Analysis of the gluB gene product indicates that it is a member of family 64 glycoside hydrolases. Expression of each gene in Escherichia coli resulted in the production of proteins with beta-1,3-glucanase activity. Biochemical analyses of the recombinant enzymes indicate that GluA and GluC exhibit maximal activity at pH 4.5 and 45 degrees C and that GluB is most active between pH 4.5 and 5.0 at 41 degrees C. Activity of recombinant proteins against various beta-1,3 glucan substrates indicates that GluA and GluC are most active against linear beta-1,3 glucans, while GluB is most active against the insoluble beta-1,3 glucan substrate zymosan A. These data suggest that the contribution of beta-1,3-glucanases to the biocontrol activity of L. enzymogenes may be due to complementary activities of these enzymes in the hydrolysis of beta-1,3 glucans from fungal cell walls.
Collapse
Affiliation(s)
- Jeffrey D Palumbo
- Department of Plant Biology and Pathology, Cook College, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | | | | |
Collapse
|
36
|
Miyanishi N, Matsubara Y, Hamada N, Kobayashi T, Imada C, Watanabe E. The action modes of an extracellular β-1,3-glucanase isolated from Bacillus clausii NM-1 on β-1,3-glucooligosaccharides. J Biosci Bioeng 2003. [DOI: 10.1016/s1389-1723(03)90093-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Sun L, Gurnon JR, Adams BJ, Graves MV, Van Etten JL. Characterization of a beta-1,3-glucanase encoded by chlorella virus PBCV-1. Virology 2000; 276:27-36. [PMID: 11021991 DOI: 10.1006/viro.2000.0500] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sequence analysis of the 330-kb chlorella virus PBCV-1 genome revealed an open-reading frame, A94L, that encodes a protein with significant amino acid identity to Glycoside Hydrolase Family 16 beta-1,3-glucanases. The a94l gene was cloned and the protein was expressed as a GST-A94L fusion protein in Escherichia coli. The recombinant A94L protein hydrolyzed the beta-1,3-glucose polymer laminarin and had slightly less hydrolytic activity on beta-1,3-1, 4-glucose polymers, lichenan and barley beta-glucan. The recombinant enzyme had the highest activity at 65 degrees C and pH 8. We predicted that the a94l-encoded beta-1,3-glucanase is involved in degrading the host cell wall either during virus release and/or is packaged in the virion particle and involved in virus entry. Therefore, we expected a94l to be expressed late in virus infection. However, contrary to expectations, both the a94l mRNA and the A94L protein appeared 15 min after PBCV-1 infection and disappeared 60- and 120-min p.i. postinfection, respectively, indicating that a94l is an early gene. Twenty-seven of 42 chlorella viruses contained the a94l gene. To our knowledge, this is the first report of a virus-encoded beta-1,3-glucanase.
Collapse
Affiliation(s)
- L Sun
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska, 68583-0722, USA
| | | | | | | | | |
Collapse
|
38
|
Pitson SM, Seviour RJ, McDougall BM. Purification and characterization of an extracellular beta-glucosidase from the filamentous fungus Acremonium persicinum and its probable role in beta-glucan degradation. Enzyme Microb Technol 1997; 21:182-90. [PMID: 9291624 DOI: 10.1016/s0141-0229(96)00263-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A beta-glucosidase from the culture filtrates of the filamentous fungus Acremonium persicinum has been purified by (NH4)2SO4 precipitation followed by anion-exchange and gel filtration chromatography. SDS-PAGE of the purified enzyme gave a single band with an apparent molecular mass of 128 kDa. The enzyme is a monomeric protein with an isoelectric point of 4.3 and a pH optimum of 5.5. Comparison of the N-terminal amino acid sequence revealed similarities between the A. persicinum enzyme and several other extracellular fungal beta-glucosidases including those from Trichoderma reesei, Aspergillus aculeatus, Saccharomycopsis fibuligera, and Pichia anomala. In addition to the hydrolysis of p-nitrophenyl-beta-glucoside, the enzyme was also active against several other aryl-beta-glucosides as well as a range of beta-linked oligoglucosides including laminaribiose, gentiobiose, cellobiose, and sophorose. D-Glucono-1,5-lactone and glucose are competitive inhibitors while the enzyme was also inhibited by N-bromosuccinimide, N-acetylimidazole, dicyclohexyl carbodiimide, Woodward's Reagent K, 2-hydroxy-5-nitrobenzyl bromide, KMnO4, and some metal ions. Possible roles for this enzyme in the noncellulolytic fungus A. persicinum are discussed in light of the increase in the rate of reducing sugar release from beta-glucans by (1-->3)- and (1-->6)-beta-glucanases when the beta-glucosidase is also present in the reaction mixtures.
