1
|
Fukada Y, Inomata S, Kataoka M. Relationship between oriT length and efficiency of RP4-mediated conjugation from Escherichia coli to Gram-positive bacteria. Biosci Biotechnol Biochem 2024; 89:133-140. [PMID: 39500544 DOI: 10.1093/bbb/zbae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/27/2024] [Indexed: 12/24/2024]
Abstract
In RP4 conjugation, approximately 350 bp of the origin of transfer (oriT) is required for transfer. Within this oriT, there are binding regions for the transfer-related proteins TraI, TraK, and TraJ. We investigated the influence of deleting each protein-binding region within oriT on transfer efficiency in Escherichia coli, Streptomyces lividans, and Bacillus subtilis. The deletion of the TraI-binding region completely abolished transfer in all species. The partial deletion of the TraK-binding region had a minimal impact when targeting but affected efficiency when targeting B. subtilis. The deletion of the TraJ-binding region completely abolished transfer in E. coli and B. subtilis but only reduced efficiency in S. lividans. This is the first report to investigate the influence of each region within oriT on transfer efficiency in S. lividans and B. subtilis, suggesting that the length of oriT required for effective RP4 conjugation varies when targeting Gram-positive bacteria.
Collapse
Affiliation(s)
- Yuta Fukada
- Department of Biomedical Engineering, Graduate School of Shinshu University, Nagano, Japan
| | - Shunsuke Inomata
- Department of Biomedical Engineering, Graduate School of Shinshu University, Nagano, Japan
| | - Masakazu Kataoka
- Department of Biomedical Engineering, Graduate School of Shinshu University, Nagano, Japan
| |
Collapse
|
2
|
Vicente RL, Marín S, Valverde JR, Palomino C, Mellado RP, Gullón S. Functional identification of a Streptomyces lividans FKBP-like protein involved in the folding of overproduced secreted proteins. Open Biol 2019; 9:190201. [PMID: 31662098 PMCID: PMC6833217 DOI: 10.1098/rsob.190201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/01/2019] [Indexed: 01/21/2023] Open
Abstract
Some bacterial peptidyl-prolyl cis/trans isomerases (PPIases) are involved in secretory protein folding after the translocation step. Streptomyces lividans has been used as a host for engineering extracellular overproduction of homologous and heterologous proteins in industrial applications. Although the mechanisms governing the major secretory pathway (Sec route) and the minor secretory pathway (Tat route) are reasonably well described, the function of proteins responsible for the extracellular secretory protein folding is not characterized as yet. We have characterized a Tat-dependent S. lividans FK506-binding protein-like lipoprotein (FKBP) that has PPIase activity. A mutant in the sli-fkbp gene induces a secretion stress response and affects secretion and activity of the Sec-dependent protein α-amylase. Additionally, propagation in high copy number of the sli-fkbp gene has a positive effect on the activity of both the overproduced α-amylase and the overproduced Tat-dependent agarase, both containing proline cis isomers. Targeted proteomic analyses showed that a relevant group of secreted proteins in S. lividans TK21 are affected by Sli-FKBP, revealing a wide substrate range. The results obtained indicate that, regardless of the secretory route used by proteins in S. lividans, adjusting the expression of sli-fkbp may facilitate folding of dependent proteins when engineering Streptomyces strains for the overproduction of homologous or heterologous secretory proteins.
Collapse
Affiliation(s)
- R. L. Vicente
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049 Madrid, Spain
| | - S. Marín
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049 Madrid, Spain
| | - J. R. Valverde
- Scientific Computing Service, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049 Madrid, Spain
| | - C. Palomino
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049 Madrid, Spain
| | - R. P. Mellado
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049 Madrid, Spain
| | - S. Gullón
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
3
|
Pham JV, Yilma MA, Feliz A, Majid MT, Maffetone N, Walker JR, Kim E, Cho HJ, Reynolds JM, Song MC, Park SR, Yoon YJ. A Review of the Microbial Production of Bioactive Natural Products and Biologics. Front Microbiol 2019; 10:1404. [PMID: 31281299 PMCID: PMC6596283 DOI: 10.3389/fmicb.2019.01404] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/04/2019] [Indexed: 12/24/2022] Open
Abstract
A variety of organisms, such as bacteria, fungi, and plants, produce secondary metabolites, also known as natural products. Natural products have been a prolific source and an inspiration for numerous medical agents with widely divergent chemical structures and biological activities, including antimicrobial, immunosuppressive, anticancer, and anti-inflammatory activities, many of which have been developed as treatments and have potential therapeutic applications for human diseases. Aside from natural products, the recent development of recombinant DNA technology has sparked the development of a wide array of biopharmaceutical products, such as recombinant proteins, offering significant advances in treating a broad spectrum of medical illnesses and conditions. Herein, we will introduce the structures and diverse biological activities of natural products and recombinant proteins that have been exploited as valuable molecules in medicine, agriculture and insect control. In addition, we will explore past and ongoing efforts along with achievements in the development of robust and promising microorganisms as cell factories to produce biologically active molecules. Furthermore, we will review multi-disciplinary and comprehensive engineering approaches directed at improving yields of microbial production of natural products and proteins and generating novel molecules. Throughout this article, we will suggest ways in which microbial-derived biologically active molecular entities and their analogs could continue to inspire the development of new therapeutic agents in academia and industry.
Collapse
Affiliation(s)
- Janette V. Pham
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Mariamawit A. Yilma
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Adriana Feliz
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Murtadha T. Majid
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Nicholas Maffetone
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Jorge R. Walker
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Eunji Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea
| | - Hyo Je Cho
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, South Korea
| | - Jared M. Reynolds
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Myoung Chong Song
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea
| | - Sung Ryeol Park
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
- Natural Products Discovery Institute, Doylestown, PA, United States
| | - Yeo Joon Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
4
|
Shivalee A, Lingappa K, Mahesh D. Influence of bioprocess variables on the production of extracellular chitinase under submerged fermentation by Streptomyces pratensis strain KLSL55. J Genet Eng Biotechnol 2018; 16:421-426. [PMID: 30733755 PMCID: PMC6353736 DOI: 10.1016/j.jgeb.2017.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/12/2017] [Accepted: 12/29/2017] [Indexed: 11/23/2022]
Abstract
Chitinases are the enzymes which are capable of hydrolyzing chitin to its monomer N-acetyl glucosamine (GlcNac). Present study emphasizes on the impact of critical process variables on the production of chitinase from Streptomyces pratensis strain KLSL55. Initially the isolate was noticed to produce 84.67 IU chitinase in basal production medium. At optimization of bioprocess variables, the physical parameters pH of 8.00, 40 °C of incubation temperature, agitation speed of 160 rpm and 1.25 mL of spore suspension were found optimum for improved production of chitinase. Further, formulated production medium with 1.5% colloidal chitin, 1.25% fructose greatly influenced the chitinase production. At all described optimum conditions with formulated production media, a total of 14.30-fold increment was achieved in the chitinase production with final activity of 1210.67 IU when compared to the initial fermentation conditions in basal production medium.
Collapse
Affiliation(s)
| | - K. Lingappa
- Department of Post Graduate Studies and Research in Microbiology, Gulbarga University, Kalaburagi 585106, Karnataka, India
| | | |
Collapse
|
5
|
Wang P, Liu Z, Huang Y. Complete genome sequence of soil actinobacteria Streptomyces cavourensis TJ430. J Basic Microbiol 2018; 58:1083-1090. [PMID: 30240023 DOI: 10.1002/jobm.201800181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/02/2018] [Accepted: 08/11/2018] [Indexed: 12/28/2022]
Abstract
A new actinobacteria Streptomyces cavourensis TJ430 was isolated from the mountain soil collected from the southwest of China. In previous study, TJ430 showed striking bactericidal activities and strong ability of antibiotic production. Here, we report complete genome of this bacterium, consisting of 7.6 Mb linear chromosome and 0.2 Mb plasmids. It was predicted 6450 genes in chromosome and 225 genes in plasmids, as well as 12 gene islands in chromosome. Abundant genes have predicted functions in antibiotic metabolism and stress resistance. A whole-genome comparison of S. cavourensis TJ430, S. coelicolor A3(2), and S. lividans 66 indicates that TJ430 has a relatively high degree of strain specificity. The 16S rRNA phylogenetic tree shows the high identities (99.79%) of TJ430 with S. cavourensis DSM40300. TJ430 is a new and rare Streptomyces species, and analysis of its genome helps us to better understand primary metabolism mechanism of this isolate, as well as the evolutionary biology.
