1
|
Mata-Sotres JA, Viana MT, Lazo JP, Navarro-Guillén C, Fuentes-Quesada JP. Daily rhythm in feeding behavior and digestive processes in totoaba (Totoaba macdonaldi) under commercial farming conditions. Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111026. [PMID: 39197584 DOI: 10.1016/j.cbpb.2024.111026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
To identify daily changes in the digestive physiology of Totoaba macdonaldi, the feed intake, activity (pepsin, trypsin, chymotrypsin, lipase, amylase, and L-aminopeptidase), and gene expression (aminopeptidase and maltase-glucoamylase) of key digestive enzymes were measured in the intestine and the pyloric caeca. Fish were fed for three weeks every four hours during the light period to apparent satiation, and samples were taken every four hours throughout a 24-h cycle under a 12:12 L:D photoperiod. The feed consumption steadily increased until the third feeding (16:00 h, ZT-8) and decreased significantly towards the end of the day. The activity of pepsin and alkaline enzymes (trypsin, chymotrypsin, lipase, amylase, and L-aminopeptidase) exhibited a pattern dependent on the presence of feed, showing a significant reduction during the hours of darkness (ZT-12 to ZT-24). Expression of the intestinal brush border enzyme (L-aminopeptidase) increased during the darkness period in anticipation of the feed ingestion associated with the subsequent light period. The cosinor analysis used to estimate the feed rhythms for all tested enzymes showed that activity in the intestine and pyloric caeca exhibited significant rhythmicity (p < 0.05). However, no rhythmicity was observed in the intestinal expression of maltase-glucoamylase. Our results demonstrate that some of the behavioral and digestive physiology features of totoaba directly respond to rhythmicity in feeding, a finding that should be considered when establishing optimized feeding protocols.
Collapse
Affiliation(s)
- José Antonio Mata-Sotres
- Departamento el Hombre y su Ambiente, Universidad Autónoma Metropolitana, Unidad Xochimilco, Ciudad de México 04960, Mexico
| | - María Teresa Viana
- Instituto de Investigaciones Oceanológicas (IIO-UABC), Baja California 22870, Mexico
| | - Juan Pablo Lazo
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California 22860, Mexico
| | | | - José Pablo Fuentes-Quesada
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California 22860, Mexico; Stolt Sea Farm, LG. Couso - La Grana s/n, Couso 15960, Spain.
| |
Collapse
|
2
|
Di Rosa V, Frigato E, Negrini P, Cristiano W, López-Olmeda JF, Rétaux S, Sánchez-Vázquez FJ, Foulkes NS, Bertolucci C. Sporadic feeding regulates robust food entrainable circadian clocks in blind cavefish. iScience 2024; 27:110171. [PMID: 38974965 PMCID: PMC11225386 DOI: 10.1016/j.isci.2024.110171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/14/2024] [Accepted: 05/31/2024] [Indexed: 07/09/2024] Open
Abstract
The circadian clock represents a key timing system entrained by various periodic signals that ensure synchronization with the environment. Many investigations have pointed to the existence of two distinct circadian oscillators: one regulated by the light-dark cycle and the other set by feeding time. Blind cavefish have evolved under extreme conditions where they completely lack light exposure and experience food deprivation. Here, we have investigated feeding regulated clocks in two cavefish species, the Somalian cavefish Phreatichthys andruzzii and the Mexican cavefish Astyanax mexicanus, in comparison with the surface-dwelling zebrafish Danio rerio. Our results reveal that feeding represents an extremely strong synchronizer for circadian locomotor rhythmicity in subterranean cavefish. Indeed, we showed that consuming just one meal every 4 days is sufficient to entrain circadian rhythmicity in both cavefish species, but not in zebrafish. These profound adaptations to an extreme environment provide insight into the connections between feeding and circadian clocks.
Collapse
Affiliation(s)
- Viviana Di Rosa
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Elena Frigato
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Pietro Negrini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Walter Cristiano
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Ecosystems and Health Unit, Environment and Health Department, Italian National Institute of Health, 00161 Rome, Italy
| | - Jose Fernando López-Olmeda
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-Saclay, 91400 Saclay, France
| | - Francisco Javier Sánchez-Vázquez
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain
| | - Nicholas S. Foulkes
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
3
|
Wang W, Liu Z, Wang X, Zhang F, Ma C, Zhao M, Ma K, Ma L. Feeding rhythm of the zoea larvae of Scylla paramamosain: The dynamic feeding rhythm is not completely synchronized with photoperiod. Heliyon 2024; 10:e29826. [PMID: 38681660 PMCID: PMC11053271 DOI: 10.1016/j.heliyon.2024.e29826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/25/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
The feeding rhythm is one of the key factors determining the success of artificial breeding of S. paramamosain. To understand the feeding rhythm of the different zoea larva developmental stages of S. paramamosain, the feeding rate, digestive enzyme activity, and expression of metabolism-related genes were investigated in the present study. The results showed that the S. paramamosain feeding rate has strong diurnal feeding rhythm, being significantly higher at 10:00-14:00 from stages ZI to ZIV. While the feeding rate peaked at 14:00 on Days 10 and 11, the peak shifted to 18:00 on Day 12. The activity of digestive enzymes amylase, pepsin and lipase decreased at night but increased in the daytime, showing a single-phase rhythm similar to that of the feeding rate, suggesting that the digestive enzyme activity was closely associated with the feeding rate during the larval development. Compared to pepsin and lipase, the activity of amylase was the most consistent with feeding rate. In particular, amylase activity peaked at 18:00 on Day 12. Due to its synchronicity with feeding activity, the activity of amylase could provide a potential reference for determining the best feeding time during zoea stages in S. paramamosain breeding. Moreover, the relative mRNA expression of metabolism-related genes SpCHH and SpFAS at most tested points was lower from 10:00 to 14:00, but higher at 18:00 to 6:00 of the next day. On the other hand, the expression patterns of SpHSL and SpTryp were converse to those of SpCHH and SpFAS. Our findings revealed that the S. paramamosain zoea has an obvious feeding rhythm, and the most suitable feeding time was 10:00-18:00 depending on different stages. The feeding rhythm is a critical aspect in aquaculture, influencing a series of physiological functions in aquatic animals. This study provides insights into the feeding rhythm during the zoea development of S. paramamosain, making a significant contribution to optimizing feeding strategy, improving aquafeed utilization, and reducing the impact of residual feed on water environment.
Collapse
Affiliation(s)
| | | | - Xueyang Wang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Yangpu Area, Shanghai 200090, PR China
| | - Fengying Zhang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Yangpu Area, Shanghai 200090, PR China
| | - Chunyan Ma
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Yangpu Area, Shanghai 200090, PR China
| | - Ming Zhao
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Yangpu Area, Shanghai 200090, PR China
| | - Keyi Ma
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Yangpu Area, Shanghai 200090, PR China
| | - Lingbo Ma
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Yangpu Area, Shanghai 200090, PR China
| |
Collapse
|
4
|
Dong Z, Wang WX. Tracking Nano- and Microplastics Accumulation and Egestion in a Marine Copepod by Novel Fluorescent AIEgens: Kinetic Modeling of the Rhythm Behavior. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20761-20772. [PMID: 38029324 DOI: 10.1021/acs.est.3c04726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Nano- and microplastics (NMPs) are now prevalent in the marine environment. This study quantified the uptake and depuration kinetics of spherical polystyrene NMPs of different particle sizes (200 nm/30 μm) and functional groups (-NH2/-COOH) in a temperate calanoid copepod Calanus sinicus (C. sinicus), which exhibited rhythmic feeding patterns in natural environments. Aggregated-induced emission (AIE) fluorescent probes were employed to track and quantify the kinetics of NMPs with excellent photostability and biocompatibility. The results showed that C. sinicus consumed all NMPs types, with preference of NMPs to small size and amino group. Increased diatom concentrations also inhibited the bioaccumulation of NMPs. Influenced by rhythmic behavior, the bioaccumulation of NMPs by C. sinicus was nonstationary during the 6 h uptake phase. After 1-3 h of rapid uptake, the body burden peaked and then slowly declined. During the 3 h depuration phase, C. sinicus rapidly and efficiently removed NMPs with a mean half-life of only 0.23 h. To further quantify the body burden of C. sinicus under the influence of rhythmic feeding behavior, a biokinetic model was established, and the Markov chain Monte Carlo method was used to estimate the parameter distribution. Our results highlighted that copepods exhibited unique rhythmic feeding behavior under environmentally relevant concentrations of NMPs exposure, which may influence the bioaccumulation, trophic transfer, and environmental fate of NMPs.