Collapse
Affiliation(s)
- S M Pitson
- Biotechnology Research Centre, LaTrobe University, Bendigo, Victoria, Australia
| | | | | |
Collapse
|
39
|
van Rensburg P, van Zyl WH, Pretorius IS. Over-expression of the Saccharomyces cerevisiae exo-beta-1,3-glucanase gene together with the Bacillus subtilis endo-beta-1,3-1,4-glucanase gene and the Butyrivibrio fibrisolvens endo-beta-1,4-glucanase gene in yeast. J Biotechnol 1997; 55:43-53. [PMID: 9226961 DOI: 10.1016/s0168-1656(97)00059-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The EXG1 gene encoding the main Saccharomyces cerevisiae exo-beta-1,3-glucanase was cloned and over-expressed in yeast. The Bacillus subtilis endo-1,3-1,4-beta-glucanase gene (beg1) and the Butyrivibrio fibrisolvens endo-beta-1,4-glucanase gene (end1) were fused to the secretion signal sequence of the yeast mating pheromone alpha-factor (MF alpha 1S) and inserted between the yeast alcohol dehydrogenase II gene promoter (ADH2P) and terminator (ADH2T). Constructs ADH2P-MF alpha 1S-beg1-ADH2T and ADH2P-MF alpha 1S-end 1-ADH2T designated BEG1 and END1, respectively, were expressed separately and jointly with EXG1 in S. cerevisiae. The construction of fur 1 ura3 S. cerevisiae strains allowed for the autoselection of these multicopy URA3-based plasmids in rich medium. Enzyme assays confirmed that co-expression of EXG1, BEG1 and END1 enhanced glucan degradation by S. cerevisiae.
Collapse
Affiliation(s)
- P van Rensburg
- Institute for Wine Biotechnology, University of Stellenbosch, South Africa
| | | | | |
Collapse
|
40
|
Grigorova D, Roshkova Z, Pavlova K, Hristozova T. Protein isolates from Candida boidinii M-363 grown on methanol. Food Res Int 1997. [DOI: 10.1016/s0963-9969(97)00018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
41
|
Parrado J, Escuredo PR, Conejero-Lara F, Kotik M, Ponting CP, Asenjo JA, Dobson CM. Molecular characterisation of a thermoactive beta-1,3-glucanase from Oerskovia xanthineolytica. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1296:145-51. [PMID: 8814220 DOI: 10.1016/0167-4838(96)00062-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Molecular characterisation of a lytic thermoactive beta-1,3-glucanase from Oerskovia xanthineolytica LL-G109 has been performed. A molecular mass of 27 195.6 +/- 1.3 Da and an isoelectric point of 4.85 were determined by electrospray mass spectrometry and from its titration curve, respectively. Its thermoactivity profile shows it to be a heat-stable enzyme with a temperature optimum of 65 degrees C. The secondary structure content of the protein was estimated by circular dichroism to be approx. 25% alpha-helix, 7% random coil, and 68% beta-sheet and beta-turn structure. Nuclear magnetic resonance spectra confirm the high content of beta-structure. Furthermore, the presence of a compact hydrophobic core is indicated by the presence of slowly exchanging amide hydrogens and the enzyme's relatively high resistance to proteolysis. The N-terminal sequences of the intact protein and of a tryptic peptide each exhibit significant similarity to family 16 of glycosyl hydrolases whose overall fold is known to contain almost exclusively beta-sheets and surface loops. Moreover, the sequenced tryptic peptide appears to encompass residues of the Oerskovia xanthineolytica glucanase active site, since it contains a portion of the family 16 active-site motif E-[L/I/V]-D-[L/I/V]-E.