Collapse
Affiliation(s)
- Peipei Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, China
| | - Zhongqi Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, China
| | - Yongchun Huang
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, China
| |
Collapse
|
6
|
Busche T, Tsolis KC, Koepff J, Rebets Y, Rückert C, Hamed MB, Bleidt A, Wiechert W, Lopatniuk M, Yousra A, Anné J, Karamanou S, Oldiges M, Kalinowski J, Luzhetskyy A, Economou A. Multi-Omics and Targeted Approaches to Determine the Role of Cellular Proteases in Streptomyces Protein Secretion. Front Microbiol 2018; 9:1174. [PMID: 29915569 PMCID: PMC5994538 DOI: 10.3389/fmicb.2018.01174] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/15/2018] [Indexed: 01/29/2023] Open
Abstract
Gram-positive Streptomyces bacteria are profuse secretors of polypeptides using complex, yet unknown mechanisms. Many of their secretory proteins are proteases that play important roles in the acquisition of amino acids from the environment. Other proteases regulate cellular proteostasis. To begin dissecting the possible role of proteases in Streptomyces secretion, we applied a multi-omics approach. We probed the role of the 190 proteases of Streptomyces lividans strain TK24 in protein secretion in defined media at different stages of growth. Transcriptomics analysis revealed transcripts for 93% of these proteases and identified that 41 of them showed high abundance. Proteomics analysis identified 57 membrane-embedded or secreted proteases with variations in their abundance. We focused on 17 of these proteases and putative inhibitors and generated strains deleted of their genes. These were characterized in terms of their fitness, transcriptome and secretome changes. In addition, we performed a targeted analysis in deletion strains that also carried a secretion competent mRFP. One strain, carrying a deletion of the gene for the regulatory protease FtsH, showed significant global changes in overall transcription and enhanced secretome and secreted mRFP levels. These data provide a first multi-omics effort to characterize the complex regulatory mechanisms of protein secretion in Streptomyces lividans and lay the foundations for future rational manipulation of this process.
Collapse
Affiliation(s)
- Tobias Busche
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany.,Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Konstantinos C Tsolis
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Joachim Koepff
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Jülich, Germany
| | - Yuriy Rebets
- Helmholtz-Zentrum für Infektionsforschung GmbH, Braunschweig, Germany.,Pharmazeutische Biotechnologie, Universität des Saarlandes, Saarbrücken, Germany
| | | | - Mohamed B Hamed
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium.,Department of Molecular Biology, National Research Centre, Giza, Egypt
| | - Arne Bleidt
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Jülich, Germany
| | - Wolfgang Wiechert
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Jülich, Germany
| | - Mariia Lopatniuk
- Pharmazeutische Biotechnologie, Universität des Saarlandes, Saarbrücken, Germany
| | - Ahmed Yousra
- Pharmazeutische Biotechnologie, Universität des Saarlandes, Saarbrücken, Germany
| | - Jozef Anné
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Spyridoula Karamanou
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Marco Oldiges
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Jülich, Germany.,Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Andriy Luzhetskyy
- Helmholtz-Zentrum für Infektionsforschung GmbH, Braunschweig, Germany
| | - Anastassios Economou
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Gullón S, Mellado RP. The Cellular Mechanisms that Ensure an Efficient Secretion in Streptomyces. Antibiotics (Basel) 2018; 7:E33. [PMID: 29661993 PMCID: PMC6022935 DOI: 10.3390/antibiotics7020033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 01/01/2023] Open
Abstract
Gram-positive soil bacteria included in the genus Streptomyces produce a large variety of secondary metabolites in addition to extracellular hydrolytic enzymes. From the industrial and commercial viewpoints, the S. lividans strain has generated greater interest as a host bacterium for the overproduction of homologous and heterologous hydrolytic enzymes as an industrial application, which has considerably increased scientific interest in the characterization of secretion routes in this bacterium. This review will focus on the secretion machinery in S. lividans.
Collapse
Affiliation(s)
- Sonia Gullón
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049 Madrid, Spain.
| | - Rafael P Mellado
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
8
|
Tsolis KC, Tsare EP, Orfanoudaki G, Busche T, Kanaki K, Ramakrishnan R, Rousseau F, Schymkowitz J, Rückert C, Kalinowski J, Anné J, Karamanou S, Klapa MI, Economou A. Comprehensive subcellular topologies of polypeptides in Streptomyces. Microb Cell Fact 2018; 17:43. [PMID: 29544487 PMCID: PMC5853079 DOI: 10.1186/s12934-018-0892-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/08/2018] [Indexed: 11/10/2022] Open
Abstract
Background Members of the genus Streptomyces are Gram-positive bacteria that are used as important cell factories to produce secondary metabolites and secrete heterologous proteins. They possess some of the largest bacterial genomes and thus proteomes. Understanding their complex proteomes and metabolic regulation will improve any genetic engineering approach. Results Here, we performed a comprehensive annotation of the subcellular localization of the proteome of Streptomyces lividans TK24 and developed the Subcellular Topology of Polypeptides in Streptomyces database (SToPSdb) to make this information widely accessible. We first introduced a uniform, improved nomenclature that re-annotated the names of ~ 4000 proteins based on functional and structural information. Then protein localization was assigned de novo using prediction tools and edited by manual curation for 7494 proteins, including information for 183 proteins that resulted from a recent genome re-annotation and are not available in current databases. The S. lividans proteome was also linked with those of other model bacterial strains including Streptomyces coelicolor A3(2) and Escherichia coli K-12, based on protein homology, and can be accessed through an open web interface. Finally, experimental data derived from proteomics experiments have been incorporated and provide validation for protein existence or topology for 579 proteins. Proteomics also reveals proteins released from vesicles that bleb off the membrane. All export systems known in S. lividans are also presented and exported proteins assigned export routes, where known. Conclusions SToPSdb provides an updated and comprehensive protein localization annotation resource for S. lividans and other streptomycetes. It forms the basis for future linking to databases containing experimental data of proteomics, genomics and metabolomics studies for this organism. Electronic supplementary material The online version of this article (10.1186/s12934-018-0892-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Konstantinos C Tsolis
- Laboratory of Molecular Bacteriology, Dpt. of Microbiology and Immunology, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Evridiki-Pandora Tsare
- Metabolic Engineering & Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patras, Greece.,Department of General Biology, School of Medicine, University of Patras, Patras, Greece
| | - Georgia Orfanoudaki
- Institute of Molecular Biology and Biotechnology-FoRTH, P.O. Box 1385, Iraklio, Crete, Greece
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Universität Bielefeld, 33594, Bielefeld, Germany
| | - Katerina Kanaki
- Institute of Molecular Biology and Biotechnology-FoRTH, P.O. Box 1385, Iraklio, Crete, Greece
| | - Reshmi Ramakrishnan
- VIB-KU Leuven Center for Brain & Disease Research and VIB Switch Laboratory, Department for Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Frederic Rousseau
- VIB-KU Leuven Center for Brain & Disease Research and VIB Switch Laboratory, Department for Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Joost Schymkowitz
- VIB-KU Leuven Center for Brain & Disease Research and VIB Switch Laboratory, Department for Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Christian Rückert
- Center for Biotechnology (CeBiTec), Universität Bielefeld, 33594, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Universität Bielefeld, 33594, Bielefeld, Germany
| | - Jozef Anné
- Laboratory of Molecular Bacteriology, Dpt. of Microbiology and Immunology, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Spyridoula Karamanou
- Laboratory of Molecular Bacteriology, Dpt. of Microbiology and Immunology, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Maria I Klapa
- Metabolic Engineering & Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patras, Greece
| | - Anastassios Economou
- Laboratory of Molecular Bacteriology, Dpt. of Microbiology and Immunology, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
9
|
Substrate Recognition and Specificity of Chitin Deacetylases and Related Family 4 Carbohydrate Esterases. Int J Mol Sci 2018; 19:ijms19020412. [PMID: 29385775 PMCID: PMC5855634 DOI: 10.3390/ijms19020412] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/27/2022] Open
Abstract
Carbohydrate esterases family 4 (CE4 enzymes) includes chitin and peptidoglycan deacetylases, acetylxylan esterases, and poly-N-acetylglucosamine deacetylases that act on structural polysaccharides, altering their physicochemical properties, and participating in diverse biological functions. Chitin and peptidoglycan deacetylases are not only involved in cell wall morphogenesis and remodeling in fungi and bacteria, but they are also used by pathogenic microorganisms to evade host defense mechanisms. Likewise, biofilm formation in bacteria requires partial deacetylation of extracellular polysaccharides mediated by poly-N-acetylglucosamine deacetylases. Such biological functions make these enzymes attractive targets for drug design against pathogenic fungi and bacteria. On the other side, acetylxylan esterases deacetylate plant cell wall complex xylans to make them accessible to hydrolases, making them attractive biocatalysts for biomass utilization. CE4 family members are metal-dependent hydrolases. They are highly specific for their particular substrates, and show diverse modes of action, exhibiting either processive, multiple attack, or patterned deacetylation mechanisms. However, the determinants of substrate specificity remain poorly understood. Here, we review the current knowledge on the structure, activity, and specificity of CE4 enzymes, focusing on chitin deacetylases and related enzymes active on N-acetylglucosamine-containing oligo and polysaccharides.