Collapse
Affiliation(s)
- Zipei Dong
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
5
|
Saiz N, Herrera-Castillo L, de Pedro N, Delgado MJ, Arvidsson SD, Marugal-López MÁ, Isorna E. Assessing Chronodisruption Distress in Goldfish: The Importance of Multimodal Approaches. Animals (Basel) 2023; 13:2481. [PMID: 37570290 PMCID: PMC10417125 DOI: 10.3390/ani13152481] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Chronodisruption caused by factors such as light at night and mistimed meals has been linked to numerous physiological alterations in vertebrates and may be an anxiogenic factor affecting welfare. This study aims to investigate whether chronodisruption causes measurable changes in the anxiety responses of goldfish under two conditions: randomly scheduled feeding (RF) and continuous light (LL). Anxiety-like behavior was assessed in the open field with object approach and black/white preference tests, which had been validated using diazepam. An increased thigmotaxis response and decreased object exploration under both chronodisruption protocols indicated anxiety states. Furthermore, locomotor activity was increased in LL fish. The black/white preference test discriminated anxiolysis induced by diazepam but was unable to detect anxiety caused by chronodisruption. Plasma cortisol increased in both RF and LL fish throughout the experiment, confirming that both conditions caused stress. The LL fish also showed an apparently desensitized hypothalamus-pituitary-interrenal HPI axis, with a decrease in pomc and crf expression. Individual analysis found no correlation between anxiety-like behavior and stress axis activation nor between scototaxis and thigmotaxis responses. However, individual differences in sensitivity to each test were detected. Altogether, these results highlight circadian disruption as a stressor for fish and endorse a multiple variable approach for reliably assessing animal discomfort.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Esther Isorna
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (N.S.); (L.H.-C.); (N.d.P.); (M.J.D.); (S.D.A.); (M.Á.M.-L.)
| |
Collapse
|
6
|
Saiz N, Velasco C, de Pedro N, Soengas JL, Isorna E. Insulin Controls Clock Gene Expression in the Liver of Goldfish Probably via Pi3k/Akt Pathway. Int J Mol Sci 2023; 24:11897. [PMID: 37569272 PMCID: PMC10418410 DOI: 10.3390/ijms241511897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
The liver circadian clock plays a pivotal role in driving metabolic rhythms, being primarily entrained by the feeding schedule, although the underlying mechanisms remain elusive. This study aimed to investigate the potential role of insulin as an intake signal mediating liver entrainment in fish. To achieve this, the expression of clock genes, which form the molecular basis of endogenous oscillators, was analyzed in goldfish liver explants treated with insulin. The presence of insulin directly increased the abundance of per1a and per2 transcripts in the liver. The dependency of protein translation for such insulin effects was evaluated using cycloheximide, which revealed that intermediate protein translation is seemingly unnecessary for the observed insulin actions. Furthermore, the putative interaction between insulin and glucocorticoid signaling in the liver was examined, with the results suggesting that both hormones exert their effects by independent mechanisms. Finally, to investigate the specific pathways involved in the insulin effects, inhibitors targeting PI3K/AKT and MEK/ERK were employed. Notably, inhibition of PI3K/AKT pathway prevented the induction of per genes by insulin, supporting its involvement in this process. Together, these findings suggest a role of insulin in fish as a key element of the multifactorial system that entrains the liver clock to the feeding schedule.
Collapse
Affiliation(s)
- Nuria Saiz
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (N.S.); (N.d.P.)
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain; (C.V.); (J.L.S.)
| | - Cristina Velasco
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain; (C.V.); (J.L.S.)
| | - Nuria de Pedro
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (N.S.); (N.d.P.)
| | - José Luis Soengas
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain; (C.V.); (J.L.S.)
| | - Esther Isorna
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (N.S.); (N.d.P.)
| |
Collapse
|
7
|
Alonso-Gómez A, Madera D, Alonso-Gómez ÁL, Valenciano AI, Delgado MJ. Daily Rhythms in the IGF-1 System in the Liver of Goldfish and Their Synchronization to Light/Dark Cycle and Feeding Time. Animals (Basel) 2022; 12:ani12233371. [PMID: 36496892 PMCID: PMC9739714 DOI: 10.3390/ani12233371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
The relevance of the insulin-like growth factor-1 (IGF-1) system in several physiological processes is well-known in vertebrates, although little information about their temporal organization is available. This work aims to investigate the possible rhythmicity of the different components of the IGF-1 system (igf-1, the igf1ra and igf1rb receptors and the paralogs of its binding proteins IGFBP1 and IGFBP2) in the liver of goldfish. In addition, we also study the influence of two environmental cues, the light/dark cycle and feeding time, as zeitgebers. The hepatic igf-1 expression showed a significant daily rhythm with the acrophase prior to feeding time, which seems to be strongly dependent on both zeitgebers. Only igfbp1a-b and igfbp1b-b paralogs exhibited a robust daily rhythm of expression in the liver that persists in fish held under constant darkness or randomly fed. The hepatic expression of the two receptor subtypes did not show daily rhythms in any of the experimental conditions. Altogether these results point to the igf-1, igfbp1a-b, and igfbp1b-b as clock-controlled genes, supporting their role as putative rhythmic outputs of the hepatic oscillator, and highlight the relevance of mealtime as an external cue for the 24-h rhythmic expression of the IGF-1 system in fish.
Collapse
|
8
|
Xu H, Shi C, Ye Y, Song C, Mu C, Wang C. Time-Restricted Feeding Could Not Reduce Rainbow Trout Lipid Deposition Induced by Artificial Night Light. Metabolites 2022; 12:metabo12100904. [PMID: 36295806 PMCID: PMC9606968 DOI: 10.3390/metabo12100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/19/2022] Open
Abstract
Artificial night light (ALAN) could lead to circadian rhythm disorders and disrupt normal lipid metabolism, while time-restricted feeding (TRF) could maintain metabolic homeostasis. In mammals, TRF has been demonstrated to have extraordinary effects on the metabolic regulation caused by circadian rhythm disorders, but studies in lower vertebrates such as fish are still scarce. In this study, the impacts of ALAN on the body composition and lipid metabolism of juvenile rainbow trout were investigated by continuous light (LL) exposure as well as whether TRF could alleviate the negative effects of LL. The results showed that LL upregulated the expression of lipid synthesis (fas and srebp-1c) genes and suppressed the expression of lipid lipolysis (pparβ, cpt-1a, and lpl) genes in the liver, finally promoting lipid accumulation in juvenile rainbow trout. However, LL downregulated the expression of genes (Δ6-fad, Δ9-fad, elovl2, and elovl5) related to long-chain polyunsaturated fatty acid (LC-PUFA) synthesis, resulting in a significant decrease in the proportion of LC-PUFA in the dorsal muscle. In serum, LL led to a decrease in glucose (Glu) levels and an increase in triglyceride (TG) and high-density lipoprotein cholesterol (H-DLC) levels. On the other hand, TRF (mid-dark stage feeding (D)) and mid-light stage feeding (L)) upregulated the expression of both the lipid synthesis (srebp-1c and pparγ), lipolysis (pparα, pparβ, and cpt-1a), and lipid transport (cd36/fat and fatp-1) genes, finally increasing the whole-body lipid, liver protein, and lipid content. Meanwhile, TRF (D and L groups) increased the proportion of polyunsaturated fatty acid (PUFA) and LC-PUFA in serum. In contrast, random feeding (R group) increased the serum Glu levels and decreased TG, total cholesterol (T-CHO), and H-DLC levels, suggesting stress and poor nutritional status. In conclusion, ALAN led to lipid accumulation and a significant decrease in muscle LC-PUFA proportion, and TRF failed to rescue these negative effects.
