1
|
Vergès-Castillo A, Herrera-Pérez P, Pendón C, Martín-Robles ÁJ, Muñoz-Cueto JA. Photoperiod and Light Spectrum Modulate Daily Rhythms and Expression of Genes Involved in Cell Proliferation, DNA Repair, Apoptosis and Oxidative Stress in a Seabream Embryonic Stem Cell Line. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:37. [PMID: 39888503 PMCID: PMC11785696 DOI: 10.1007/s10126-025-10418-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
The use of cell lines as alternative models for environmental physiology studies opens a new window of possibilities and is becoming an increasingly used tool in marine research to fulfil the 3R's rule. In this study, an embryonic monoclonal stem cell line obtained from a marine teleost (gilthead seabream, Sparus aurata) was employed to assess the effects of photoperiod (light/dark cycles vs constant dark) and light spectrum (white, blue, green, blue/green and red lights) on gene expression and rhythms of cellular markers of proliferation, DNA repair, apoptosis and cellular/oxidative stress by RT-qPCR and cosinor analyses. The results obtained revealed the optimal performance of cells under blue light (LDB), with all the genes analysed showing their highest RNA expression levels and most robust daily variations/rhythms in this condition. Under LDB, the mRNA levels of cell proliferation (pcna), DNA repair (cry5), anti-apoptotic (bcl2) and oxidative stress (prdx2) markers peaked at the day-night transition, whereas pro-apoptotic (bax) and cell stress (hsp70) markers showed their highest expression at the night-day transition, evidencing the strong synchronisation of the transcription of key genes involved in the cell cycle in this photoregime. The persistence of significant pcna, cry5, hsp70 and prdx2 rhythms after 3 days in constant darkness reveals the endogenous and circadian nature of these rhythms. Our results highlight the importance of implementing photoperiods with light-dark cycles of blue wavelengths when performing fish cell culture research. These results reinforce and extend our previous studies, confirming the importance of lighting conditions that mimic the natural environment for the proper development of fish embryos and larvae in aquaculture.
Collapse
Affiliation(s)
- Alba Vergès-Castillo
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real (Cádiz), Spain
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEIMAR), The European University of the Seas (SEA-EU), 11510, Puerto Real (Cádiz), Spain
| | - Patricia Herrera-Pérez
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real (Cádiz), Spain
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEIMAR), The European University of the Seas (SEA-EU), 11510, Puerto Real (Cádiz), Spain
| | - Carlos Pendón
- Área de Bioquímica y Biología Molecular, Departamento de Biomedicina, Biotecnología y Salud Pública, Facultad de Ciencias, Universidad de Cádiz, 11510, Puerto Real (Cádiz), Spain
- Instituto de Biomoléculas (INBIO), Facultad de Ciencias, Campus de ExcelenciaInternacionalAgroalimentario (ceiA3), Universidad de Cádiz, 11510, Puerto Real (Cádiz), Spain
| | - Águeda J Martín-Robles
- Área de Bioquímica y Biología Molecular, Departamento de Biomedicina, Biotecnología y Salud Pública, Facultad de Ciencias, Universidad de Cádiz, 11510, Puerto Real (Cádiz), Spain.
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEIMAR), The European University of the Seas (SEA-EU), 11510, Puerto Real (Cádiz), Spain.
| | - José A Muñoz-Cueto
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real (Cádiz), Spain.
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEIMAR), The European University of the Seas (SEA-EU), 11510, Puerto Real (Cádiz), Spain.