Collapse
|
10
|
Koepff J, Morschett H, Busche T, Winkler A, Kalinowski J, Wiechert W, Oldiges M. Differential transcriptomic analysis reveals hidden light response in Streptomyces lividans. Biotechnol Prog 2017; 34:287-292. [DOI: 10.1002/btpr.2566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/25/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Joachim Koepff
- Inst. of Bio- and Geosciences, IBG-1: Biotechnology; Jülich Germany
| | - Holger Morschett
- Inst. of Bio- and Geosciences, IBG-1: Biotechnology; Jülich Germany
| | - Tobias Busche
- Bielefeld University, Center for Biotechnology (CeBiTec), Microbial Genomics and Biotechnology; Bielefeld Germany
| | - Anika Winkler
- Bielefeld University, Center for Biotechnology (CeBiTec), Microbial Genomics and Biotechnology; Bielefeld Germany
| | - Jörn Kalinowski
- Bielefeld University, Center for Biotechnology (CeBiTec), Microbial Genomics and Biotechnology; Bielefeld Germany
| | - Wolfgang Wiechert
- Inst. of Bio- and Geosciences, IBG-1: Biotechnology; Jülich Germany
- RWTH Aachen University, Computational Systems Biotechnology, Aachener Verfahrenstechnik; Aachen Germany
| | - Marco Oldiges
- Inst. of Bio- and Geosciences, IBG-1: Biotechnology; Jülich Germany
- RWTH Aachen University, Inst. of Biotechnology; Aachen Germany
| |
Collapse
|
11
|
Koepff J, Keller M, Tsolis KC, Busche T, Rückert C, Hamed MB, Anné J, Kalinowski J, Wiechert W, Economou A, Oldiges M. Fast and reliable strain characterization of Streptomyces lividans
through micro-scale cultivation. Biotechnol Bioeng 2017; 114:2011-2022. [DOI: 10.1002/bit.26321] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/15/2017] [Accepted: 04/17/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Joachim Koepff
- Forschungszentrum Jülich GmbH; Institute of Bio- and Geosciences; IBG-1: Biotechnology; Leo-Brandt-Straße 52428 Jülich Germany
| | - Matthias Keller
- Forschungszentrum Jülich GmbH; Institute of Bio- and Geosciences; IBG-1: Biotechnology; Leo-Brandt-Straße 52428 Jülich Germany
| | - Konstantinos C. Tsolis
- Laboratory of Molecular Bacteriology; Department of Microbiology and Immunology; Rega Institute for Medical Research; KU Leuven-University of Leuven; Leuven Belgium
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Microbial Genomics and Biotechnology; Bielefeld University; Bielefeld Germany
| | - Christian Rückert
- Center for Biotechnology (CeBiTec), Microbial Genomics and Biotechnology; Bielefeld University; Bielefeld Germany
| | - Mohamed B. Hamed
- Laboratory of Molecular Bacteriology; Department of Microbiology and Immunology; Rega Institute for Medical Research; KU Leuven-University of Leuven; Leuven Belgium
- Department of Molecular Biology Department; The National Research Centre, Dokki; Giza Egypt
| | - Jozef Anné
- Laboratory of Molecular Bacteriology; Department of Microbiology and Immunology; Rega Institute for Medical Research; KU Leuven-University of Leuven; Leuven Belgium
| | - Joern Kalinowski
- Center for Biotechnology (CeBiTec), Microbial Genomics and Biotechnology; Bielefeld University; Bielefeld Germany
| | - Wolfgang Wiechert
- Forschungszentrum Jülich GmbH; Institute of Bio- and Geosciences; IBG-1: Biotechnology; Leo-Brandt-Straße 52428 Jülich Germany
| | - Anastassios Economou
- Laboratory of Molecular Bacteriology; Department of Microbiology and Immunology; Rega Institute for Medical Research; KU Leuven-University of Leuven; Leuven Belgium
| | - Marco Oldiges
- Forschungszentrum Jülich GmbH; Institute of Bio- and Geosciences; IBG-1: Biotechnology; Leo-Brandt-Straße 52428 Jülich Germany
- Institute of Biotechnology; RWTH Aachen University; Worringer Weg 3 52074 Aachen Germany
| |
Collapse
|
12
|
Sakdapetsiri C, Fukuta Y, Aramsirirujiwet Y, Shirasaka N, Kitpreechavanich V. Antagonistic activity of endo-β-1,3-glucanase from a novel isolate,Streptomycessp. 9X166, against black rot in orchids. J Basic Microbiol 2016; 56:469-79. [DOI: 10.1002/jobm.201500709] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/27/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Chatsuda Sakdapetsiri
- Faculty of Science, Department of Microbiology; Kasetsart University; Lat Yao, Chatuchak Bangkok Thailand
| | - Yasuhisa Fukuta
- Faculty of Agriculture, Laboratory of Food Microbiological Science and Biotechnology; Kinki University; Nakamachi Nara City Nara Japan
| | - Yaovapa Aramsirirujiwet
- Faculty of Science, Department of Microbiology; Kasetsart University; Lat Yao, Chatuchak Bangkok Thailand
| | - Norifumi Shirasaka
- Faculty of Agriculture, Laboratory of Food Microbiological Science and Biotechnology; Kinki University; Nakamachi Nara City Nara Japan
| | - Vichien Kitpreechavanich
- Faculty of Science, Department of Microbiology; Kasetsart University; Lat Yao, Chatuchak Bangkok Thailand
| |
Collapse
|
13
|
Yu L, Gao W, Li S, Pan Y, Liu G. GntR family regulator SCO6256 is involved in antibiotic production and conditionally regulates the transcription of myo-inositol catabolic genes in Streptomyces coelicolor A3(2). MICROBIOLOGY-SGM 2016; 162:537-551. [PMID: 26744083 DOI: 10.1099/mic.0.000235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SCO6256 belongs to the GntR family and shows 74% identity with SCO6974, which is the repressor of myo-inositol catabolism in Streptomyces coelicolor A3(2). Disruption of SCO6256 significantly enhanced the transcription of myo-inositol catabolic genes in R2YE medium. The purified recombinant SCO6256 directly bound to the upstream regions of SCO2727, SCO6978 and SCO6985, as well as its encoding gene. Footprinting assays demonstrated that SCO6256 bound to the same sites in the myo-inositol catabolic gene cluster as SCO6974. The expression of SCO6256 was repressed by SCO6974 in minimal medium with myo-inositol as the carbon source, but not in R2YE medium. Glutathione-S-transferase pull-down assays demonstrated that SCO6974 and SCO6256 interacted with each other; and both of the proteins controlled the transcription of myo-inositol catabolic genes in R2YE medium. These results indicated SCO6256 regulates the transcription of myo-inositol catabolic genes in coordination with SCO6974 in R2YE medium. In addition, SCO6256 negatively regulated the production of actinorhodin and calcium-dependent antibiotic via control of the transcription of actII-ORF4 and cdaR. SCO6256 bound to the upstream region of cdaR and the binding sequence was proved to be TTTCGGCACGCAGACAT, which was further confirmed through base substitution. Four putative targets (SCO2652, SCO4034, SCO4237 and SCO6377) of SCO6256 were found by screening the genome sequence of Strep. coelicolor A3(2) based on the conserved binding motif, and confirmed by transcriptional analysis and electrophoretic mobility shift assays. These results revealed that SCO6256 is involved in the regulation of myo-inositol catabolic gene transcription and antibiotic production in Strep. coelicolor A3(2).
Collapse
Affiliation(s)
- Lingjun Yu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.,University of the Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wenyan Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Shuxian Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yuanyuan Pan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Gang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
14
|
Gullón S, Marín S, Mellado RP. Overproduction of a Model Sec- and Tat-Dependent Secretory Protein Elicits Different Cellular Responses in Streptomyces lividans. PLoS One 2015. [PMID: 26200356 PMCID: PMC4511581 DOI: 10.1371/journal.pone.0133645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Streptomyces lividans is considered an efficient host for the secretory production of homologous and heterologous proteins. To identify possible bottlenecks in the protein production process, a comparative transcriptomic approach was adopted to study cellular responses during the overproduction of a Sec-dependent model protein (alpha-amylase) and a Tat-dependent model protein (agarase) in Streptomyces lividans. The overproduction of the model secretory proteins via the Sec or the Tat route in S. lividans does elicit a different major cell response in the bacterium. The stringent response is a bacterial response to nutrients’ depletion, which naturally occurs at late times of the bacterial cell growth. While the induction of the stringent response at the exponential phase of growth may limit overall productivity in the case of the Tat route, the induction of that response does not take place in the case of the Sec route, which comparatively is an advantage in secretory protein production processes. Hence, this study identifies a potential major drawback in the secretory protein production process depending on the secretory route, and provides clues to improving S. lividans as a protein production host.
Collapse
Affiliation(s)
- Sonia Gullón
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049, Madrid, Spain
| | - Silvia Marín
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049, Madrid, Spain
| | - Rafael P. Mellado
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049, Madrid, Spain
- * E-mail:
| |
Collapse
|
15
|
Production, optimization and evaluation of multicomponent holocellulase produced by Streptomyces sp. ssr-198. J Taiwan Inst Chem Eng 2014. [DOI: 10.1016/j.jtice.2014.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Rabbind Singh A, Senthamaraikannan P, Thangavel C, Danda R, Pandian SK, Dharmalingam K. ChiS histidine kinase negatively regulates the production of chitinase ChiC in Streptomyces peucetius. Microbiol Res 2014; 169:155-62. [PMID: 23972296 DOI: 10.1016/j.micres.2013.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/06/2013] [Accepted: 07/06/2013] [Indexed: 10/26/2022]
Abstract
Computational analysis of sequence homology of the chiSRC gene cluster, encoding a chitinase in Streptomyces peucetius, showed that the gene cluster could be a two-component regulon comprising a sensor kinase (chiS) and a response regulator (chiR). To prove that the ChiSRC is an authentic two-component system, the chiS gene was cloned and expressed in E.coli and the purified protein was used for biochemical analysis. In this report, we provide biochemical evidence to show that the sensor kinase encoded by chiS gene indeed is a histidine kinase capable of autophosphorylation and the histidine 144 residue of the ChiS protein is the phosphate acceptor. An insertion mutation at the chiS locus led to overproduction chitinase protein in S. peucetius implying that the chiC gene is negatively regulated by the two-component system.