Collapse
Affiliation(s)
- J Parrado
- New Chemistry Laboratory, University of Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
42
|
Pitson SM, Seviour RJ, McDougall BM, Stone BA, Sadek M. Purification and characterization of an extracellular (1 --> 6)-beta-glucanase from the filamentous fungus Acremonium persicinum. Biochem J 1996; 316 ( Pt 3):841-6. [PMID: 8670160 PMCID: PMC1217426 DOI: 10.1042/bj3160841] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An endo-(1 --> 6)-beta-glucanase has been isolated from the culture filtrates of the filamentous fungus Acremonium persicinum and purified by (NH4)2SO4 precipitation followed by anion-exchange and gel-filtration chromatography. SDS/PAGE of the purified enzyme gave a single band with an apparent molecular mass of 42.7 kDa. The enzyme is a non-glycosylated, monomeric protein with a pI of 4.9 and pH optimum of 5.0. It hydrolysed (1 --> 6)-beta-glucans (pustulan and lutean), initially yielding a series of (1 --> 6)-beta-linked oligoglucosides, consistent with endo-hydrolytic action. Final hydrolysis products from these substrates were gentiobiose and gentiotriose, with all products released as beta-anomers, indicating that the enzyme acts with retention of configuration. The purified enzyme also hydrolysed Eisenia bicyclis laminarin, liberating glucose, gentiobiose, and a range of larger oligoglucosides, through the apparent bydrolysis of (1 --> 6)-beta- and some (1 --> 3)-beta-linkages in this substrate. K(m) values for pustulan, lutean and laminarin were 1.28, 1.38, and 1.67 mg/ml respectively. The enzyme was inhibited by N-acetylimidazole, N-bromosuccinimide, dicyclohexylcarbodi-imide, Woodward's Reagent K, 2-hydroxy-5-nitrobenzyl bromide, KMnO4 and some metal ions, whereas D-glucono-1,5-lactone and EDTA had no effect.
Collapse
Affiliation(s)
- S M Pitson
- Biotechnology Research Centre, La Trobe University Bendigo, Victoria, Australia
| | | | | | | | | |
Collapse
|
43
|
Ferrer P, Hedegaard L, Halkier T, Diers I, Savva D, Asenjo JA. Molecular cloning of a lytic beta-1,3-glucanase gene from Oerskovia xanthineolytica LLG109. A beta-1,3-glucanase able to selectively permeabilize the yeast cell wall. Ann N Y Acad Sci 1996; 782:555-65. [PMID: 8659924 DOI: 10.1111/j.1749-6632.1996.tb40593.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Molecular cloning of the beta gIII gene encoding for an endo-beta-1,3-glucanase (beta gl II) from Oerskovia xanthineolytica LLG109, a yeast-lytic gram-positive bacterium, has been conducted in order to elucidate its primary sequence and subsequently express it into B. subtilis. This endo-beta-1,3-glucanase exhibits low yeast-lytic activity toward viable S. cerevisiae cells, and it has shown ability to selectively permeabilize the yeast cell wall and release intracellular proteins produced by yeast. Highly degenerate oligonucleotides have been used to PCR-amplify a region of the beta-1,3-glucanase II encoding gene from O. xanthineolytica LLG109. The amplified fragment has been cloned and sequenced. The deduced amino acid sequence contains regions identical to the amino acid sequences previously determined by direct sequencing of the purified enzyme from O. xanthineolytica LLG109. By using the 180-bp PCR product as a homologous probe, we have been able to isolate four positive clones harboring plasmids pPF1A, pPF1B, pPF8A, and pPF9A, respectively, from a partial genomic library from O. xanthineolytica LLG109. All four plasmids contained a 2.7-kb BamHI insert that hybridized to the PCR probe under high stringency conditions. The 2.7-kb fragment seemed to be identical in all four cases regarding preliminary partial restriction mapping analysis done on the four plasmids. The 1.5-kb BamHI/KpnI restriction fragment from pPF8A and pPF9A hybridizing with the 180-bp PCR probe is presently being sequenced. The cloning of the lytic beta-1,3-glucanase from O. xanthineolytica LLG109 expands the number of