| |
Collapse
|
2
|
Araújo MJ, Soares AMVM, Monteiro MS. Effects of exposure to the UV-filter 4-MBC during Solea senegalensis metamorphosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51440-51452. [PMID: 33987723 DOI: 10.1007/s11356-021-14235-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Many personal care products integrate UV-filters, such as 4-methylbenzylidene camphor (4-MBC), a compound frequently detected in aquatic habitats, including coastal areas. However, the potential effects of 4-MBC to saltwater species have been poorly studied. Therefore, the main objective of this work is to study the effects of 4-MBC exposure on Solea senegalensis during metamorphosis, a sensitive life stage of this flatfish. To achieve this, fish were exposed to 4-MBC (0.2-2.0 mg L-1) for 48 h at the beginning of metamorphosis (13 days after hatching, dah). After this period, the fish were transferred to a clean medium. They were fed and maintained until more than 80% of individuals in the control group completed the metamorphosis (24 dah). Mortality, malformations, and metamorphic progression were studied daily. Growth, behavior, and biochemical markers of neurotransmission (acetylcholinesterase, AChE), oxidative stress (catalase, CAT; lipid peroxidation, LPO), detoxification (glutathione S-transferase, GST), and anaerobic metabolism (lactate dehydrogenase, LDH) were also determined at the end of the experiment. An acceleration of metamorphosis progression was observed during and 2 days after the 4-MBC exposure in all concentrations tested. In addition, reduced length, inhibition of CAT activity, and induction of oxidative damage were observed (lowest observed effect concentration, LOEC = 0.928 mg L-1 4-MBC for length, CAT, and LPO). Short-term exposure to 4-MBC at the onset of metamorphosis affected S. senegalensis at several levels of organization, even after 9 days in a clean medium, including growth and metamorphic progression, suggesting possible long-term adverse effects in this species.
Collapse
Affiliation(s)
- Mário J Araújo
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research of the University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - Amadeu M V M Soares
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Marta S Monteiro
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
3
|
Choi JY, Choi CY. Gonadotropin-releasing hormone-independent effects of recombinant vertebrate ancient long opsin in the goldfish Carassius auratus reveal alternative reproduction pathways. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1219-1227. [PMID: 32146552 DOI: 10.1007/s10695-020-00784-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Vertebrate ancient long (VAL)-opsin is a green-sensitive photoreceptor that shows high sequence similarity to vertebrate ancient opsin, which is considered to play a role in sexual maturation via gonadotropin-releasing hormone (GnRH); however, the role of VAL-opsin in vertebrate sexual maturity remains unclear. Therefore, we investigated the possible role of VAL-opsin in reproduction in the goldfish Carassius auratus under a state of GnRH inhibition. Goldfish were injected with recombinant VAL-opsin protein (0.5 μg/g body mass) and/or the GnRH antagonist cetrorelix (0.5 μg/fish), and changes in the mRNA expression levels of genes associated with goldfish reproduction were measured by quantitative polymerase chain reaction, including those involved in the hypothalamus-pituitary-gonad (HPG) axis, VAL-opsin, GnRH, the gonadotropins (GTHs) luteinizing hormone and follicle-stimulating hormone, and estrogen receptor (ER). Moreover, the fish were irradiated with a green light-emitting diode (520 nm) to observe the synergistic effect on the HPG axis with VAL-opsin. Green LED exposure significantly and slightly increased the VAL-opsin and GnRH levels, respectively; however, these effects were blocked in groups injected with cetrorelix at all time points. Cetrorelix significantly decreased the mRNA levels of GTHs and ER, whereas these hormones recovered by co-treatment with VAL-opsin. These results indicate that green LED is an effective light source to promote the expression of sex hormones in fish. Moreover, VAL-opsin not only affects activity of the HPG axis but also appears to act on the pituitary gland directly to stimulate a new sexual maturation pathway that promotes the secretion of GTHs independent of GnRH.
Collapse
Affiliation(s)
- Ji Yong Choi
- Division of Marine BioScience, National Korea Maritime and Ocean University, Busan, 49112, Republic of Korea
| | - Cheol Young Choi
- Division of Marine BioScience, National Korea Maritime and Ocean University, Busan, 49112, Republic of Korea.