Collapse
Affiliation(s)
- Amrathlal Rabbind Singh
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625 021, India
| | - Paranthaman Senthamaraikannan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625 021, India; Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267 - 0524, USA
| | - Chitra Thangavel
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625 021, India
| | - Ravikanth Danda
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625 021, India
| | - Shunmugiah Karutha Pandian
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625 021, India; Department of Biotechnology, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Kuppamuthu Dharmalingam
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625 021, India.
| |
Collapse
|
17
|
Anné J, Vrancken K, Van Mellaert L, Van Impe J, Bernaerts K. Protein secretion biotechnology in Gram-positive bacteria with special emphasis on Streptomyces lividans. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1750-61. [PMID: 24412306 DOI: 10.1016/j.bbamcr.2013.12.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/26/2013] [Accepted: 12/31/2013] [Indexed: 02/07/2023]
Abstract
Proteins secreted by Gram-positive bacteria are released into the culture medium with the obvious benefit that they usually retain their native conformation. This property makes these host cells potentially interesting for the production of recombinant proteins, as one can take full profit of established protocols for the purification of active proteins. Several state-of-the-art strategies to increase the yield of the secreted proteins will be discussed, using Streptomyces lividans as an example and compared with approaches used in some other host cells. It will be shown that approaches such as increasing expression and translation levels, choice of secretion pathway and modulation of proteins thereof, avoiding stress responses by changing expression levels of specific (stress) proteins, can be helpful to boost production yield. In addition, the potential of multi-omics approaches as a tool to understand the genetic background and metabolic fluxes in the host cell and to seek for new targets for strain and protein secretion improvement is discussed. It will be shown that S. lividans, along with other Gram-positive host cells, certainly plays a role as a production host for recombinant proteins in an economically viable way. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Jozef Anné
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Laboratory of Molecular Bacteriology, Herestraat 49, box 1037, B-3000 Leuven, Belgium.
| | - Kristof Vrancken
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Laboratory of Molecular Bacteriology, Herestraat 49, box 1037, B-3000 Leuven, Belgium.
| | - Lieve Van Mellaert
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Laboratory of Molecular Bacteriology, Herestraat 49, box 1037, B-3000 Leuven, Belgium.
| | - Jan Van Impe
- Chemical and Biochemical Process Technology and Control Section (BioTeC), Department of Chemical Engineering, KU Leuven, Willem de Croylaan 46 box 2423, B-3001 Leuven, Belgium.
| | - Kristel Bernaerts
- Chemical and Biochemical Process Technology and Control Section (BioTeC), Department of Chemical Engineering, KU Leuven, Willem de Croylaan 46 box 2423, B-3001 Leuven, Belgium.
| |
Collapse
|
18
|
Transcriptional characterisation of the negative effect exerted by a deficiency in type II signal peptidase on extracellular protein secretion in Streptomyces lividans. Appl Microbiol Biotechnol 2013; 97:10069-80. [DOI: 10.1007/s00253-013-5219-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 10/26/2022]
|
19
|
Ayala JC, Pimienta E, Rodríguez C, Anné J, Vallín C, Milanés MT, King-Batsios E, Huygen K, Van Mellaert L. Use of Strep-tag II for rapid detection and purification of Mycobacterium tuberculosis recombinant antigens secreted by Streptomyces lividans. J Microbiol Methods 2013; 94:192-8. [DOI: 10.1016/j.mimet.2013.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/31/2013] [Accepted: 06/01/2013] [Indexed: 10/26/2022]
|
20
|
García-Hidalgo J, Hormigo D, Arroyo M, de la Mata I. Novel extracellular PHB depolymerase from Streptomyces ascomycinicus: PHB copolymers degradation in acidic conditions. PLoS One 2013; 8:e71699. [PMID: 23951224 PMCID: PMC3741128 DOI: 10.1371/journal.pone.0071699] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/30/2013] [Indexed: 11/18/2022] Open
Abstract
The ascomycin-producer strain Streptomyces ascomycinicus has been proven to be an extracellular poly(R)-3-hydroxybutyrate (PHB) degrader. The fkbU gene, encoding a PHB depolymerase (PhaZSa), has been cloned in E. coli and Rhodococcus sp. T104 strains for gene expression. Gram-positive host Rhodococcus sp. T104 was able to produce and secrete to the extracellular medium an active protein form. PhaZSa was purified by two hydrophobic interaction chromatographic steps, and afterwards was biochemically as well as structurally characterized. The enzyme was found to be a monomer with a molecular mass of 48.4 kDa, and displayed highest activity at 45°C and pH 6, thus being the first PHB depolymerase from a gram-positive bacterium presenting an acidic pH optimum. The PHB depolymerase activity of PhaZSa was increased in the presence of divalent cations due to non-essential activation, and also in the presence of methyl-β-cyclodextrin and PEG 3350. Protein structure was analyzed, revealing a globular shape with an alpha-beta hydrolase fold. The amino acids comprising the catalytic triad, Ser131-Asp209-His269, were identified by multiple sequence alignment, chemical modification of amino acids and site-directed mutagenesis. These structural results supported the proposal of a three-dimensional model for this depolymerase. PhaZSa was able to degrade PHB, but also demonstrated its ability to degrade films made of PHB, PHBV copolymers and a blend of PHB and starch (7∶3 proportion wt/wt). The features shown by PhaZSa make it an interesting candidate for industrial applications involving PHB degradation.
Collapse
Affiliation(s)
- Javier García-Hidalgo
- Department of Biochemistry and Molecular Biology I. Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Daniel Hormigo
- Department of Biochemistry and Molecular Biology I. Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Miguel Arroyo
- Department of Biochemistry and Molecular Biology I. Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Isabel de la Mata
- Department of Biochemistry and Molecular Biology I. Faculty of Biology, Complutense University of Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
21
|
Vertès AA. Protein Secretion Systems of Corynebacterium glutamicum. CORYNEBACTERIUM GLUTAMICUM 2013. [DOI: 10.1007/978-3-642-29857-8_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Gullón S, Vicente RL, Mellado RP. A novel two-component system involved in secretion stress response in Streptomyces lividans. PLoS One 2012; 7:e48987. [PMID: 23155440 PMCID: PMC3498368 DOI: 10.1371/journal.pone.0048987] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/03/2012] [Indexed: 11/30/2022] Open
Abstract
Background Misfolded proteins accumulating outside the bacterial cytoplasmic membrane can interfere with the secretory machinery, hence the existence of quality factors to eliminate these misfolded proteins is of capital importance in bacteria that are efficient producers of secretory proteins. These bacteria normally use a specific two-component system to respond to the stress produced by the accumulation of the misfolded proteins, by activating the expression of HtrA-like proteases to specifically eliminate the incorrectly folded proteins. Methodology/Principal Findings Overproduction of alpha-amylase in S. lividans causing secretion stress permitted the identification of a two-component system (SCO4156-SCO4155) that regulates three HtrA-like proteases which appear to be involved in secretion stress response. Mutants in each of the genes forming part of the two-genes operon that encodes the sensor and regulator protein components accumulated misfolded proteins outside the cell, strongly suggesting the involvement of this two-component system in the S. lividans secretion stress response. Conclusions/Significance To our knowledge this is the first time that a specific secretion stress response two-component system is found to control the expression of three HtrA-like protease genes in S. lividans, a bacterium that has been repeatedly used as a host for the synthesis of homologous and heterologous secretory proteins of industrial application.
Collapse
|
23
|
Rozas D, Gullón S, Mellado RP. A novel two-component system involved in the transition to secondary metabolism in Streptomyces coelicolor. PLoS One 2012; 7:e31760. [PMID: 22347508 PMCID: PMC3276577 DOI: 10.1371/journal.pone.0031760] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/18/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Bacterial two-component signal transduction regulatory systems are the major set of signalling proteins frequently mediating responses to changes in the environment. They typically consist of a sensor, a membrane-associated histidine kinase and a cytoplasmic response regulator. The membrane-associated sensor detects the environmental signal or stress, whereas the cytoplasmic regulatory protein controls the cellular response usually by gene transcription modulation. METHODOLOGY/PRINCIPALFINDINGS: The Streptomyces coelicolor two genes operon SCO5784-SCO5785 encodes a two-component system, where SCO5784 encodes a histidine-kinase sensor and SCO5785 encodes a response regulator protein. When the expression level of the regulator gene decreases, the antibiotic synthesis and sporulation is delayed temporarily in addition to some ribosomal genes became up regulated, whereas the propagation of the regulatory gene in high copy number results in the earlier synthesis of antibiotics and sporulation, as well as the down regulation of some ribosomal genes and, moreover, in the overproduction of several extracellular proteins. Therefore, this two-component system in S. coelicolor seems to influence various processes characterised by the transition from primary to secondary metabolism, as determined by proteomic and transcriptomic analyses. CONCLUSIONS/SIGNIFICANCE Propagation of SCO5785 in multicopy enhances the production of antibiotics as well as secretory proteins. In particular, the increase in the expression level of secretory protein encoding genes, either as an artefactual or real effect of the regulator, could be of potential usefulness when using Streptomyces strains as hosts for homologous or heterologous extracellular protein production.