yeast lytic beta-glucanases so far cloned. The availability of the nucleotide sequences of such a family of genes will allow further understanding of the role and mode of action of these enzymes in yeast cell wall degradation. In addition, a more extensive study on the structure and functional relationships of these enzymes will allow us to engineer "tailor-made" lytic beta-1,3-glucanases for use in new and improved large-scale selective cell permeabilization (SCP) and selective protein recovery (SPR) from yeast cells, not only from S. cerevisiae but also from alternative yeast expression systems such as Hansenula polymorpha, Pichia pastoris, and others, which are becoming of increasing importance in biotechnology.
Collapse
Affiliation(s)
- P Ferrer
- Biochemical Engineering Laboratory, University of Reading, England
| | | | | | | | | | | |
Collapse
|
44
|
Valois D, Fayad K, Barasubiye T, Garon M, Dery C, Brzezinski R, Beaulieu C. Glucanolytic Actinomycetes Antagonistic to Phytophthora fragariae var. rubi, the Causal Agent of Raspberry Root Rot. Appl Environ Microbiol 1996; 62:1630-5. [PMID: 16535313 PMCID: PMC1388851 DOI: 10.1128/aem.62.5.1630-1635.1996] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A collection of about 200 actinomycete strains was screened for the ability to grow on fragmented Phytophthora mycelium and to produce metabolites that inhibit Phytophthora growth. Thirteen strains were selected, and all produced (beta)-1,3-, (beta)-1,4-, and (beta)-1,6-glucanases. These enzymes could hydrolyze glucans from Phytophthora cell walls and cause lysis of Phytophthora cells. These enzymes also degraded other glucan substrates, such as cellulose, laminarin, pustulan, and yeast cell walls. Eleven strains significantly reduced the root rot index when inoculated on raspberry plantlets.
Collapse
|
45
|
Pitson SM, Seviour RJ, McDougall BM, Woodward JR, Stone BA. Purification and characterization of three extracellular (1-->3)-beta-D-glucan glucohydrolases from the filamentous fungus Acremonium persicinum. Biochem J 1995; 308 ( Pt 3):733-41. [PMID: 8948426 PMCID: PMC1136786 DOI: 10.1042/bj3080733] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Three (1-->3)-beta-D-glucanases (GNs) were isolated from the culture filtrates of the filamentous fungus Acremonium persicinum and purified by (NH4)2SO4 precipitation followed by anion-exchange and gel-filtration chromatography. Homogeneity of the purified proteins was confirmed by SDS/PAGE, isoelectric focusing and N-terminal amino acid sequencing. All three GNs (GN I, II and III) are non-glycosylated, monomeric proteins with apparent molecular masses, estimated by SDS/PAGE, of 81, 85 and 89 kDa respectively. pI values for the three enzymes are 5.3, 5.1, and 4.4 respectively. The pH optimum for GN I is 6.5, and 5.0 for GN II and III. All three purified enzymes displayed stability over the pH range 4.5-10.0. Optimum activities for GN I, II and III were recorded at 65, 55 and 60 degrees C respectively, with both GN II and III having short-term stability up to 50 degrees C and GN I up to 55 degrees C. The purified GNs have high specificity for (1-->3)-beta-linkages and hydrolysed a range of (1-->3)-beta- and (1-->3)(1-->6)-beta-D-glucans, with laminarin from Laminaria digitata being the most rapidly hydrolysed substrate of those tested. K(m) values for GN I, II, and III against L. digitata laminarin were 0.1, 0.23 and 0.22 mg/ml respectively. D-Glucono-1,5-lactone does not inhibit any of the three GNs, some metals ions are mild inhibitors, and N-bromosuccinimide and KMnO4 are strong inhibitors. All three GNs acted in an exo-hydrolytic manner, determined by the release of alpha-glucose as the initial and major product of hydrolysis of (1-->3)-beta-D-glucans, and confirmed by viscometric analysis and the inability to cleave periodate-oxidized laminarin, and may be classified as (1-->3)-beta-D-glucan glucohydrolases (EC 3.2.1.58).