| |
Collapse
|
4
|
Gene clusters related to metamorphosis in Solea senegalensis are highly conserved. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100706. [PMID: 32645591 DOI: 10.1016/j.cbd.2020.100706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/26/2020] [Accepted: 06/26/2020] [Indexed: 11/21/2022]
Abstract
The flatfish, Solea senegalensis has considerable scientific interest and commercial value. The metamorphosis in this species occurs between 12 and 19 days after hatching and it takes about 1 week to complete. Eleven Bacterial Artificial Chromosomes (BAC) clones containing the various candidate genes involved in the process of metamorphosis: thyroxine 5 deiodinase 3 (dio3); forkhead box protein E4 (foxe4); melatonin receptor type 1C (mel1c); calsequestrin 1b (casq1b); thyrotropin subunit beta (tshβ); thyrotropin-releasing hormone receptor 1, 2, and 3 (trhr1, trhr2, trhr3); thyroid hormone receptor α a and b (thrαa, thrαb); and thyroid hormone receptor beta (thrβ) were analyzed by multiple Fluorescence in situ Hybridization (mFISH) and Next Generation Sequencing (NGS) techniques. The mFISH technique localized the 11 BAC clones on 12 different chromosome pairs because three of them, specifically the trhr1a, trhr2 and thrβ BAC clones, showed double signals. This signal duplication indicates a duplication of the genomic region inserted within the BAC clone, which provides evidence for the Teleost-Specific Whole Genome Duplication (TS-WGD). Micro-synteny and phylogenetic analysis showed that Cynoglossus semilaevis is the nearest species to S. senegalensis and that Danio rerio is the most distant one. The tshβ BAC clone was highly conserved as the genes belonging to this BAC were located on a single chromosome in all the species studied. These genes participate in proliferation, migration and cell-death, which are key processes during metamorphosis. Overall, micro-synteny analysis showed that most candidate genes are found in conserved genomic surroundings.
Collapse
|
5
|
Ontogenetic expression rhythms of visual opsins in senegalese sole are modulated by photoperiod and light spectrum. J Comp Physiol B 2020; 190:185-204. [PMID: 32048006 DOI: 10.1007/s00360-020-01264-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 01/05/2020] [Accepted: 01/19/2020] [Indexed: 10/25/2022]
Abstract
In the fish retina, rods and cones are responsible for nocturnal vision and colour perception, respectively, and exhibit a repertoire of light-sensitive opsin photopigments that permits the adaptation to different photic environment. The metamorphosis of Senegalese sole determines a migration from pelagic to benthic environments, which is accompanied by essential changes in light intensity and spectrum. In this paper, we analysed the daily expression rhythms of rod opsin and five cone opsins during sole ontogeny in animals maintained under light-dark cycles of white (LDW), blue (LDB), red (LDR) and continuous white (LL) lights. We showed that the expression of visual opsins at early stages of development was enhanced under LDB in relation to LDW, LDR and LL. Moreover, daily rhythms of opsins were more robust under LDW and LDB conditions, in particular, before and after metamorphosis. A shift in the phase of opsin rhythms was observed between hatching and pre-metamorphosis. Metamorphosis was accompanied by a transient loss in the expression rhythms for most of the opsins, which were significantly influenced by light photoperiod and spectrum. In LDR, transcript levels and rhythms were markedly affected for the majority of the opsins analysed. Under LL, most of the opsins examined exhibited endogenous rhythms, although amplitudes and acrophases changed considerably. To the best of our knowledge, this is the first study on the daily expression rhythms of visual opsins during the ontogeny of a metamorphic flatfish and further emphasises the importance of using natural lighting conditions for proper development of Senegalese sole.
Collapse
|
6
|
Araújo MJ, Rocha RJM, Soares AMVM, Benedé JL, Chisvert A, Monteiro MS. Effects of UV filter 4-methylbenzylidene camphor during early development of Solea senegalensis Kaup, 1858. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:1395-1404. [PMID: 30045559 DOI: 10.1016/j.scitotenv.2018.02.112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 06/08/2023]
Abstract
The inclusion of organic UV filters in personal care products (PCPs) has increased in recent years. 4-Methylbenzylidene camphor (4MBC) is one of the most used UV filters, and thus it is commonly found in aquatic ecosystems, with proved negative effects on aquatic organisms. Effects on early life stages of marine vertebrates are largely unknown. Therefore, the main goal of this work was to evaluate 4MBC effects on Senegalese sole (Solea Senegalensis Kaup, 1858) larvae at different levels of biological organization. S. senegalensis were exposed to increasing concentrations of 4MBC from egg stage until 96 h. Mortality, growth, malformations, behaviour and biochemical responses, including enzymatic biomarkers were studied. The exposure to 4MBC until 96 h post-fertilization (hpf) induced mortality and malformations in a dose-response manner. Besides, reduced growth with increasing concentrations was observed. The exposure to 4MBC also caused alterations on behaviour, including overall lower swimming time during light and dark periods. Biomarker alterations caused by 4MBC included imbalance of neurotransmission related endpoints (increased acetylcholinesterase activity) and decreased activity of enzymes related to anaerobic metabolism (lower cellular lactate dehydrogenase activity) at the lower concentrations tested. Furthermore, our results suggest that 4MBC do not induce oxidative stress in S. senegalensis larvae, since catalase and lipid peroxidation levels were not significantly altered by 4MBC. S. senegalensis revealed to be a good model species for vertebrate animal testing in the marine environment. Sub-lethal concentrations of 4MBC induced toxic effects at all organizational levels. Swimming behaviour was a sensitive endpoint and showed that exposure to 4MBC causes impairment on response to light stimulus which is possibly linked with the observed imbalances on cholinesterase activity in larvae. Conservation concerns along distribution range of S. senegalensis should consider that increasing levels of UV filters in marine environment might have impact on the ecology of the species.