Collapse
Affiliation(s)
- Daniel Rozas
- Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Sonia Gullón
- Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | | |
Collapse
|
24
|
Mellado RP. Summing up particular features of protein secretion in Streptomyces lividans. World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-011-0709-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
D'Huys PJ, Lule I, Van Hove S, Vercammen D, Wouters C, Bernaerts K, Anné J, Van Impe JFM. Amino acid uptake profiling of wild type and recombinant Streptomyces lividans TK24 batch fermentations. J Biotechnol 2010; 152:132-43. [PMID: 20797416 DOI: 10.1016/j.jbiotec.2010.08.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 08/12/2010] [Accepted: 08/17/2010] [Indexed: 11/19/2022]
Abstract
Streptomyces lividans is considered an interesting host for the secretory production of heterologous proteins. To obtain a good secretion yield of heterologous proteins, the availability of suitable nitrogen sources in the medium is required. Often, undefined mixtures of amino acids are used to improve protein yields. However, the understanding of amino acid utilization as well as their contribution to the heterologous protein synthesis is poor. In this paper, amino acid utilization by wild type and recombinant S. lividans TK24 growing on a minimal medium supplemented with casamino acids is profiled by intensive analysis of the exometabolome (metabolic footprint) as a function of time. Dynamics of biomass, substrates, by-products and heterologous protein are characterized, analyzed and compared. As an exemplary protein mouse Tumor Necrosis Factor Alpha (mTNF-α) is considered. Results unveil preferential glutamate and aspartate assimilation, together with glucose and ammonium, but the associated high biomass growth rate is unfavorable for protein production. Excretion of organic acids as well as alanine is observed. Pyruvate and alanine overflow point at an imbalance between carbon and nitrogen catabolism and biosynthetic fluxes. Lactate secretion is probably related to clump formation. Heterologous protein production induces a slowdown in growth, denser clump formation and a shift in metabolism, as reflected in the altered substrate requirements and overflow pattern. Besides glutamate and aspartate, most amino acids are catabolized, however, their exact contribution in heterologous protein production could not be seized from macroscopic quantities. The metabolic footprints presented in this paper provide a first insight into the impact and relevance of amino acids on biomass growth and protein production. Type and availability of substrates together with biomass growth rate and morphology affect the protein secretion efficiency and should be optimally controlled, e.g., by appropriate medium formulation and substrate dosing. Overflow metabolism as well as high biomass growth rates must be avoided because they reduce protein yields. Further investigation of the intracellular metabolic fluxes should be conducted to fully unravel and identify ways to relieve the metabolic burden of plasmid maintenance and heterologous protein production and to prevent overflow.
Collapse
Affiliation(s)
- Pieter-Jan D'Huys
- Chemical and Biochemical Process Technology and Control Section (BioTeC), Department of Chemical Engineering, Katholieke Universiteit Leuven, Willem de Croylaan 46, B-3001 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Sinsereekul N, Wangkam T, Thamchaipenet A, Srikhirin T, Eurwilaichitr L, Champreda V. Recombinant expression of BTA hydrolase in Streptomyces rimosus and catalytic analysis on polyesters by surface plasmon resonance. Appl Microbiol Biotechnol 2010; 86:1775-84. [PMID: 20174792 DOI: 10.1007/s00253-010-2465-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 11/28/2022]
Abstract
A recombinant polyester-degrading hydrolase from Thermobifida sp. BCC23166 targeting on aliphatic-aromatic copolyester (rTfH) was produced in Streptomyces rimosus R7. rTfH was expressed by induction with thiostrepton as a C-terminal His(6) fusion from the native gene sequence under the control of tipA promoter and purified from the culture supernatant to high homogeneity by a single step affinity purification on Ni-Sepharose matrix. The enzyme worked optimally at 50-55 degrees C and showed esterase activity on C3-C16 p-nitrophenyl alkanoates with a specific activity of 76.5 U/mg on p-nitrophenyl palmitate. Study of rTfH catalysis on surface degradation of polyester films using surface plasmon resonance analysis revealed that the degradation rates were in the order of poly-epsilon-caprolactone > Ecoflex > polyhydroxybutyrate. Efficient hydrolysis of Ecoflex by rTfH was observed in mild alkaline conditions, with the highest activity at pH 8.0 and ionic strength at 250 mM sodium chloride, with the maximal specific activity of 0.79 mg(-1)min(-1)mg(-1) protein. Under the optimal conditions, rTfH showed a remarkable 110-time higher specific activity on Ecoflex in comparison to a lipase from Thermomyces lanuginosus, while less difference in degradation efficiency of the two enzymes was observed on the aliphatic polyesters, suggesting greater specificities of rTfH to the aliphatic-aromatic copolyester. This study demonstrated the use of streptomycetes as an alternative expression system for production of the multi-polyester-degrading enzyme of actinomycete origin and provided insights on its catalytic properties on surface degradation contributing to further biotechnological application of this enzyme.
Collapse
Affiliation(s)
- Nitat Sinsereekul
- Department of Genetics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | | | | | | | | | | |
Collapse
|
27
|
Lignin peroxidase from Streptomyces viridosporus T7A: enzyme concentration using ultrafiltration. Appl Biochem Biotechnol 2008; 147:23-32. [PMID: 18351297 DOI: 10.1007/s12010-007-8081-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 10/10/2007] [Indexed: 10/22/2022]
Abstract
It is well known that lignin degradation is a key step in the natural process of biomass decay whereby oxidative enzymes such as laccases and high redox potential ligninolytic peroxidases and oxidases play a central role. More recently, the importance of these enzymes has increased because of their prospective industrial use for the degradation of the biomass lignin to increase the accessibility of the cellulose and hemicellulose moieties to be used as renewable material for the production of fuels and chemicals. These biocatalysts also present potential application on environmental biocatalysis for the degradation of xenobiotics and recalcitrant pollutants. However, the cost for these enzymes production, separation, and concentration must be low to permit its industrial use. This work studied the concentration of lignin peroxidase (LiP), produced by Streptomyces viridosporus T7A, by ultrafiltration, in a laboratory-stirred cell, loaded with polysulfone (PS) or cellulose acetate (CA) membranes with molecular weight cutoffs (MWCO) of 10, 20, and 50 KDa. Experiments were carried out at 25 degrees C and pH 7.0 in accordance to the enzyme stability profile. The best process conditions and enzyme yield were obtained using a PS membrane with 10 KDa MWCO, whereby it was observed a tenfold LiP activity increase, reaching 1,000 U/L and 90% enzyme activity upholding.
Collapse
|
28
|
Arias E, Li H, Morosoli R. Effect of protease mutations on the production of xylanases in Streptomyces lividans. Can J Microbiol 2007; 53:695-701. [PMID: 17668029 DOI: 10.1139/w07-024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three protease mutants--7 (tap-), 12 (tap-, ssp-), and 17 (multiple mutations)--of Streptomyces lividans were tested for their influence on protein secretion. Streptomyces lividans grown in xylan secretes 3 xylanases (A, B, and C). Xylanases A (XlnA) and B (XlnB) are secreted by the Sec pathway, whereas xylanase C (XlnC) is secreted by the Tat pathway. The production of XlnA and XlnC was affected in the mutants, suggesting that the mutations interfered with both Sec- and Tat-secretion systems. However, the processing rate for the Sec and Tat precursor was similar to the wild-type strain, indicating that the mutations had no direct effect on secretion. Streptomyces lividans naturally produced 2 forms of XlnB: XlnB1, which contains the catalytic and the xylan-binding domains, and XlnB2, which contains the catalytic domain only. There was no change from the wild-type strain in the ratio of XlnB1/XlnB2 produced by the mutants, indicating that these proteases are not involved in this process. Although XlnA1, partially truncated in its xylan-binding domain, was rapidly degraded to its catalytic domain (XlnA2) in the wild-type strain, the rate of conversion was reduced in the 3 mutants, indicating that the proteases participated to some extent in this proteolytic process.
Collapse
Affiliation(s)
- Eliana Arias
- INRS - Institut Armand-Frappier, Université du Québec, 531 boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | | | | |
Collapse
|
29
|
Jayapal KP, Lian W, Glod F, Sherman DH, Hu WS. Comparative genomic hybridizations reveal absence of large Streptomyces coelicolor genomic islands in Streptomyces lividans. BMC Genomics 2007; 8:229. [PMID: 17623098 PMCID: PMC1934918 DOI: 10.1186/1471-2164-8-229] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 07/10/2007] [Indexed: 11/20/2022] Open
Abstract
Background The genomes of Streptomyces coelicolor and Streptomyces lividans bear a considerable degree of synteny. While S. coelicolor is the model streptomycete for studying antibiotic synthesis and differentiation, S. lividans is almost exclusively considered as the preferred host, among actinomycetes, for cloning and expression of exogenous DNA. We used whole genome microarrays as a comparative genomics tool for identifying the subtle differences between these two chromosomes. Results We identified five large S. coelicolor genomic islands (larger than 25 kb) and 18 smaller islets absent in S. lividans chromosome. Many of these regions show anomalous GC bias and codon usage patterns. Six of them are in close vicinity of tRNA genes while nine are flanked with near perfect repeat sequences indicating that these are probable recent evolutionary acquisitions into S. coelicolor. Embedded within these segments are at least four DNA methylases and two probable methyl-sensing restriction endonucleases. Comparison with S. coelicolor transcriptome and proteome data revealed that some of the missing genes are active during the course of growth and differentiation in S. coelicolor. In particular, a pair of methylmalonyl CoA mutase (mcm) genes involved in polyketide precursor biosynthesis, an acyl-CoA dehydrogenase implicated in timing of actinorhodin synthesis and bldB, a developmentally significant regulator whose mutation causes complete abrogation of antibiotic synthesis belong to this category. Conclusion Our findings provide tangible hints for elucidating the genetic basis of important phenotypic differences between these two streptomycetes. Importantly, absence of certain genes in S. lividans identified here could potentially explain the relative ease of DNA transformations and the conditional lack of actinorhodin synthesis in S. lividans.