Collapse
Affiliation(s)
- Hanying Xu
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
- Marine Economic Research Center, Dong Hai Strategic Research Institute, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
| | - Ce Shi
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
- Marine Economic Research Center, Dong Hai Strategic Research Institute, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, 818 Fenghua Road, Ningbo 315211, China
- Correspondence: (C.S.); (C.W.)
| | - Yangfang Ye
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, 818 Fenghua Road, Ningbo 315211, China
| | - Changbin Song
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Changkao Mu
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, 818 Fenghua Road, Ningbo 315211, China
| | - Chunlin Wang
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, 818 Fenghua Road, Ningbo 315211, China
- Correspondence: (C.S.); (C.W.)
| |
Collapse
|
9
|
Badruzzaman M, Goswami C, Sayed MA. Photoperiodic light pulse induces ovarian development in the catfish, Mystus cavasius: Possible roles of dopamine and melatonin in the brain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112941. [PMID: 34710816 DOI: 10.1016/j.ecoenv.2021.112941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/02/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
In the freshwater catfish, Mystus cavasius, locally known as gulsha, ovarian maturation is triggered by long-day conditions. Using dopaminergic neuronal activity in the brain, the purpose of this study was to identify the brain's detection of a nocturnal light pulse that induced ovarian development. Since direct inhibition of pituitary gonadotropin release is exerted by dopamine (DA), it may serve as a neuromodulator of photoperiodic stimulation in teleosts. We studied functional effects of photoperiodicity on dopaminergic rhythmicity in gulsha brain. Nocturnal illumination and Nanda-Hamner photocycles revealed that ovarian development is induced by a 1 h light pulse between zeitgeber time (ZT) 12 and 13. Daily fluctuations in DA, 3, 4-dihydroxyphenylacetic acid (DOPAC) and DOPAC/DA were observed under a 12L:12D photoperiod. Fish exhibited increased levels during the daytime and decreased levels at night. Rhythmic patterns of dopaminergic activity also showed clear circadian oscillations under constant light, but not constant dark conditions. After 7 days of exposure to long photoperiod (14L:10D), DA, DOPAC and DOPAC/DA in the brain at ZT12 and ZT16 were significantly higher than during a short photoperiod (10L:14D). Melatonin-containing water inhibited the release of DA and DOPAC 6 h and 24 h after treatment, respectively, and DOPAC/DA 6 h after treatment. This inhibition was blocked by the melatonin receptor antagonist, luzindole. These results suggest that a 1 h nocturnal light pulse induces ovarian development through alteration of dopaminergic neuronal excitability in the brain, via oscillation in melatonin triggered by photic stimuli, which may interfere with the reproductive endocrine axis in gulsha.
Collapse
Affiliation(s)
- Muhammad Badruzzaman
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Chayon Goswami
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Abu Sayed
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| |
Collapse
|
10
|
Brochu MP, Aubin-Horth N. Shedding light on the circadian clock of the threespine stickleback. J Exp Biol 2021; 224:jeb242970. [PMID: 34854903 PMCID: PMC8729910 DOI: 10.1242/jeb.242970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/24/2021] [Indexed: 11/20/2022]
Abstract
The circadian clock is an internal timekeeping system shared by most organisms, and knowledge about its functional importance and evolution in natural environments is still needed. Here, we investigated the circadian clock of wild-caught threespine sticklebacks (Gasterosteus aculeatus) at the behavioural and molecular levels. Although their behaviour, ecology and evolution are well studied, information on their circadian rhythms are scarce. We quantified the daily locomotor activity rhythm under a light:dark cycle (LD) and under constant darkness (DD). Under LD, all fish exhibited significant daily rhythmicity, while under DD, only 18% of individuals remained rhythmic. This interindividual variation suggests that the circadian clock controls activity only in certain individuals. Moreover, under LD, some fish were almost exclusively nocturnal, while others were active around the clock. Furthermore, the most nocturnal fish were also the least active. These results suggest that light masks activity (i.e. suppresses activity without entraining the internal clock) more strongly in some individuals than others. Finally, we quantified the expression of five clock genes in the brain of sticklebacks under DD using qPCR. We did not detect circadian rhythmicity, which could indicate either that the clock molecular oscillator is highly light-dependent, or that there was an oscillation but that we were unable to detect it. Overall, our study suggests that a strong circadian control on behavioural rhythms may not necessarily be advantageous in a natural population of sticklebacks and that the daily phase of activity varies greatly between individuals because of a differential masking effect of light.
Collapse
Affiliation(s)
| | - Nadia Aubin-Horth
- Département de Biologie and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
11
|
Litopenaeus vannamei BMAL1 Is a Critical Mediator Regulating the Expression of Glucose Transporters and Can Be Suppressed by Constant Darkness. Animals (Basel) 2021; 11:ani11102893. [PMID: 34679914 PMCID: PMC8532828 DOI: 10.3390/ani11102893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Growing evidence has indicated that glucose absorption exhibits profound circadian rhythmicity, mediated entirely by glucose transporters. We observed that the daily profile of BMAL1, GLUT1 and SGLT1 expression was also synchronized in the intestine and the hepatopancreas of Litopenaeus vannamei. Our result identified for the first time that BMAL1 is a critical mediator regulating the expression of glucose transporters, which could be suppressed by constant darkness in L. vannamei. Abstract Aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1) is a core circadian transcription factor that controls the 24-h cycle of physiological processes. In shrimp, the role of BMAL1 in the regulating glucose metabolism remains unclear. Firstly, we observed that the daily profile of BMAL1, GLUT1 and SGLT1 expression were synchronized in the intestine and the hepatopancreas of Litopenaeus vannamei. Then we examined the effects of BMAL1 on the gene expression of glucose transporter type 1 (SGLT1) and sodium-glucose cotransporter 1 (GLUT1) in vivo and in vitro. BMAL1 in L. vannamei shares 70.91–96.35% of sequence identities with other shrimp species and possesses the conserved helix-loop-helix domain and polyadenylation site domain. The in vitro dual-luciferase reporter assay and in vivo RNA interference experiment demonstrated that BMAL1 exerted a positive regulation effect on the expression of glucose transporters in L. vannamei. Moreover, we conducted an eight-week treatment to investigate whether light/dark cycle change would influence growth performance, and gene expression of BMAL1, GLUT1 and SGLT1 in L. vannamei. Our result showed that compared with natural light treatment, constant darkness (24-h darkness) significantly decreased (p < 0.05) serum glucose concentration, and suppressed (p < 0.05) the gene expression of BMAL1, GLUT1 and SGLT1 in the hepatopancreas and the intestine. Growth performance and survival rate were also decreased (p < 0.05) by constant darkness treatment. Our result identified BMAL1 as a critical mediator regulating the expression of glucose transporters, which could be suppressed by constant darkness in L. vannamei. It would be quite interesting to explore the mechanism of dark/light cycles on glucose transport and metabolism in L. vannamei, which might provide a feeding strategy for improving carbohydrate utilization in the future.