Collapse
Affiliation(s)
- M J Araújo
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - R J M Rocha
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - A M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - J L Benedé
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - A Chisvert
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - M S Monteiro
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
7
|
Ali JM, Sangster JL, Snow DD, Bartelt-Hunt SL, Kolok AS. Compensatory response of fathead minnow larvae following a pulsed in-situ exposure to a seasonal agricultural runoff event. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 603-604:817-826. [PMID: 28385422 DOI: 10.1016/j.scitotenv.2017.03.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 06/07/2023]
Abstract
Agriculturally-dominated waterways such as those found throughout the Midwestern United States often experience seasonal pulses of agrichemical contaminants which pose a potential hazard to aquatic organisms at varying life stages. The objective of this study was to characterize the developmental plasticity of fathead minnow larvae in a natural environment subject to a seasonal episodic perturbation in the form of a complex mixture of agricultural stressors. Fathead minnow larvae were maintained at the Elkhorn River Research Station for a 28-d in situ exposure to an agrichemical pulse event. Minnow larvae were sampled after 14 and 28days to characterize developmental plasticity through growth measures and relative gene expression. Concentrations of agrichemical contaminants measured in water using polar organic chemical integrative samplers and composite sediment samples throughout the 28-d exposure were quantified using gas chromatography-mass spectrometry. Elevated concentrations of acetochlor, atrazine, and metolachlor were indicative of inputs from agricultural sources and were associated with reductions in body mass, condition factor, and androgenic gene expression in river exposed fathead minnow larvae. However, following a 14-d in situ depuration during the post-pulse period, river exposed larvae overcompensated in previously suppressed biological endpoints. These results indicate that fathead minnow larvae are capable of compensatory responses following episodic exposure to agrichemical stressors.
Collapse
Affiliation(s)
- Jonathan M Ali
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska - Medical Center, Omaha, NE 68198-6805, United States
| | - Jodi L Sangster
- Department of Civil Engineering, University of Nebraska-Lincoln, Peter Kiewit Institute, Omaha, NE 68182-0178, United States; USDA-ARS, U.S. Salinity Laboratory, Riverside, CA 92507-4617, United States
| | - Daniel D Snow
- Nebraska Water Center and School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583-0844, United States
| | - Shannon L Bartelt-Hunt
- Department of Civil Engineering, University of Nebraska-Lincoln, Peter Kiewit Institute, Omaha, NE 68182-0178, United States
| | - Alan S Kolok
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska - Medical Center, Omaha, NE 68198-6805, United States; Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182-0040, United States.