Collapse
Affiliation(s)
- Karthik P Jayapal
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE., Minneapolis, MN 55455, USA
| | - Wei Lian
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE., Minneapolis, MN 55455, USA
- Abbott Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Frank Glod
- Life Sciences Institute, Departments of Medicinal Chemistry, Chemistry, Microbiology & Immunology, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI 48109, USA
- Fonds National de la Recherche, 6 rue Antoine de Saint-Exupéry, L-1017 Kirchberg, Luxembourg
| | - David H Sherman
- Life Sciences Institute, Departments of Medicinal Chemistry, Chemistry, Microbiology & Immunology, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI 48109, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE., Minneapolis, MN 55455, USA
| |
Collapse
|
30
|
. IS, . RR, . TD, . QA, . AM. Isolation, Characterization and Screening for Fiber Hydrolytic Enzymes-Producing Streptomycetes of Jordanian Forest Soils. ACTA ACUST UNITED AC 2006. [DOI: 10.3923/biotech.2007.120.128] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Escutia MR, Val G, Palacín A, Geukens N, Anné J, Mellado RP. Compensatory effect of the minorStreptomyces lividans type I signal peptidases on the SipY major signal peptidase deficiency as determined by extracellular proteome analysis. Proteomics 2006; 6:4137-46. [PMID: 16786486 DOI: 10.1002/pmic.200500927] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The developmentally complex bacterium Streptomyces lividans has the ability to produce and secrete a significant amount of protein and possesses four different type I signal peptidase genes (sipW, sipX, sipY and sipZ) that are unusually clustered in its chromosome. 2-DE and subsequent MS of extracellular proteins showed that proteins with typical export signals for type I and type II signal peptidases are the main components of the S. lividans secretome. Secretion of extracellular proteins is severely reduced in a strain deficient in the major type I signal peptidase (SipY). This deficiency was efficiently compensated by complementation with any of the other three signal peptidases as deduced from a comparison of the corresponding 2-D PAGE patterns with that of the wild-type strain.
Collapse
Affiliation(s)
- Marta R Escutia
- Centro Nacional de Biotecnología, Campus de la Universidad Autónoma, Cantoblanco, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Lin YS, Chao ML, Liu CH, Tseng M, Chu WS. Cloning of the gene coding for transglutaminase from Streptomyces platensis and its expression in Streptomyces lividans. Process Biochem 2006. [DOI: 10.1016/j.procbio.2005.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Palomino C, Mellado RP. The Streptomyces lividans Cytoplasmic Signal Recognition Particle Receptor FtsY Is Involved in Protein Secretion. J Mol Microbiol Biotechnol 2005; 9:57-62. [PMID: 16254447 DOI: 10.1159/000088147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The bacterial version of the mammalian signal recognition particle (SRP) and its receptor alpha-subunit (FtsY) is well conserved and essential to all known bacteria. In gram-negative bacteria, the SRP pathway mediates a co-translational targeting of most inner membrane proteins. Additionally, in Streptomyces lividans, a gram-positive bacterium, SRP also targets secretory proteins to the translocon. The role of S. lividans FtsY has been assessed in this work. Co-immunoprecipitation studies confirmed that FtsY is associated with the S. lividans SRP in the cytoplasm and that this complex also co-immunoprecipitated with pre-agarase, suggesting that the SRP receptor is involved in SRP-mediated targeting of secretory proteins in S. lividans. Furthermore, the SRP remains attached for the most part to the cellular membrane when the cleavage of pre-secretory proteins is severely reduced in a strain lacking the gene coding for the major type-I signal peptidase.
Collapse
Affiliation(s)
- Carmen Palomino
- Centro Nacional de Biotecnología, Campus de la Universidad Autónoma, Cantoblanco, Madrid, Spain
| | | |
Collapse
|
34
|
Gauthier C, Li H, Morosoli R. Increase in xylanase production by Streptomyces lividans through simultaneous use of the Sec- and Tat-dependent protein export systems. Appl Environ Microbiol 2005; 71:3085-92. [PMID: 15933005 PMCID: PMC1151826 DOI: 10.1128/aem.71.6.3085-3092.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xylanase B1 (XlnB1) from Streptomyces lividans is a protein consisting of two discrete structural and functional units, an N-terminal catalytic domain and a C-terminal substrate binding domain. In the culture medium, two forms of xylanase B are present, namely, XlnB1 and XlnB2, the latter of which corresponds to the catalytic domain of XlnB1 deprived of the substrate binding domain. Both forms of the xylanase have the same activity on xylan. The enzyme is secreted through the Sec-dependent pathway with a better yield of XlnB1 than XlnB2. Interestingly, XlnB2 exhibits 80% identity with XlnC which is secreted exclusively through the Tat-dependent pathway. To demonstrate whether XlnB1 and XlnB2 could also be secreted through the Tat-dependent pathway, the Tat-targeting xlnC signal sequence was fused to the structural genes of xlnB1 and xlnB2. Both XlnB1 and XlnB2 were secreted through the Tat-dependent pathway, but XlnB2 was better produced than XlnB1. As XlnB1 and XlnB2 could be better secreted through the Sec- and Tat-dependent systems, respectively, a copy of the structural gene of xlnB1 fused to a Sec signal sequence and a copy of the structural gene of xlnB2 fused to a Tat signal sequence were inserted into the same plasmid under the control of the xlnA promoter. The transformant produced xylanase activity which corresponded approximately to the sum of activities of the individual strain producing xylanase by either the Sec- or Tat-dependent secretion system. This indicated that both secretion systems are functional and independent of each other in the recombinant strain. This is the first report on the efficient secretion of a protein using two different secretion systems at the same time. Assuming that the protein to be secreted could be properly folded prior to and after translocation via the Tat- and Sec-dependent pathways, respectively, the simultaneous use of the Sec- and Tat-dependent pathways provides an efficient means to increase the production of a given protein.
Collapse
Affiliation(s)
- Céline Gauthier
- INRS-Institut Armand-Frappier, Université du Québec, Ville de Laval, Québec H7V 1B7, Canada
| | | | | |
Collapse
|
35
|
Bonnemain C, Raynaud C, Réglier-Poupet H, Dubail I, Frehel C, Lety MA, Berche P, Charbit A. Differential roles of multiple signal peptidases in the virulence of Listeria monocytogenes. Mol Microbiol 2004; 51:1251-66. [PMID: 14982622 DOI: 10.1111/j.1365-2958.2004.03916.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most bacteria contain one type I signal peptidase (Spase I) for cleavage of signal peptides from exported and secreted proteins. Here, we identified a locus encoding three contiguous Spase I genes in the genome of Listeria monocytogenes. The deduced Sip proteins (denoted SipX, SipY and SipZ) are significantly similar to SipS and SipT, the major SPase I proteins of Bacillus subtilis (38% to 44% peptidic identity). We studied the role of these multiple signal peptidases in bacterial pathogenicity by constructing a series of single- and double-chromosomal knock-out mutants. Inactivation of sipX did not affect intracellular multiplication of L. monocytogenes but significantly reduced bacterial virulence (approximately 100-fold). Inactivation of sipZ impaired the secretion of phospholipase C (PC-PLC) and listeriolysin O (LLO), restricted intracellular multiplication and almost abolished virulence (LD(50) of 10(8.3)), inactivation of sipY had no detectable effects. Most importantly, a mutant expressing only SipX was impaired in intracellular survival and strongly attenuated in the mouse (LD(50) of 10(7.2)), whereas, a mutant expressing only SipZ behaved like wild-type EGD in all the assays performed. The data establish that SipX and SipZ perform distinct functions in bacterial pathogenicity and that SipZ is the major Spase I of L. monocytogenes. This work constitutes the first report on the differential role of multiple Spases I in a pathogenic bacterium and suggests a possible post-translational control mechanism of virulence factors expression.
Collapse
Affiliation(s)
- Claire Bonnemain
- INSERM U-570, CHU Necker-Enfants Malades, 156, rue de Vaugirard, 75730 Paris Cedex 15-France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Díaz M, Adham SAI, Ramón D, Gil JA, Santamaría RI. Streptomyces lividans and Brevibacterium lactofermentum as heterologous hosts for the production of X22 xylanase from Aspergillus nidulans. Appl Microbiol Biotechnol 2004; 65:401-6. [PMID: 15168093 DOI: 10.1007/s00253-004-1633-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 03/31/2004] [Accepted: 04/04/2004] [Indexed: 11/25/2022]
Abstract
The Aspergillus nidulans gene xlnA coding for the fungal xylanase X22 has been cloned and expressed in two heterologous bacterial hosts: Streptomyces lividans and Brevibacterium lactofermentum. Streptomyces strains yielded 10 units/ml of xylanase when the protein was produced with its own signal peptide, and 19 units/ml when its signal peptide was replaced by the one for xylanase Xys1 from Streptomyces halstedii. B. lactofermentum was also able to produce xylanase X22, affording 6 units/ml upon using either the Aspergillus xlnA signal peptide or Streptomyces xysA. These production values are higher than those previously reported for the heterologous expression of the A. nidulans xlnA gene in Saccharomyces cerevisiae (1 unit/ml). Moreover, the X22 enzyme produced by Streptomyces lividans showed oenological properties, indicating that this Streptomyces recombinant strain is a good candidate for the production of this enzyme at the industrial scale.