Collapse
|
12
|
Wang J, Yang Y, Wang Z, Xu K, Xiao X, Mu W. Comparison of effects in sustained and diel-cycling hypoxia on hypoxia tolerance, histology, physiology and expression of clock genes in high latitude fish Phoxinus lagowskii. Comp Biochem Physiol A Mol Integr Physiol 2021; 260:111020. [PMID: 34166835 DOI: 10.1016/j.cbpa.2021.111020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/19/2021] [Accepted: 06/19/2021] [Indexed: 01/26/2023]
Abstract
Phoxinus lagowskii is a popular fish in Chinese cuisine. Though it is found mainly in China's high-latitude regions, where diel-cycling hypoxia (DCH) is known to have unique impacts on aquatic organisms, there is little known about its response to hypoxia. Currently, nothing is known about the changes in blood parameters, gill and liver morphology, glucose and lipid metabolism, or expression of genes involved in clock and glucose metabolism in response to sustained hypoxia (SH) and diel-cycling hypoxia (DCH). To elucidate the influence of sustained and diel-cycling hypoxia on fish hypoxia tolerance, resting oxygen consumption (MO2) analysis was performed after ten days of hypoxia. This analysis revealed that hypoxia tolerance profoundly improved after ten days of either sustained or diel-cycling hypoxia acclimation, with DCH groups showing greater improvements than SH groups. Additionally, an increase in RBCs was found in P. lagowskii, suggesting an increase in the O2-carrying capacity of the blood to tolerate hypoxia. Hemoglobin (Hb) concentrations in P. lagowskii were increased at four days of diel-cycling hypoxia, confirming that physiological and metabolic adaptation to hypoxia is based on the duration of O2 exposure. Increased Hb and hematocrit (Hct) were found in DCH-exposed fish, both of which have been directly linked to high-latitude hypoxia tolerance. In the gills, lamella surface area increased in SH-exposed fish more than DCH-exposed fish, and these increases were accompanied by a decrease in the volume of interlamellar cell mass (ILCM). Histology changes in the liver showed a higher frequency of cytoplasmic vacuolization in DCH-exposed fish. PK increases in SH-exposed fish suggest that fish can use more energy sources in persistent hypoxia. Meanwhile, DCH-exposed fish use TG as an energy source. In SH-exposed fish, self-regulation of Cry1a was observed, whereas Cry1b gene was up-regulated significantly. In DCH-exposed fish, three of eight clock genes studied had increased expression, including Per1a, Clocka, and Cry1b, suggesting that SH and DCH result in different hypoxic responses. This study presents a novel approach to the study of fish responses to hypoxia in high latitude and shows that sustained hypoxia and diel-cycling hypoxia induce large differences in fish physiology.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Yuting Yang
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Zhen Wang
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Kexin Xu
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Xin Xiao
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Weijie Mu
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
13
|
Vergès-Castillo A, González-Vargas IA, Muñoz-Cueto JA, Martín-Robles ÁJ, Pendon C. Establishment and characterisation of single cell-derived embryonic stem cell lines from the gilthead seabream, Sparus aurata. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110626. [PMID: 34044158 DOI: 10.1016/j.cbpb.2021.110626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 04/16/2021] [Accepted: 05/21/2021] [Indexed: 12/27/2022]
Abstract
An important bottleneck in fish aquaculture research is the supply and maintenance of embryos, larvae, juvenile and adult specimens. In this context, cell lines represent alternative experimental models for in vitro studies that complement in vivo assays. This allows us to perform easier experimental design and sampling and avoid the sacrifice of animals. Embryonic stem (ES) cell lines have attracted increasing attention because they have the capability to proliferate indefinitely and could be differentiated into any cell type of the organism. To minimise cell heterogeneity and increase uniformity of in vitro studies results, in this manuscript we report the development and characterisation of two single cell-derived ES cell lines (monoclonal) from the morula stage embryos of the gilthead seabream, Sparus aurata, named as SAEC-A3 and SAEC-H7. Both cell lines have been passaged for over 100 times, indicating the establishment of long-term, immortalised ES cell cultures. Sequence analyses confirmed the seabream origin of the cell lines, and growth analyses evidenced their high viability and proliferating activity, particularly in culture medium supplemented with 10-15% fetal bovine serum and 22 °C. Both cell lines showed the ability to generate embryoid bodies and show different sensitivity and response to all-trans retinoic acid. The analysis of epithelial (col1α1) and neuronal (sox3) markers in differentiated cultures revealed that SAEC-A3 tended to differentiate towards epithelial-like cells whereas SAEC-H7 tended to differentiate towards neuronal-like cells. Both cell lines were efficiently transfected with pDsRed2-ER and/or pEGFP-N1 plasmids, indicating that they could represent useful biotechnological tools. Daily expression of pcna showed significant expression rhythms, with maximum levels of cell proliferation during the day-night transition. Currently, these cell lines are being successfully used as experimental models for the study of cellular metabolism, physiology and rhythms as well as for toxicological, pharmacological and gene expression analyses.
Collapse
Affiliation(s)
- A Vergès-Castillo
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real, Cádiz, Spain.
| | - I A González-Vargas
- Bioquímica y Biología Molecular, Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, Puerto Real, Cádiz, Spain; Departamento de Ciencias Naturales, Exactas y Estadística, Facultad de Ciencias, Universidad de Santiago de Cali, Cali, Colombia
| | - J A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real, Cádiz, Spain; INMAR Research Institute, Marine Campus of International Excellence (CEIMAR), Agrifood Campus of International Excellence (ceiA3), The European University of the Seas (SEA-EU), University of Cádiz, Puerto Real, Cádiz, Spain.
| | - Á J Martín-Robles
- Bioquímica y Biología Molecular, Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, Puerto Real, Cádiz, Spain; INMAR Research Institute, Marine Campus of International Excellence (CEIMAR), Agrifood Campus of International Excellence (ceiA3), The European University of the Seas (SEA-EU), University of Cádiz, Puerto Real, Cádiz, Spain.
| | - C Pendon
- Bioquímica y Biología Molecular, Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, Puerto Real, Cádiz, Spain; INBIO, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz, Spain.
| |
Collapse
|
14
|
Rodríguez I, Betancor MB, López-Jiménez JÁ, Esteban MÁ, Sánchez-Vázquez FJ, López-Olmeda JF. Daily rhythms in the morphometric parameters of hepatocytes and intestine of the European sea bass (Dicentrarchus labrax): influence of feeding time and hepatic zonation. J Comp Physiol B 2021; 191:503-515. [PMID: 33619590 DOI: 10.1007/s00360-020-01334-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/27/2020] [Accepted: 12/06/2020] [Indexed: 01/21/2023]
Abstract
The digestive system presents daily rhythms at both physiological and histological levels. Although cell morphology rhythms in mammals have been reported, they have scarcely been investigated in fish. The aim of the present research was to investigate the existence of daily rhythms in the morphology of cells in the liver and intestine of a teleost fish, the European sea bass (Dicentrarchus labrax), and how feeding time influences them. Regarding liver, we also focused on differences between the two metabolic zones: perivenous and periportal. For this purpose, fish were divided into two groups: fish fed once a day in the mid-light phase (ML) or the mid-dark phase (MD). After 1 month under each feeding regime, liver and intestine samples were collected every 4 h during a 24-h cycle, and different parameters were studied by light microscopy and image analysis. Daily rhythms occurred in most of the parameters evaluated in the liver. The effect of feeding time depended on the metabolic zone: the rhythms in the periportal zone were synchronized mainly by the light/dark cycle regardless of feeding time, whereas in the perivenous zone, rhythms were influenced more by feeding time. In the intestine, a daily rhythm in villi height was found with acrophases coinciding with feeding time in each group. These findings show for the first time the existence of cellular morphological rhythms in fish liver and intestine, and highlight the interactions between light and feeding cycles in the different metabolic zones of the liver.
Collapse
Affiliation(s)
- Inmaculada Rodríguez
- Department of Physiology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Mónica B Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, FK9 4LA, Stirling, Scotland, UK
| | | | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | | | | |
Collapse
|
15
|
Mondal G, Dharmajyoti Devi S, Khan ZA, Yumnamcha T, Rajiv C, Sanjita Devi H, Chattoraj A. The influence of feeding on the daily rhythm of mRNA expression on melatonin bio-synthesizing enzyme genes and clock associated genes in the zebrafish (Danio rerio) gut. BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2021.1905989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Gopinath Mondal
- Biological Rhythm Laboratory, Animal Resources Programme, Department of Biotechnology, Institute of Bioresources and Sustainable Development, Government of India, Imphal, India
- Department of Biotechnology, Gauhati University, Guwahati 781014, Assam, India
| | - Sijagurumayum Dharmajyoti Devi
- Biological Rhythm Laboratory, Animal Resources Programme, Department of Biotechnology, Institute of Bioresources and Sustainable Development, Government of India, Imphal, India
| | - Zeeshan Ahmad Khan
- Biological Rhythm Laboratory, Animal Resources Programme, Department of Biotechnology, Institute of Bioresources and Sustainable Development, Government of India, Imphal, India
| | - Thangal Yumnamcha
- Biological Rhythm Laboratory, Animal Resources Programme, Department of Biotechnology, Institute of Bioresources and Sustainable Development, Government of India, Imphal, India
| | - Chongtham Rajiv
- Biological Rhythm Laboratory, Animal Resources Programme, Department of Biotechnology, Institute of Bioresources and Sustainable Development, Government of India, Imphal, India
| | - Haobijam Sanjita Devi
- Biological Rhythm Laboratory, Animal Resources Programme, Department of Biotechnology, Institute of Bioresources and Sustainable Development, Government of India, Imphal, India
| | - Asamanja Chattoraj
- Biological Rhythm Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, India
| |
Collapse
|
16
|
Schalm G, Bruns K, Drachenberg N, Geyer N, Foulkes NS, Bertolucci C, Gerlach G. Finding Nemo's clock reveals switch from nocturnal to diurnal activity. Sci Rep 2021; 11:6801. [PMID: 33762724 PMCID: PMC7990958 DOI: 10.1038/s41598-021-86244-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/12/2021] [Indexed: 11/08/2022] Open
Abstract
Timing mechanisms play a key role in the biology of coral reef fish. Typically, fish larvae leave their reef after hatching, stay for a period in the open ocean before returning to the reef for settlement. During this dispersal, larvae use a time-compensated sun compass for orientation. However, the timing of settlement and how coral reef fish keep track of time via endogenous timing mechanisms is poorly understood. Here, we have studied the behavioural and genetic basis of diel rhythms in the clown anemonefish Amphiprion ocellaris. We document a behavioural shift from nocturnal larvae to diurnal adults, while juveniles show an intermediate pattern of activity which potentially indicates flexibility in the timing of settlement on a host anemone. qRTPCR analysis of six core circadian clock genes (bmal1, clocka, cry1b, per1b, per2, per3) reveals rhythmic gene expression patterns that are comparable in larvae and juveniles, and so do not reflect the corresponding activity changes. By establishing an embryonic cell line, we demonstrate that clown anemonefish possess an endogenous clock with similar properties to that of the zebrafish circadian clock. Furthermore, our study provides a first basis to study the multi-layered interaction of clocks from fish, anemones and their zooxanthellae endosymbionts.