| |
Collapse
|
8
|
Beaudry FEG, Iwanicki TW, Mariluz BRZ, Darnet S, Brinkmann H, Schneider P, Taylor JS. The non-visual opsins: eighteen in the ancestor of vertebrates, astonishing increase in ray-finned fish, and loss in amniotes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:685-696. [DOI: 10.1002/jez.b.22773] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 08/24/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022]
Affiliation(s)
| | - Tom W. Iwanicki
- Department of Biology; University of Victoria; Victoria BC Canada
| | | | - Sylvain Darnet
- Instituto de Ciências Biológicas; Universidade Federal do Pará (UFPA); Campus do Guamá Belém PA Brazil
| | - Henner Brinkmann
- Microbial Ecology and Diversity Research; Leibniz Institute; DSMZ, Inhoffenstraße 7B Braunschweig Germany
| | - Patricia Schneider
- Instituto de Ciências Biológicas; Universidade Federal do Pará (UFPA); Campus do Guamá Belém PA Brazil
| | | |
Collapse
|
9
|
Tao H, Li X, Qiu JF, Liu HJ, Zhang DY, Chu F, Sima Y, Xu SQ. The light cycle controls the hatching rhythm in Bombyx mori via negative feedback loop of the circadian oscillator. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2017; 96:e21408. [PMID: 28872696 DOI: 10.1002/arch.21408] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hatching behavior is a key target in silkworm (Bombyx mori) rearing, especially for the control of Lepidoptera pests. According to previous research, hatching rhythms appear to be controlled by a clock mechanism that restricts or "gates" hatching to a particular time. However, the underlying mechanism remains elusive. Under 12-h light:12-h dark photoperiod (LD) conditions, the transcriptional levels of the chitinase5 (Cht5) and hatching enzyme-like (Hel) genes, as well as the enzymatic activities of their gene products, oscillated in time with ambient light cycles, as did the transcriptional levels of the cryptochrome 1, cryptochrome 2, period (per), and timeless genes, which are key components of the negative feedback loop of the circadian rhythm. These changes were related to the expression profile of the ecdysteroid receptor gene and the hatching behavior of B. mori eggs. However, under continuous light or dark conditions, the hatching behavior, the expression levels of Cht5 and Hel, as well as the enzymatic activities of their gene products, were not synchronized unlike under LD conditions. In addition, immunohistochemistry experiments showed that light promoted the translocation of PER from the cytoplasm to the nucleus. In conclusion, LD cycles regulate the hatching rhythm of B. mori via negative feedback loop of the circadian oscillator.
Collapse
Affiliation(s)
- Hui Tao
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Xue Li
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Jian-Feng Qiu
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Heng-Jiang Liu
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Da-Yan Zhang
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Feng Chu
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Yanghu Sima
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
- National Engineering Laboratory for Modern Silk (NEAER), Soochow University, Suzhou, China
| | - Shi-Qing Xu
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
- National Engineering Laboratory for Modern Silk (NEAER), Soochow University, Suzhou, China
| |
Collapse
|
10
|
Hang CY, Kitahashi T, Parhar IS. Neuronal Organization of Deep Brain Opsin Photoreceptors in Adult Teleosts. Front Neuroanat 2016; 10:48. [PMID: 27199680 PMCID: PMC4846651 DOI: 10.3389/fnana.2016.00048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/13/2016] [Indexed: 11/13/2022] Open
Abstract
Biological impacts of light beyond vision, i.e., non-visual functions of light, signify the need to better understand light detection (or photoreception) systems in vertebrates. Photopigments, which comprise light-absorbing chromophores bound to a variety of G-protein coupled receptor opsins, are responsible for visual and non-visual photoreception. Non-visual opsin photopigments in the retina of mammals and extra-retinal tissues of non-mammals play an important role in non-image-forming functions of light, e.g., biological rhythms and seasonal reproduction. This review highlights the role of opsin photoreceptors in the deep brain, which could involve conserved neurochemical systems that control different time- and light-dependent physiologies in in non-mammalian vertebrates including teleost fish.
Collapse
Affiliation(s)
- Chong Yee Hang
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| | - Takashi Kitahashi
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| |
Collapse
|
11
|
|
12
|
Lan-Chow-Wing O, Confente F, Herrera-Pérez P, Isorna E, Chereguini O, Rendón MDC, Falcón J, Muñoz-Cueto JA. Distinct expression profiles of three melatonin receptors during early development and metamorphosis in the flatfish Solea senegalensis. Int J Mol Sci 2014; 15:20789-99. [PMID: 25402642 PMCID: PMC4264196 DOI: 10.3390/ijms151120789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 11/16/2022] Open
Abstract
Melatonin actions are mediated through G protein-coupled transmembrane receptors. Recently, mt1, mt2, and mel1c melatonin receptors were cloned in the Senegalese sole. Here, their day-night and developmental expressions were analyzed by quantitative PCR. These results revealed distinct expression patterns of each receptor through development. mel1c transcripts were more abundant in unfertilized ovulated oocytes and declined during embryonic development. mt1 and mt2 expression was higher at the earliest stages (2–6 days post-fertilization), decreasing before (mt2) or during (mt1) metamorphosis. Only mt1 and mel1c expression exhibited day-night variations, with higher nocturnal mRNA levels. These results suggest different roles and transcriptional regulation of these melatonin receptors during flatfish development and metamorphosis.