Collapse
Affiliation(s)
- S M Pitson
- Biotechnology Research Centre, La Trobe University, Bendigo, Victoria, Australia
| | | | | | | | | |
Collapse
|
46
|
Pitson SM, Seviour RJ, McDougall BM. Noncellulolytic fungal beta-glucanases: their physiology and regulation. Enzyme Microb Technol 1993; 15:178-92. [PMID: 7763458 DOI: 10.1016/0141-0229(93)90136-p] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The occurrence, regulation, and action of fungal enzymes capable of degrading noncellulosic beta-glucans, especially 1,3-beta- and 1,6-beta-glucans, are reviewed. Special consideration is given to their roles in both metabolic and morphogenetic events in the fungal cell, including cell wall extension, hyphal branching, sporulation, budding, and autolysis. Also examined are the protocols currently available for their purification, with some of the properties of purified beta-glucanases discussed in terms of their potential applications in industrial, agricultural, and medical fields.
Collapse
Affiliation(s)
- S M Pitson
- Biotechnology Research Centre, La Trobe University College of Northern Victoria, Bendigo, Australia
| | | | | |
Collapse
|
47
|
van Tilburg AU, Thomas MD. Production of Extracellular Proteins by the Biocontrol Fungus
Gliocladium virens. Appl Environ Microbiol 1993; 59:236-42. [PMID: 16348848 PMCID: PMC202084 DOI: 10.1128/aem.59.1.236-242.1993] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gliocladium virens
is a common saprophytic fungus that is mycoparasitic on a large number of fungi. Responses of
G. virens
toward its environment were examined by monitoring the presence of extracellular proteins in culture fluid during time course experiments. Culture fluid of
G. virens
grown on glucose, washed cell walls of
Rhizoctonia solani
(one of its hosts), olive oil, or chitin contained β-glucanase,
N
-acetylglucosaminidase, lipase, and proteinase activities. There were relatively minor amounts of other enzymatic activities tested. Levels of extracellular enzyme activity varied with the age of the culture and the substrate used as the carbon source. Substrate-associated differences in enzyme activities were detected as early as 8 h after transfer of mycelia from stationary-phase cultures to fresh media. When
G. virens
was grown on host cell wall material, β-glucanase had the greatest specific activity of any enzyme tested at 8 h. This result suggests that β-glucanase may be the first enzyme important in the
G. virens-R. solani
interaction. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that some of the polypeptides were present in the culture fluid at relatively constant amounts and others accumulated early, at intermediate times, or late in the 8-day incubation test period. Several of the polypeptides present in the culture fluid during the first 24 h disappeared completely by 48 h. Consequently, it appears that extracellular proteins in cultures of
G. virens
are regulated by a combination of gene regulation and protein degradation.
Collapse
Affiliation(s)
- A U van Tilburg
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | | |
Collapse
|