Collapse
Affiliation(s)
- Gregor Schalm
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Ammerländer Heerstr. 114-118, 26129, Oldenburg, Germany.
| | - Kristina Bruns
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Ammerländer Heerstr. 114-118, 26129, Oldenburg, Germany
| | - Nina Drachenberg
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Ammerländer Heerstr. 114-118, 26129, Oldenburg, Germany
| | - Nathalie Geyer
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Nicholas S Foulkes
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, 80121, Naples, Italy
| | - Gabriele Gerlach
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Ammerländer Heerstr. 114-118, 26129, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Ammerländer Heerstr. 231, 26129, Oldenburg, Germany
- Centre of Excellence for Coral Reef Studies and School of Marine and Tropical Biology, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
17
|
Saiz N, Gómez-Boronat M, De Pedro N, Delgado MJ, Isorna E. The Lack of Light-Dark and Feeding-Fasting Cycles Alters Temporal Events in the Goldfish ( Carassius auratus) Stress Axis. Animals (Basel) 2021; 11:ani11030669. [PMID: 33802373 PMCID: PMC7998219 DOI: 10.3390/ani11030669] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Vertebrates possess circadian clocks, driven by transcriptional-translational loops of clock genes, to orchestrate anticipatory physiological adaptations to cyclic environmental changes. This work aims to investigate how the absence of a light-dark cycle and a feeding schedule impacts the oscillators in the hypothalamus-pituitary-interrenal axis of goldfish. Fish were maintained under 12L:12D feeding at ZT 2; 12L:12D feeding at random times; and constant darkness feeding at ZT 2. After 30 days, fish were sampled to measure daily variations in plasma cortisol and clock gene expression in the hypothalamus-pituitary-interrenal (HPI) axis. Clock gene rhythms in the HPI were synchronic in the presence of a light-dark cycle but were lost in its absence, while in randomly fed fish, only the interrenal clock was disrupted. The highest cortisol levels were found in the randomly fed group, suggesting that uncertainty of food availability could be as stressful as the absence of a light-dark cycle. Cortisol daily rhythms seem to depend on central clocks, as a disruption in the adrenal clock did not impede rhythmic cortisol release, although it could sensitize the tissue to stress.
Collapse
|
18
|
Galal-Khallaf A, Mohammed-Geba K, Yúfera M, Martínez-Rodríguez G, Mancera JM, López-Olmeda JF. Daily rhythms in endocrine factors of the somatotropic axis and their receptors in gilthead sea bream (Sparus aurata) larvae. Comp Biochem Physiol A Mol Integr Physiol 2020; 250:110793. [PMID: 32805414 DOI: 10.1016/j.cbpa.2020.110793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
Living organisms have adapted to environmental oscillations in light and temperature through evolving biological clocks. Biological rhythms are pervasive at all levels of the endocrine system, including the somatotropic (growth) axis. The objective of the present research was to study the existence of daily rhythms on the somatotropic axis of a marine teleost species, specifically, the gilthead sea bream (Sparus aurata). Larvae of S. aurata at 30 dph (days post hatching), kept under a 9 L:15D (light-dark) photoperiod, were collected every 3 h throughout a 36 h cycle. The expression of the following somatotropic axis genes was analyzed by quantitative PCR: pituitary adenylate cyclase-activating polypeptide 1 (adcyap1), prepro-somatostatin-1 (pss1), growth hormone (gh), growth hormone receptor types 1 and 2 (ghr1 and ghr2, respectively), insulin-like growth factor 1 (igf1) and igf1 receptor a (igf1ra). All genes displayed significant differences among time points and, with the exception of adcyap1, all showed statistically significant daily rhythms. The acrophases of gh, ghr1, ghr2, igf1 and igf1ra were located around the end of the dark phase, between ZT19:44 and ZT0:48 h, whereas the highest expression levels of adcyap1 occurred at ZT18 h. On the other hand, the acrophase of pss1, an inhibitor of Gh secretion, was located at ZT10:16 h, hence it was shifted by several hours with respect to the other genes. The present results provide the first thorough description of somatotropic axis rhythms in gilthead sea bream. Such knowledge provides insights into the role of rhythmic regulation of the Gh/Igf1 axis system in larval growth and metabolism, and it can also improve the implementation of more species-specific feeding regimes.
Collapse
Affiliation(s)
- Asmaa Galal-Khallaf
- Department of Marine Biology and Aquaculture, Marine Sciences Institute of Andalusia, Spanish National Research Council (CSIC), E-11510 Puerto Real (Cádiz), Spain; Molecular Biology and Biotechnology Lab, Department of Zoology, College of Science, Menoufia University, Shebin El- Kom, Menoufia, Egypt; Department of Biology, College of Marine and Environmental Sciences, University Institute of Marine Research (INMAR), University of Cádiz, Campus of International Excellence of the Sea (CEI·MAR), E-11510 Puerto Real, Cádiz, Spain.
| | - Khaled Mohammed-Geba
- Department of Marine Biology and Aquaculture, Marine Sciences Institute of Andalusia, Spanish National Research Council (CSIC), E-11510 Puerto Real (Cádiz), Spain; Molecular Biology and Biotechnology Lab, Department of Zoology, College of Science, Menoufia University, Shebin El- Kom, Menoufia, Egypt; Department of Biology, College of Marine and Environmental Sciences, University Institute of Marine Research (INMAR), University of Cádiz, Campus of International Excellence of the Sea (CEI·MAR), E-11510 Puerto Real, Cádiz, Spain.
| | - Manuel Yúfera
- Department of Marine Biology and Aquaculture, Marine Sciences Institute of Andalusia, Spanish National Research Council (CSIC), E-11510 Puerto Real (Cádiz), Spain
| | - Gonzalo Martínez-Rodríguez
- Department of Marine Biology and Aquaculture, Marine Sciences Institute of Andalusia, Spanish National Research Council (CSIC), E-11510 Puerto Real (Cádiz), Spain
| | - Juan Miguel Mancera
- Department of Biology, College of Marine and Environmental Sciences, University Institute of Marine Research (INMAR), University of Cádiz, Campus of International Excellence of the Sea (CEI·MAR), E-11510 Puerto Real, Cádiz, Spain
| | - Jose F López-Olmeda
- Department of Physiology, College of Biology, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
19
|
Effect of Light–Dark Cycle on Skin Mucosal Immune Activities of Gilthead Seabream (Sparus aurata) and European Sea Bass (Dicentrarchus labrax). FISHES 2020. [DOI: 10.3390/fishes5010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Changes in different immune activities in the skin mucus of gilthead seabream (Sparus aurata L.) and European sea bass (Dicentrarchus labrax L.) specimens exposed to a constant light–dark photoperiod (12 h L:12 h D) were studied. Samples were collected at 08:00 (light on), 14:00, 20:00 (light off), 02:00, and again at 08:00 to determine immunoglobulin M (IgM) levels, several enzymes related to the immune system, and bactericidal activity. IgM levels were higher during the day in seabream and reached a minimum value at 20:00, but it was hardly affected in sea bass. No significant variations were recorded in the levels of protease and antiprotease. Peroxidase reached its maximum level in seabream at 02:00, the same time that it reached its minimum level in sea bass. Lysozyme showed little variation in seabream, but it was significantly lower at 14:00 than during the rest of the cycle in sea bass. Finally, different interspecific variations on bactericidal activity against Vibrio harveyi were recorded. The findings demonstrate that the immune parameters present in skin mucus of these important fish species are affected by the light–dark cycle and that there are substantial interspecies differences.