Collapse
Affiliation(s)
- Olivier Lan-Chow-Wing
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR), Agrifood Campus of International Excellence (ceiA3), E-11510 Puerto Real, Spain.
| | - Francesca Confente
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR), Agrifood Campus of International Excellence (ceiA3), E-11510 Puerto Real, Spain.
| | - Patricia Herrera-Pérez
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR), Agrifood Campus of International Excellence (ceiA3), E-11510 Puerto Real, Spain.
| | - Esther Isorna
- Department of Physiology (Animal Physiology II), Faculty of Biology, Complutense University of Madrid, E-28040 Madrid, Spain.
| | - Olvido Chereguini
- IEO, Spanish Institute of Oceanography, Santander Oceanographic Centre, Promontorio de San Martín, s/n, P.O. Box 240, E-39080 Santander, Spain.
| | - Maria del Carmen Rendón
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR), Agrifood Campus of International Excellence (ceiA3), E-11510 Puerto Real, Spain.
| | - Jack Falcón
- Aragó Laboratory-UMR7628 (CNRS and UPMC) and GDR2821 (CNRS/Ifremer), F-66651 Banyuls/Mer, France.
| | - José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR), Agrifood Campus of International Excellence (ceiA3), E-11510 Puerto Real, Spain.
| |
Collapse
|
13
|
Bucking C, Lemoine CMR, Walsh PJ. Waste nitrogen metabolism and excretion in zebrafish embryos: effects of light, ammonia, and nicotinamide. ACTA ACUST UNITED AC 2013; 319:391-403. [PMID: 23754660 DOI: 10.1002/jez.1802] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 01/28/2013] [Accepted: 04/01/2013] [Indexed: 11/08/2022]
Abstract
Bony fish primarily excrete ammonia as adults however the persistence of urea cycle genes may reflect a beneficial role for urea production during embryonic stages in protecting the embryo from toxic effects of ammonia produced from a highly nitrogenous yolk. This study aimed to examine the dynamic scope for changes in rates of urea synthesis and excretion in one such species (zebrafish, Danio rerio) by manipulating the intrinsic developmental rate (by alteration of light:dark cycles), as well as by direct chemical manipulation via ammonia injection (to potentially activate urea production) and nicotinamide exposure (to potentially inhibit urea production). Continuous dark exposure delayed development in embryos as evidenced by delayed appearance of hallmark anatomical features (heartbeat, eye pigmentation, body pigmentation, lateral line, fin buds) at 30 and 48 hr post-fertilization, as well by a lower hatching rate compared to embryos reared in continuous light. Both ammonia and urea excretion were similarly effected and were generally higher in embryos continuously exposed to light. Ammonia injection resulted in significant increases (up to fourfold) of urea N excretion and no changes to ammonia excretion rates along with modest increases in yolk ammonia content during 2-6 hr post-injection. Nicotinamide (an inhibitor of urea synthesis in mammals) reduced the ammonia-induced increase in urea excretion and led to retention of ammonia in the yolk and body of the embryo. Our results indicate that there is a relatively rapid and large scope for increases in urea production/excretion rates in developing embryos. Potential mechanisms for these increases are discussed.