Collapse
Affiliation(s)
- M Díaz
- Instituto de Microbiología Bioquímica/Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | | | | | | | | |
Collapse
|
37
|
Cloning and expression of the transglutaminase gene from Streptoverticillium ladakanum in Streptomyces lividans. Process Biochem 2004. [DOI: 10.1016/s0032-9592(03)00134-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Palacín A, de la Fuente R, Valle I, Rivas LA, Mellado RP. Streptomyces lividans contains a minimal functional signal recognition particle that is involved in protein secretion. MICROBIOLOGY (READING, ENGLAND) 2003; 149:2435-2442. [PMID: 12949169 DOI: 10.1099/mic.0.26313-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The bacterial version of the mammalian signal recognition particle (SRP) is well conserved and essential to all known bacteria. The genes for the Streptomyces lividans SRP components have been cloned and characterized. FtsY resembles the mammalian SRP receptor and the S. lividans SRP consists of Ffh, a homologue of the mammalian SRP54 protein, and scRNA, which is a small size RNA of 82 nt in length. Co-immunoprecipitation studies confirmed that Ffh and scRNA are probably the only components of the S. lividans SRP and that pre-agarase can co-immunoprecipitate with Ffh, suggesting that the SRP is involved in targeting secretory proteins.
Collapse
Affiliation(s)
- Arantxa Palacín
- Centro Nacional de Biotecnología, Campus de la Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Ricardo de la Fuente
- Centro Nacional de Biotecnología, Campus de la Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Inmaculada Valle
- Centro Nacional de Biotecnología, Campus de la Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Luis A Rivas
- Centro Nacional de Biotecnología, Campus de la Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Rafael P Mellado
- Centro Nacional de Biotecnología, Campus de la Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
39
|
Van Dessel W, Van Mellaert L, Geukens N, Anné J. Improved PCR-based method for the direct screening of Streptomyces transformants. J Microbiol Methods 2003; 53:401-3. [PMID: 12689717 DOI: 10.1016/s0167-7012(02)00235-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Streptomycetes are attractive microorganisms because of their high secretion capacity and for the production of secondary metabolites. We report the improvement of a PCR-based method for screening of solid media-grown Streptomyces transformants. By resuspending mycelium into 2.5-10% dimethyl sulfoxide (DMSO), extensive manipulation prior to PCR could be avoided, thus significantly reducing screening time. Results proved to be both reliable and specific.
Collapse
Affiliation(s)
- W Van Dessel
- Laboratory of Bacteriology, Rega Institute, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Louvain, Belgium
| | | | | | | |
Collapse
|
40
|
Palacín A, Parro V, Geukens N, Anné J, Mellado RP. SipY Is the Streptomyces lividans type I signal peptidase exerting a major effect on protein secretion. J Bacteriol 2002; 184:4875-80. [PMID: 12169613 PMCID: PMC135301 DOI: 10.1128/jb.184.17.4875-4880.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2001] [Accepted: 06/10/2002] [Indexed: 11/20/2022] Open
Abstract
Most bacteria contain one type I signal peptidase (SPase) for cleavage of signal peptides from secreted proteins. The developmental complex bacterium Streptomyces lividans has the ability to produce and secrete a significant amount of proteins and has four different type I signal peptidases genes (sipW, sipX, sipY, and sipZ) unusually clustered in its chromosome. Functional analysis of the four SPases was carried out by phenotypical and molecular characterization of the different individual sip mutants. None of the sip genes seemed to be essential for bacterial growth. Analysis of total extracellular proteins indicated that SipY is likely to be the major S. lividans SPase, since the sipY mutant strain is highly deficient in overall protein secretion and extracellular protease production, showing a delayed sporulation phenotype when cultured in solid medium.
Collapse
Affiliation(s)
- Arantxa Palacín
- Centro Nacional de Biotecnología, Campus de la Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
41
|
Pierce JJ, Robinson SC, Ward JM, Keshavarz-Moore E, Dunnill P. A comparison of the process issues in expressing the same recombinant enzyme periplasmically in Escherichia coli and extracellularly in Streptomyces lividans. J Biotechnol 2002; 92:205-15. [PMID: 11689245 DOI: 10.1016/s0168-1656(01)00322-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The choice of a host for the production of a biological molecule will have a significant effect on isolation and purification procedures employed. This paper makes a comparison between the production of a single enzyme, a recombinant alpha-amylase, in Escherichia coli and Streptomyces lividans, on a small scale. It defines the differences in the cultivation and in the isolation stages and also describes the impact of the expression system on later downstream processing steps. At the cultivation stage, the specific productivity of the E. coli in units per gram per hour is four times that of the S. lividans while the total biomass yields are of the same order. The initial volume for downstream processing of S. lividans is six-fold larger and the total protein released into the extracellular medium is three times greater than E. coli, however, the recoverable yield from the E. coli is a fifth of that obtained from the S. lividans and requires three additional stages prior to chromatography. Even with these stages the final specific activity is 64% of the S. lividans. The results indicate the need to consider the whole process when making such comparisons.
Collapse
Affiliation(s)
- J J Pierce
- GlaxoWellcome, Langley Court, South Eden Park Road, Beckenham, Kent BR3 3BS, UK
| | | | | | | | | |
Collapse
|
42
|
Tremblay D, Lemay J, Gilbert M, Chapdelaine Y, Dupont C, Morosoli R. High-level heterologous expression and secretion in Streptomyces lividans of two major antigenic proteins from Mycobacterium tuberculosis. Can J Microbiol 2002; 48:43-8. [PMID: 11888162 DOI: 10.1139/w01-133] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two major antigens from Mycobacterium tuberculosis were produced by Streptomyces lividans as secreted extracellular proteins. An expression-secretion vector had been constructed that contained the promoter of xylanase A and the signal sequence of cellulase A. The latter contained two initiation codons preceded by a Shine-Dalgarno sequence plus eight nucleotides complementary to the 16S rRNA. The genes encoding the 38-kDa (Rv0934) and 19-kDa (Rv3763) proteins, respectively, were amplified by polymerase chain reaction and cloned into that vector. The recombinant proteins were then purified from the culture supernatants of the clones. The yields after purification were 80 mg/L for the 38-kDa protein and 200 mg/L for the 19-kDa protein. Sequence analysis of the N-terminal sequences showed a deletion of seven or eight amino acids for the 38-kDa protein, while in the 19-kDa protein 22 or 23 amino acids were lost, as compared with the respective wild-type proteins. However, the 19 kDa recombinant protein had the same N-terminal sequence as the one recovered from the M. tuberculosis culture supernatant. The high yields obtained for these two proteins demonstrated the potential of S. lividans as an alternative host for the production of recombinant proteins from M. tuberculosis. The culture conditions have yet to be worked out to minimize proteolytic degradation and to recover intact products.
Collapse
Affiliation(s)
- Donald Tremblay
- Centre de recherche en microbiologie et biotechnologie, INRS-Institut Armand-Frappier, Université du Québec, Ville de Laval, Canada
| | | | | | | | | | | |
Collapse
|
43
|
Homerová D, Knirschová R, Kormanec J. Response regulator ChiR regulates expression of chitinase gene, chiC, in Streptomyces coelicolor. Folia Microbiol (Praha) 2002; 47:499-505. [PMID: 12503394 DOI: 10.1007/bf02818788] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Transcription from the chiC promoter, directing expression of the chitinase gene, chiC, in Streptomyces coelicolor, was analyzed using xylE reporter gene and high-resolution S1-nuclease mapping. The transcription from the chiC promoter was induced by chitin, and this induction was dramatically reduced in the S. coelicolor chiR-disrupted strain. This indicated a dependence of chiC expression upon the chiR gene encoding a response regulator protein. To investigate this relationship, the S. coelicolor ChiR was overproduced using Escherichia coli T7 RNA polymerase expression system. However, gel mobility shift-assay with such a purified ChiR showed no binding in the chiC promoter region, which indicates a lack of specific phosphorylation of E. coli overproduced ChiR that is necessary for DNA-binding activity of response regulators.