Collapse
|
20
|
Saha S, Singh KM, Gupta BBP. Circadian rhythm of expression of core clock genes in the photosensitive pineal organ of catfish, Clarias gariepinus under different photoperiodic regimes. BIOL RHYTHM RES 2020. [DOI: 10.1080/09291016.2020.1728922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Saurav Saha
- Environmental Endocrinology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, India
| | - Kshetrimayum Manisana Singh
- Environmental Endocrinology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, India
| | - Braj Bansh Prasad Gupta
- Environmental Endocrinology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, India
| |
Collapse
|
21
|
Qin C, Sun J, Wang J, Han Y, Yang H, Shi Q, Lv Y, Hu P. Discovery of differentially expressed genes in the intestines of Pelteobagrus vachellii within a light/dark cycle. Chronobiol Int 2019; 37:339-352. [PMID: 31809585 DOI: 10.1080/07420528.2019.1690498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In aquaculture, it is necessary to determine of the diurnal biological variations in the intestines to determine an appropriate feeding schedule. The present study aimed to examine the transcriptomes of the Pelteobagrus vachellii intestines at four time points (0 h, 6 h, 12 h, and 18 h) within a light/dark cycle. In comparison with the zeitgeber time 0 (ZT0) transcriptomes, we identified 37,842 unigenes with significant differential expression, including 6,638; 9,626; and 7,938 that genes upregulated, and 3,507; 4,703; and 5,412 genes that were down regulated at 4, 12, and 24 h respectively. The differentially expressed unigenes were subjected to enrichment analysis, which indicated the involvement of the major digestive pathways, including digestion of protein, lipid and carbohydrate, catabolic process (protein, carbohydrate and lipid), and circadian rhythm. We selected 73 key differentially expressed genes (DEGs) from among these pathways and identified DEGs that showed increased expression at night, including those encoding trypsin-3, chymotrypsinogen 2, amino acid transporter, maltase-glucoamylase, facilitated glucose transporter, lipase, phospholipase, fatty acid-binding protein, fatty acid synthase, long-chain fatty acid transport protein, and apolipoprotein. Moreover, DEGs involved of circadian rhythm were identified, including brain-muscle-Arnt-like 1 (BMAL1), cryptochrome-1, circadian locomoter output cycles protein kaput (CLOCK) and period circadian protein homolog 1-3. Finally, the expression levels of 12 unigenes were analyzed using quantitative real-time PCR, which were in accordance with RNA-sequencing analysis. In general, the expression of genes related to the digestion of proteins, lipids, and carbohydrates showed upregulated expression at night; however, the peak time of expression of transporters for different nutrition molecules showed more diversification within the light/dark cycle.
Collapse
Affiliation(s)
- Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, PR China.,College of Life Science, Neijiang Normal University, Neijiang, PR China
| | | | - Jun Wang
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, PR China.,College of Life Science, Neijiang Normal University, Neijiang, PR China
| | | | - He Yang
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, PR China.,College of Life Science, Neijiang Normal University, Neijiang, PR China
| | - Qingchao Shi
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, PR China.,College of Life Science, Neijiang Normal University, Neijiang, PR China
| | - Yunyun Lv
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, PR China.,College of Life Science, Neijiang Normal University, Neijiang, PR China
| | - Peng Hu
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, PR China.,College of Life Science, Neijiang Normal University, Neijiang, PR China
| |
Collapse
|
22
|
Feeding Entrainment of the Zebrafish Circadian Clock Is Regulated by the Glucocorticoid Receptor. Cells 2019; 8:cells8111342. [PMID: 31671854 PMCID: PMC6912276 DOI: 10.3390/cells8111342] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
Glucocorticoids (GCs) are steroid hormones mainly acting as key regulators of body homeostasis and stress responses. Their activities are primarily based on the binding to the GC receptor (GR), a member of the nuclear receptor family, that regulates tissue-specific sets of genes. GCs secretion follows a circadian rhythmicity with a peak linked to the animal’s activity phase. In mammals, GCs are also implicated in feeding entrainment mechanisms as internal zeitgeber. Here, we investigated, by means of behavioural and molecular approaches, the circadian clock and its regulation by light and food in wild-type (WT) and null glucocorticoid receptor (gr−/−) zebrafish larvae, juveniles and adults. In both WT and gr−/− larvae and adults, behavioural activity and clock gene expression were entrained to the light–dark (LD) cycle and rhythmic in constant conditions. Differences in the pattern of clock genes’ expression indicated a modulatory role of GCs. A significant role of Gr was detected in the feeding entrainment which was absent or markedly dampened in mutants. Furthermore, the expression of two clock-regulated genes involved in glucidic and lipidic metabolism was altered, highlighting the participation of GCs in metabolic processes also in fish. Taken together, our results confirmed the role of GC-mediated Gr signaling in the feeding entrainment in a non-mammalian species, the zebrafish.
Collapse
|
23
|
Arboleda E, Zurl M, Waldherr M, Tessmar-Raible K. Differential Impacts of the Head on Platynereis dumerilii Peripheral Circadian Rhythms. Front Physiol 2019; 10:900. [PMID: 31354531 PMCID: PMC6638195 DOI: 10.3389/fphys.2019.00900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/27/2019] [Indexed: 12/20/2022] Open
Abstract
The marine bristle worm Platynereis dumerilii is a useful functional model system for the study of the circadian clock and its interplay with others, e.g., circalunar clocks. The focus has so far been on the worm's head. However, behavioral and physiological cycles in other animals typically arise from the coordination of circadian clocks located in the brain and in peripheral tissues. Here, we focus on peripheral circadian rhythms and clocks, revisit and expand classical circadian work on the worm's chromatophores, investigate locomotion as read-out and include molecular analyses. We establish that different pieces of the trunk exhibit synchronized, robust oscillations of core circadian clock genes. These circadian core clock transcripts are under strong control of the light-dark cycle, quickly losing synchronized oscillation under constant darkness, irrespective of the absence or presence of heads. Different wavelengths are differently effective in controlling the peripheral molecular synchronization. We have previously shown that locomotor activity is under circadian clock control. Here, we show that upon decapitation worms exhibit strongly reduced activity levels. While still following the light-dark cycle, locomotor rhythmicity under constant darkness is less clear. We also observe the rhythmicity of pigments in the worm's individual chromatophores, confirming their circadian pattern. These size changes continue under constant darkness, but cannot be re-entrained by light upon decapitation. Our works thus provides the first basic characterization of the peripheral circadian clock of P. dumerilii. In the absence of the head, light is essential as a major synchronization cue for peripheral molecular and locomotor circadian rhythms, while circadian changes in chromatophore size can continue for several days in the absence of light/dark changes and the head. Thus, in Platynereis the dependence on the head depends on the type of peripheral rhythm studied. These data show that peripheral circadian rhythms and clocks should also be considered in "non-conventional" molecular model systems, i.e., outside Drosophila melanogaster, Danio rerio, and Mus musculus, and build a basic foundation for future investigations of interactions of clocks with different period lengths in marine organisms.