Collapse
Affiliation(s)
- Carol Bucking
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| | | | | |
Collapse
|
14
|
Martín-Robles ÁJ, Whitmore D, Pendón C, Muñoz-Cueto JA. Differential effects of transient constant light-dark conditions on daily rhythms ofPeriodandClocktranscripts during Senegalese sole metamorphosis. Chronobiol Int 2013; 30:699-710. [PMID: 23713834 DOI: 10.3109/07420528.2013.782313] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Águeda J Martín-Robles
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEIMAR), Puerto Real, Spain
| | | | | | | |
Collapse
|
15
|
Villamizar N, Blanco-Vives B, Oliveira C, Dinis MT, Di Rosa V, Negrini P, Bertolucci C, Sánchez-Vázquez FJ. Circadian Rhythms of Embryonic Development and Hatching in Fish: A Comparative Study of Zebrafish (Diurnal), Senegalese Sole (Nocturnal), and Somalian Cavefish (Blind). Chronobiol Int 2013; 30:889-900. [DOI: 10.3109/07420528.2013.784772] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Villamizar N, Ribas L, Piferrer F, Vera LM, Sánchez-Vázquez FJ. Impact of daily thermocycles on hatching rhythms, larval performance and sex differentiation of zebrafish. PLoS One 2012; 7:e52153. [PMID: 23284912 PMCID: PMC3527402 DOI: 10.1371/journal.pone.0052153] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 11/08/2012] [Indexed: 12/16/2022] Open
Abstract
In the wild, water temperature cycles daily: it warms up after sunrise, and cools rapidly after sunset. Surprisingly, the impact of such daily thermocycles during the early development of fish remains neglected. We investigated the influence of constant vs daily thermocycles in zebrafish, from embryo development to sexual differentiation, by applying four temperature regimens: two constant (24°C and 28°C) and two daily thermocycles: 28:24°C, TC (thermophase coinciding with daytime, and cryophase coinciding with night-time) and 24:28°C, CT (opposite to TC) in a 12:12 h light:dark cycle (LD). Embryo development was temperature-dependent but enhanced at 28°C and TC. Hatching rhythms were diurnal (around 4 h after lights on), but temperature- and cycle-sensitive, since hatching occurred sooner at 28°C (48 hours post fertilization; hpf) while it was delayed at 24°C (96 hpf). Under TC, hatching occurred at 72 hpf, while under CT hatching displayed two peaks (at 70 hpf and 94 hpf). In constant light (LL) or darkness (DD), hatching rhythms persisted with tau close to 24 h, suggesting a clock-controlled “gating” mechanism. Under 28°C or TC, larvae showed the best performance (high growth and survival, and low malformations). The sex ratio was strongly influenced by temperature, as the proportion of females was higher in CT and TC (79 and 83% respectively), contrasting with 28°C and 24°C, which led to more males (83 and 76%). Ovarian aromatase (cyp19a) expression in females was highest in TC and CT (6.5 and 4.6 fold higher than at 28°C, respectively); while anti-müllerian hormone (amh) expression in males increased in testis at 24°C (3.6 fold higher compared to TC) and particularly at 28°C (14.3 fold increase). Taken together, these findings highlight the key role of environmental cycles during early development, which shaped the daily rhythms in fish embryo and larvae, and ultimately influenced sex differentiation.
Collapse
Affiliation(s)
- Natalia Villamizar
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
| | - Laia Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Luisa M. Vera
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
| | - Francisco Javier Sánchez-Vázquez
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
- * E-mail:
| |
Collapse
|
17
|
Martín-Robles AJ, Aliaga-Guerrero M, Whitmore D, Pendón C, Muñoz-Cueto JA. The circadian clock machinery during early development of Senegalese sole (Solea senegalensis): effects of constant light and dark conditions. Chronobiol Int 2012; 29:1195-205. [PMID: 23003212 DOI: 10.3109/07420528.2012.719963] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Circadian rhythms are established very early during vertebrate development. In fish, environmental cues can influence the initiation and synchronization of different rhythmic processes. Previous studies in zebrafish and rainbow trout have shown that circadian oscillation of clock genes represents one of the earliest detectable rhythms in the developing embryo, suggesting their significance in regulating the coordination of developmental processes. In this study, we analyzed the daily expression of the core clock components Per1, Per2, Per3, and Clock during the first several days of Senegalese sole development (0-4 d post fertilization or dpf) under different lighting regimes, with the aim of addressing when the molecular clock first emerges in this species and how it is affected by different photoperiods. Rhythmic expression of the above genes was detected from 0 to 1 dpf, being markedly affected in the next few days by both constant light (LL) and dark (DD) conditions. A gradual entrainment of the clock machinery was observed only under light-dark (LD) cycles, and robust rhythms with increased amplitudes were established by 4 dpf for all clock genes currently studied. Our results show the existence of an embryonic molecular clock from the 1st d of development in Senegalese sole and emphasize the significance of cycling LD conditions when raising embryos and early larvae.