Collapse
Affiliation(s)
- D Homerová
- Institute of Molecular Biology, Slovak Academy of Sciences, 842 51 Bratislava, Slovakia
| | | | | |
Collapse
|
44
|
Waldron C, Matsushima P, Rosteck PR, Broughton MC, Turner J, Madduri K, Crawford KP, Merlo DJ, Baltz RH. Cloning and analysis of the spinosad biosynthetic gene cluster of Saccharopolyspora spinosa. ACTA ACUST UNITED AC 2001; 8:487-99. [PMID: 11358695 DOI: 10.1016/s1074-5521(01)00029-1] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Spinosad is a mixture of novel macrolide secondary metabolites produced by Saccharopolyspora spinosa. It is used in agriculture as a potent insect control agent with exceptional safety to non-target organisms. The cloning of the spinosyn biosynthetic gene cluster provides the starting materials for the molecular genetic manipulation of spinosad yields, and for the production of novel derivatives containing alterations in the polyketide core or in the attached sugars. RESULTS We cloned the spinosad biosynthetic genes by molecular probing, complementation of blocked mutants, and cosmid walking, and sequenced an 80 kb region. We carried out gene disruptions of some of the genes and analyzed the mutants for product formation and for the bioconversion of intermediates in the spinosyn pathway. The spinosyn gene cluster contains five large open reading frames that encode a multifunctional, multi-subunit type I polyketide synthase (PKS). The PKS cluster is flanked on one side by genes involved in the biosynthesis of the amino sugar forosamine, in O-methylations of rhamnose, in sugar attachment to the polyketide, and in polyketide cross-bridging. Genes involved in the early common steps in the biosynthesis of forosamine and rhamnose, and genes dedicated to rhamnose biosynthesis, were not located in the 80 kb cluster. CONCLUSIONS Most of the S. spinosa genes involved in spinosyn biosynthesis are found in one 74 kb cluster, though it does not contain all of the genes required for the essential deoxysugars. Characterization of the clustered genes suggests that the spinosyns are synthesized largely by mechanisms similar to those used to assemble complex macrolides in other actinomycetes. However, there are several unusual genes in the spinosyn cluster that could encode enzymes that generate the most striking structural feature of these compounds, a tetracyclic polyketide aglycone nucleus.
Collapse
Affiliation(s)
- C Waldron
- Dow AgroSciences, Indianapolis, IN 46268, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Geukens N, Lammertyn E, Van Mellaert L, Schacht S, Schaerlaekens K, Parro V, Bron S, Engelborghs Y, Mellado RP, Anné J. Membrane topology of the Streptomyces lividans type I signal peptidases. J Bacteriol 2001; 183:4752-60. [PMID: 11466278 PMCID: PMC99529 DOI: 10.1128/jb.183.16.4752-4760.2001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2000] [Accepted: 05/26/2001] [Indexed: 11/20/2022] Open
Abstract
Most bacterial membranes contain one or two type I signal peptidases (SPases) for the removal of signal peptides from export proteins. For Streptomyces lividans, four different type I SPases (denoted SipW, SipX, SipY, and SipZ) were previously described. In this communication, we report the experimental determination of the membrane topology of these SPases. A protease protection assay of SPase tendamistat fusions confirmed the presence of the N- as well as the C-terminal transmembrane anchor for SipY. SipX and SipZ have a predicted topology similar to that of SipY. These three S. lividans SPases are currently the only known prokaryotic-type type I SPases of gram-positive bacteria with a C-terminal transmembrane anchor, thereby establishing a new subclass of type I SPases. In contrast, S. lividans SipW contains only the N-terminal transmembrane segment, similar to most type I SPases of gram-positive bacteria. Functional analysis showed that the C-terminal transmembrane anchor of SipY is important to enhance the processing activity, both in vitro as well as in vivo. Moreover, for the S. lividans SPases, a relation seems to exist between the presence or absence of the C-terminal anchor and the relative contributions to the total SPase processing activity in the cell. SipY and SipZ, two SPases with a C-terminal anchor, were shown to be of major importance to the cell. Accordingly, for SipW, missing the C-terminal anchor, a minor role in preprotein processing was found.
Collapse
Affiliation(s)
- N Geukens
- Laboratory of Bacteriology, Rega Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Vetrivel KS, Pandian SK, Chaudhary U, Dharmalingam K. Purification, cloning, and DNA sequence analysis of a chitinase from an overproducing mutant of Streptomyces peucetius defective in daunorubicin biosynthesis. Can J Microbiol 2001. [DOI: 10.1139/w00-140] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extracellular chitinases of Streptomyces peucetius and a chitinase overproducing mutant, SPVI, were purified to homogeneity by ion exchange and gel filtration chromatography. The purified enzyme has a molecular mass of 42 kDa on SDS-PAGE, and the N-terminal amino acid sequence of the protein from the wild type showed homology to catalytic domains (Domain IV) of several other Streptomyces chitinases such as S. lividans 66, S. coelicolor A3(2), S. plicatus, and S. thermoviolaceus OPC-520. Purified SPVI chitinase cross-reacted to anti-chitinase antibodies of wild-type S. peucetius chitinase. A genomic library of SPVI constructed in E. coli using λ DASH II was probed with chiC of S. lividans 66 to screen for the chitinase gene. A 2.7 kb fragment containing the chitinase gene was subcloned from a λ DASH II clone, and sequenced. The deduced protein had a molecular mass of 68 kDa, and showed domain organization similar to that of S. lividans 66 chiC. The N-terminal amino acid sequence of the purified S. peucetius chitinase matched with the N-terminus of the catalytic domain, indicating the proteolytic processing of 68 kDa chitinase precursor protein to 42 kDa mature chitinase containing the catalytic domain only. A putative chiR sequence of a two-component regulatory system was found upstream of the chiC sequence.Key words: chitinase, chitinase purification, Streptomyces peucetius, daunorubicin, chiC.
Collapse
|
47
|
Pozidis C, Lammertyn E, Politou AS, Ann� J, Tsiftsoglou AS, Sianidis G, Economou A. Protein secretion biotechnology usingStreptomyces lividans: Large-scale production of functional trimeric tumor necrosis factor ? Biotechnol Bioeng 2001. [DOI: 10.1002/1097-0290(20010320)72:6<611::aid-bit1026>3.0.co;2-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Kébir H, Dupont C, Morosoli R. Increased xylanase production in Streptomyces lividans after replacement of the signal peptide: dependence on box and inverted repeat sequence. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1491:177-84. [PMID: 10760579 DOI: 10.1016/s0167-4781(00)00059-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The signal peptide of the xylanase A gene of Streptomyces lividans was replaced by the signal sequence of the cellulase A preceded by a 57 nucleotides (nt) upstream sequence. This latter contains a 5 nt inverted repeat (5'-TGGGAACGCTCCCA). The 3'-end of the inverted repeat contains a 5 nt box (TCCCA), which is complementary to the 16S rRNA of S. lividans. The effects on the production of xylanase resulting from deletions in the inverted repeat and from variations in the length of the box are shown. Removal of the inverted repeat and box decreased the xylanase production by 75%. Increasing the complementarity of the box with the 16S rRNA to 17 nt decreased the production by 90%. A reduction in the length of the inverted repeat, and consequently in the box, from 5 to 4 nt decreased the production by 40%. Preserving the 4 nt inverted repeat but lengthening the box from 5 to 6 nt increased the production by 1.5-fold. Finally, removing the inverted repeat but introducing an 8 nt box increased the xylanase production by 1.9-fold which then averaged 2.3 g/l of xylanase. The most efficient boxes contained 6-8 nt and were located between 14 and 19 nt downstream from the first initiation codon.
Collapse
Affiliation(s)
- H Kébir
- Centre de Recherche en Microbiologie et Biotechnologie, INRS-Institut Armand-Frappier, Université du Québec, 531 Boul. des Prairies, P.O. Box 100, Ville de Laval, Que., Canada
| | | | | |
Collapse
|
49
|
Tsujibo H, Hatano N, Okamoto T, Endo H, Miyamoto K, Inamori Y. Synthesis of chitinase in Streptomyces thermoviolaceus is regulated by a two-component sensor-regulator system. FEMS Microbiol Lett 1999; 181:83-90. [PMID: 10564792 DOI: 10.1111/j.1574-6968.1999.tb08829.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The chiS and chiR genes located upstream of the chitinase locus (chi40) on the chromosome of Streptomyces thermoviolaceus OPC-520 were cloned and sequenced. The deduced amino acid sequences revealed that ChiS (390 amino acids, 40.9 kDa) and ChiR (213 amino acids, 22 kDa) show significant sequence similarities to histidine kinases and response regulators, respectively, of typical prokaryotic two-component regulatory systems. The extracellular chitinase activity of Streptomyces lividans 66 (pTSR2 (bearing chiS, chiR and chi40)) was significantly enhanced by a high dosage of the chiS and chiR genes.
Collapse
Affiliation(s)
- H Tsujibo
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
50
|
Morosoli R, Ostiguy S, Dupont C. Effect of carbon source, growth and temperature on the expression of thesecgenes ofStreptomyces lividans1326. Can J Microbiol 1999. [DOI: 10.1139/w99-091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mRNA level in sec genes of Streptomyces lividans was studied as a function of growth temperature, glucose effect, and growth using two different carbon sources. Glucose and xylan, a complex hemicellulose, were used as carbon sources for the growth of S. lividans. For both substrates, the mRNA levels of secA, secD, secE, secF, and secY genes were almost constant during the early and log phases, but showed a marked decrease at the beginning of the stationary phase followed by a full recovery of mRNA level in the late stationary phase. This indicates that the sec genes are actively transcribed during the differentiation process. The mRNA level in xylan was generally from 1.5- to 2-fold that in glucose. At growth temperatures of 28°C, 34°C, or 40°C, there was no significant difference in the sec gene mRNA levels.Key words: Streptomyces lividans, sec genes, glucose repression, growth-phase dependent expression.
Collapse
|