Collapse
Affiliation(s)
- Enrique Arboleda
- Max F. Perutz Laboratories, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Martin Zurl
- Max F. Perutz Laboratories, Vienna BioCenter, University of Vienna, Vienna, Austria
- Research Platform “Rhythms of Life”, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Monika Waldherr
- Max F. Perutz Laboratories, Vienna BioCenter, University of Vienna, Vienna, Austria
- Research Platform “Rhythms of Life”, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Kristin Tessmar-Raible
- Max F. Perutz Laboratories, Vienna BioCenter, University of Vienna, Vienna, Austria
- Research Platform “Rhythms of Life”, Vienna BioCenter, University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
Ceinos RM, Chivite M, López-Patiño MA, Naderi F, Soengas JL, Foulkes NS, Míguez JM. Differential circadian and light-driven rhythmicity of clock gene expression and behaviour in the turbot, Scophthalmus maximus. PLoS One 2019; 14:e0219153. [PMID: 31276539 PMCID: PMC6611576 DOI: 10.1371/journal.pone.0219153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/17/2019] [Indexed: 12/19/2022] Open
Abstract
In fish, the circadian clock represents a key regulator of many aspects of biology and is controlled by combinations of abiotic and biotic factors. These environmental factors are frequently manipulated in fish farms as part of strategies designed to maximize productivity. The flatfish turbot, Scophthalmus maximus, represents one of the most important species within the aquaculture sector in Asia and Europe. Despite the strategic importance of this species, the function and regulation of the turbot circadian system remains poorly understood. Here, we have characterized the core circadian clock genes, clock1, per1, per2 and cry1 in turbot and have studied their daily expression in various tissues under a range of lighting conditions and feeding regimes. We have also explored the influence of light and feeding time on locomotor activity. Rhythmic expression of the four core clock genes was observed in all tissues studied under light dark (LD) cycle conditions. Rhythmicity of clock gene expression persisted upon transfer to artificial free running, constant conditions confirming their endogenous circadian clock control. Furthermore, turbot showed daily cycles of locomotor activity and food anticipatory activity (FAA) under LD and scheduled-feeding, with the activity phase as well as FAA coinciding with and being dependent upon exposure to light. Thus, while FAA was absent under constant dark (DD) conditions, it was still detected in constant light (LL). In contrast, general locomotor activity was arrhythmic in both constant darkness and constant light, pointing to a major contribution of light, in concert with the circadian clock, in timing locomotor activity in this species. Our data represents an important contribution to our understanding of the circadian timing system in the turbot and thereby the optimization of rearing protocols and the improvement of the well-being of turbot within fish farming environments.
Collapse
Affiliation(s)
- Rosa M. Ceinos
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo (Pontevedra), Spain
- * E-mail:
| | - Mauro Chivite
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo (Pontevedra), Spain
| | - Marcos A. López-Patiño
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo (Pontevedra), Spain
| | - Fatemeh Naderi
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo (Pontevedra), Spain
| | - José L. Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo (Pontevedra), Spain
| | - Nicholas S. Foulkes
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Jesús M. Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo (Pontevedra), Spain
| |
Collapse
|
25
|
Onoue T, Nishi G, Hikima JI, Sakai M, Kono T. Circadian oscillation of TNF-α gene expression regulated by clock gene, BMAL1 and CLOCK1, in the Japanese medaka (Oryzias latipes). Int Immunopharmacol 2019; 70:362-371. [DOI: 10.1016/j.intimp.2019.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/02/2019] [Accepted: 02/04/2019] [Indexed: 01/08/2023]
|
26
|
Gómez-Boronat M, Sáiz N, Delgado MJ, de Pedro N, Isorna E. Time-Lag in Feeding Schedule Acts as a Stressor That Alters Circadian Oscillators in Goldfish. Front Physiol 2018; 9:1749. [PMID: 30568601 PMCID: PMC6290069 DOI: 10.3389/fphys.2018.01749] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022] Open
Abstract
The circadian system controls temporal homeostasis in all vertebrates. The light-dark (LD) cycle is the most important zeitgeber (“time giver”) of circadian system, but feeding time also acts as a potent synchronizer in the functional organization of the teleost circadian system. In mammals is well known that food intake during the rest phase promotes circadian desynchrony which has been associated with metabolic diseases. However, the impact of a misalignment of LD and feeding cycles in the entrainment of fish circadian oscillators is largely unknown. The objective of this work was to investigate how a time-lag feeding alters temporal homeostasis and if this could be considered a stressor. To this aim, goldfish maintained under a 12 h light-12 h darkness were fed at mid-photophase (SF6) or mid-scotophase (SF18). Daily rhythms of locomotor activity, clock genes expression in hypothalamus, liver, and head kidney, and circulating cortisol were studied. Results showed that SF6 fish showed daily rhythms of bmal1a and clock1a in all studied tissues, being in antiphase with rhythms of per1 genes, as expected for proper functioning clocks. The 12 h shift in scheduled feeding induced a short phase advance (4–5-h) of the clock genes daily rhythms in the hypothalamus, while in the liver the shift for clock genes expression rhythms was the same that the feeding time shift (∼12 h). In head kidney, acrophases of per genes underwent a 12-h shift in SF18 animals, but only 6 h shift for clock1a. Plasma cortisol levels showed a significant daily rhythm in animals fed at SF6, but not in SF18 fish fed, which displayed higher cortisol values throughout the 24-h. Altogether, results indicate that hypothalamus, liver, and head kidney oscillate in phase in SF6 fish, but these clocks are desynchronized in SF18 fish, which could explain cortisol alterations. These data reinforce the hypothesis that the misalignment of external cues (daily photocycle and feeding time) alters fish temporal homeostasis and it might be considered a stressor for the animals.
Collapse
Affiliation(s)
- Miguel Gómez-Boronat
- Departamento de Genética, Fisiología y Microbiología, Unidad Docente de Fisiología Animal, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Nuria Sáiz
- Departamento de Genética, Fisiología y Microbiología, Unidad Docente de Fisiología Animal, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - María J Delgado
- Departamento de Genética, Fisiología y Microbiología, Unidad Docente de Fisiología Animal, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Nuria de Pedro
- Departamento de Genética, Fisiología y Microbiología, Unidad Docente de Fisiología Animal, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Esther Isorna
- Departamento de Genética, Fisiología y Microbiología, Unidad Docente de Fisiología Animal, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
27
|
Wu P, Chu W, Liu X, Guo X, Zhang J. The Influence of Short-term Fasting on Muscle Growth and Fiber Hypotrophy Regulated by the Rhythmic Expression of Clock Genes and Myogenic Factors in Nile Tilapia. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:750-768. [PMID: 30182177 DOI: 10.1007/s10126-018-9846-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Circadian clock genes and myogenic factors are tightly integrated to influence muscle growth upon dietary deprivation in animals. In this study, we reported that upon short-term fasting of Nile tilapia juveniles for 7 and 15 days, the growth of the fish stagnated and the size of muscle fibers decreased. To reveal the molecular mechanisms of how starvation affects fish muscle growth, we analyzed the rhythmic expression of circadian clock genes and myogenic factors. After 7 and 15 days of fasting treatment, the muscle tissues were collected for 24 h (at zeitgeber times ZT0, ZT3, ZT6, ZT9, ZT12, ZT18, ZT21, and ZT24) from tilapia juveniles. Among the 27 clock genes, the expression of cyr1b, nr1d1, per1, clocka, clockb, ciarta, and aanat2 displayed a daily rhythmicity in normal daily cycle, while arntl2, cry1a, cry1b, npas2, nr1d2b, per2, per3, rorαb, clocka, clockb, nfil3, cipca, and cipcb exhibited daily rhythmicity in the fasting fish muscles. The transcript levels of clockb showed moderate positive correlation with the aanat2, ciarta, cry1b, and nr1d1 in the muscle tissue of normally fed Nile tilapia juvenile. In comparison of the two treatment modes, the expression levels of clocka, clockb, and cry1b showed the rhythmicity, but clockb expression was significantly decreased and the acrophase had shifted. The transcript levels of fbxo32 and pdk4 had either moderate or strong positive correlations with other daily expression of clock genes except arntl2 in the muscle after 7-day fasting. The expressions of myogenic regulatory factors were also either upregulated or downregulated. These observations demonstrated that dietary starvation might affect fish muscle growth by modulating the differential expression of circadian clock genes and myogenic factors. Thus, our work provides a better understanding of the molecular mechanism of dietary starvation on fish growth and may provide dietary administration in aquiculture.