Collapse
Affiliation(s)
- Agueda J Martín-Robles
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEI MAR), Puerto Real, Spain
| | | | | | | | | |
Collapse
|
18
|
Blanco-Vives B, Aliaga-Guerrero M, Cañavate JP, García-Mateos G, Martín-Robles AJ, Herrera-Pérez P, Muñoz-Cueto JA, Sánchez-Vázquez FJ. Metamorphosis induces a light-dependent switch in Senegalese sole (Solea senegalensis) from diurnal to nocturnal behavior. J Biol Rhythms 2012; 27:135-44. [PMID: 22476774 DOI: 10.1177/0748730411435303] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Light plays a key role in the development of biological rhythms in fish. Recent research in Senegal sole has revealed that spawning and hatching rhythms, larval development, and growth performance are strongly influenced by lighting conditions. However, the effect of light on the daily patterns of behavior remains unexplored. Therefore, the aim of this study was to investigate the impact of different photoperiod regimes and white, blue, and red light on the activity rhythms and foraging behavior of Solea senegalensis larvae up to 40 days posthatching (DPH). To this end, eggs were collected immediately after spawning during the night and exposed to continuous white light (LL), continuous darkness (DD), or light-dark (LD) 12L:12D cycles of white (LD(W)), blue (LD(B), λ(peak) = 463 nm), or red light (LD(R), λ(peak) = 685 nm). A filming scenario was designed to video record activity rhythms during day and night times using infrared lights. The results revealed that activity rhythms in LD(B) and LD(W) changed from diurnal to nocturnal on days 9 to 10 DPH, coinciding with the onset of metamorphosis. In LD(R), sole larvae remained nocturnal throughout the experimental period, while under LL and DD, larvae failed to show any rhythm. In addition, larvae exposed to LD(B) and LD(W) had the highest prey capture success rate (LD(B) = 82.6% ± 2.0%; LD(W) = 75.1% ± 1.3%) and attack rate (LD(B) = 54.3% ± 1.9%; LD(W) = 46.9% ± 3.0%) during the light phase (ML) until 9 DPH. During metamorphosis, the attack and capture success rates in these light conditions were higher during the dark phase (MD), when they showed the same nocturnal behavioral pattern as under LD(R) conditions. These results revealed that the development of sole larvae is tightly controlled by light characteristics, underlining the importance of the natural underwater photoenvironment (LD cycles of blue wavelengths) for the normal onset of the rhythmic behavior of fish larvae during early ontogenesis.
Collapse
Affiliation(s)
- B Blanco-Vives
- Department of Physiology, Faculty of Biology, University of Murcia, Espinardo Campus, Murcia, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Martín-Robles ÁJ, Whitmore D, Sánchez-Vázquez FJ, Pendón C, Muñoz-Cueto JA. Cloning, tissue expression pattern and daily rhythms of Period1, Period2, and Clock transcripts in the flatfish Senegalese sole, Solea senegalensis. J Comp Physiol B 2012; 182:673-85. [PMID: 22373774 DOI: 10.1007/s00360-012-0653-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/13/2012] [Accepted: 02/13/2012] [Indexed: 12/23/2022]
Abstract
An extensive network of endogenous oscillators governs vertebrate circadian rhythmicity. At the molecular level, they are composed of a set of clock genes that participate in transcriptional-translational feedback loops to control their own expression and that of downstream output genes. These clocks are synchronized with the environment, although entrainment by external periodic cues remains little explored in fish. In this work, partial cDNA sequences of clock genes representing both positive (Clock) and negative (Period1, Period2) elements of the molecular feedback loops were obtained from the nocturnal flatfish Senegalese sole, a relevant species for aquaculture and chronobiology. All of the above genes exhibited high identities with their respective teleost clock genes, and Per-Arnt-Sim or basic helix-loop-helix binding domains were recognized in their primary structure. They showed a widespread distribution through the animal body and some of them displayed daily mRNA rhythms in central (retina, optic tectum, diencephalon, and cerebellum) and peripheral (liver) tissues. These rhythms were most robust in retina and liver, exhibiting marked Period1 and Clock daily oscillations in transcript levels as revealed by ANOVA and cosinor analysis. Interestingly, expression profiles were inverted in retina and optic tectum compared to liver. Such differences suggest the existence of tissue-dependent zeitgebers for clock gene expression in this species (i.e., light for retina and optic tectum and feeding time for liver). This study provides novel insight into the location of the molecular clocks (central vs. peripheral) and their different phasing and synchronization pathways, which contributes to better understand the teleost circadian systems and its plasticity.
Collapse
Affiliation(s)
- Águeda J Martín-Robles
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEI MAR), 11510, Puerto Real, Spain
| | | | | | | | | |
Collapse
|