Collapse
Affiliation(s)
- Ping Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, People's Republic of China
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, 410003, Hunan, China
| | - Wuying Chu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, 410003, Hunan, China
| | - Xuanming Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, People's Republic of China.
| | - Xinhong Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, People's Republic of China.
| | - Jianshe Zhang
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, 410003, Hunan, China.
| |
Collapse
|
28
|
Wu P, Bao L, Zhang R, Li Y, Liu L, Wu Y, Zhang J, He Z, Chu W. Impact of Short-Term Fasting on The Rhythmic Expression of the Core Circadian Clock and Clock-Controlled Genes in Skeletal Muscle of Crucian Carp ( Carassius auratus). Genes (Basel) 2018; 9:genes9110526. [PMID: 30380676 PMCID: PMC6265890 DOI: 10.3390/genes9110526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/16/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023] Open
Abstract
The peripheral tissue pacemaker is responsive to light and other zeitgebers, especially food availability. Generally, the pacemaker can be reset and entrained independently of the central circadian structures. Studies involving clock-gene expressional patterns in fish peripheral tissues have attracted considerable attention. However, the rhythmic expression of clock genes in skeletal muscle has only scarcely been investigated. The present study was designed to investigate the core clock and functional gene expression rhythms in crucian carp. Meanwhile, the synchronized effect of food restrictions (short-term fasting) on these rhythms in skeletal muscle was carefully examined. In fed crucian carp, three core clock genes (Clock, Bmal1a, and Per1) and five functional genes (Epo, Fas, IGF1R2, Jnk1, and MyoG) showed circadian rhythms. By comparison, four core clock genes (Clock, Bmal1a, Cry3, and Per2) and six functional genes (Epo, GH, IGF2, Mstn, Pnp5a, and Ucp1) showed circadian rhythms in crucian carp muscle after 7-day fasting. In addition, three core clock genes (Clock, Per1, and Per3) and six functional genes (Ampk1a, Lpl, MyoG, Pnp5a, PPARα, and Ucp1) showed circadian rhythms in crucian carp muscle after 15-day fasting. However, all gene rhythmic expression patterns differed from each other. Furthermore, it was found that the circadian genes could be altered by feed deprivation in crucian carp muscle through the rhythms correlation analysis of the circadian genes and functional genes. Hence, food-anticipatory activity of fish could be adjusted through the food delivery restriction under a light⁻dark cycle. These results provide a potential application in promoting fish growth by adjusting feeding conditions and nutritional state.
Collapse
Affiliation(s)
- Ping Wu
- Department of Biological and Environmental Engineering, Changsha University, Changsha 410003, China.
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, China.
| | - Lingsheng Bao
- Department of Biological and Environmental Engineering, Changsha University, Changsha 410003, China.
| | - Ruiyong Zhang
- Aquatic Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany.
| | - Yulong Li
- Department of Biological and Environmental Engineering, Changsha University, Changsha 410003, China.
| | - Li Liu
- Fisheries Research Institute of Hunan Province, Changsha 410153, China.
| | - Yuanan Wu
- Fisheries Research Institute of Hunan Province, Changsha 410153, China.
| | - Jianshe Zhang
- Department of Biological and Environmental Engineering, Changsha University, Changsha 410003, China.
| | - Zhigang He
- Fisheries Research Institute of Hunan Province, Changsha 410153, China.
| | - Wuying Chu
- Department of Biological and Environmental Engineering, Changsha University, Changsha 410003, China.
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, China.
| |
Collapse
|
29
|
Almaida-Pagán PF, Ortega-Sabater C, Lucas-Sánchez A, Martinez-Nicolas A, Espinosa C, Esteban MA, Madrid JA, Rol M, Mendiola P, de Costa J. Impact of a shift work-like lighting schedule on the functioning of the circadian system in the short-lived fish Nothobranchius furzeri. Exp Gerontol 2018; 112:44-53. [PMID: 30184464 DOI: 10.1016/j.exger.2018.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 01/03/2023]
Abstract
Adult Nothobranchius furzeri of the MZM-04/10 strain were individually kept and subjected to a "5 + 2" shifting lighting schedule (SHIFT) for 8 weeks in order to evaluate the desynchronizing effects of a simulated human-like shift-work schedule on the functioning of the circadian system (CS). With this aim, sixteen 21-week-old N. furzeri were placed into a Morning, Night and Evening schedule (lights on from 08:00 to 16:00, 00:00 to 08:00 and 16:00 to 00:00 h, respectively) and fed once a day in the middle of the corresponding photophase (12:00, 04:00 and 20:00 h, respectively). Then, in the weekends (2 days), fish were always returned to the Morning shift. As controls, 16 fish were maintained under a non-shifting LD cycle condition (CONTROL) throughout the whole experiment, with lights on from 08:00 to 16:00 h. Rest-activity rhythm (RAR) of fish subjected to SHIFT showed several symptoms of chronodisruption, such as a decrease in the percentage of diurnal activity and a reduction of the relative amplitude and the circadian function index with time. When a periodogram analysis was performed, RAR of N. furzeri under SHIFT conditions showed up to three separate circadian components: one longer than 24 h (26.5 h) that followed the weekly 8 h delays; a short-period component (~23 h) that was related to the weekend's phase advances, and finally, a 24 h component. The shifting LD schedule also affected fish CS at a molecular level, with several significant differences in the expression of core genes of the molecular clock (bmal1, clock, rorα, rev-erbα) between SHIFT and CONTROL animals. RAR impairment along with changes in clock gene expression could be associated with high stress and accelerated aging in these fish.
Collapse
Affiliation(s)
- P F Almaida-Pagán
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Spain; Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.
| | - C Ortega-Sabater
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Spain; Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - A Lucas-Sánchez
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Spain; Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - A Martinez-Nicolas
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Spain; Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - C Espinosa
- Fish Innate Immune System Group, Department of Cell Biology and Histology, College of Biology, University of Murcia, Mare Nostrum Campus, Spain
| | - M A Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, College of Biology, University of Murcia, Mare Nostrum Campus, Spain
| | - J A Madrid
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Spain; Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - M Rol
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Spain; Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - P Mendiola
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Spain; Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - J de Costa
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Spain; Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| |
Collapse
|
30
|
The circadian transcriptome of marine fish (Sparus aurata) larvae reveals highly synchronized biological processes at the whole organism level. Sci Rep 2017; 7:12943. [PMID: 29021622 PMCID: PMC5636797 DOI: 10.1038/s41598-017-13514-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/22/2017] [Indexed: 02/07/2023] Open
Abstract
The regulation of circadian gene expression remains largely unknown in farmed fish larvae. In this study, a high-density oligonucleotide microarray was used to examine the daily expression of 13,939 unique genes in whole gilthead sea bream (Sparus aurata) larvae with fast growth potentiality. Up to 2,229 genes were differentially expressed, and the first two components of Principal Component Analysis explained more than 81% of the total variance. Clustering analysis of differentially expressed genes identified 4 major clusters that were triggered sequentially, with a maximum expression at 0 h, 3 h, 9–15 h and 18-21 h zeitgeber time. Various core clock genes (per1, per2, per3, bmal1, cry1, cry2, clock) were identified in clusters 1–3, and their expression was significantly correlated with several genes in each cluster. Functional analysis revealed a daily consecutive activation of canonical pathways related to phototransduction, intermediary metabolism, development, chromatin remodeling, and cell cycle regulation. This daily transcriptome of whole larvae resembles a cell cycle (G1/S, G2/M, and M/G1 transitions) in synchronization with multicellular processes, such as neuromuscular development. This study supports that the actively feeding fish larval transcriptome is temporally organized in a 24-h cycle, likely for maximizing growth and development.
Collapse
|
31
|
Hernández-Pérez J, Míguez JM, Naderi F, Soengas JL, López-Patiño MA. Influence of light and food on the circadian clock in liver of rainbow trout, Oncorhynchus mykiss. Chronobiol Int 2017; 34:1259-1272. [DOI: 10.1080/07420528.2017.1361435] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Juan Hernández-Pérez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| | - Jesús M. Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| | - Fatemeh Naderi
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| | - José L. Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| | - Marcos A. López-Patiño
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
32
|
Häfker NS, Meyer B, Last KS, Pond DW, Hüppe L, Teschke M. Circadian Clock Involvement in Zooplankton Diel Vertical Migration. Curr Biol 2017; 27:2194-2201.e3. [DOI: 10.1016/j.cub.2017.06.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/08/2017] [Accepted: 06/09/2017] [Indexed: 12/21/2022]
|
33
|
Delgado MJ, Cerdá-Reverter JM, Soengas JL. Hypothalamic Integration of Metabolic, Endocrine, and Circadian Signals in Fish: Involvement in the Control of Food Intake. Front Neurosci 2017; 11:354. [PMID: 28694769 PMCID: PMC5483453 DOI: 10.3389/fnins.2017.00354] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 06/07/2017] [Indexed: 12/12/2022] Open
Abstract
The regulation of food intake in fish is a complex process carried out through several different mechanisms in the central nervous system (CNS) with hypothalamus being the main regulatory center. As in mammals, a complex hypothalamic circuit including two populations of neurons: one co-expressing neuropeptide Y (NPY) and Agouti-related peptide (AgRP) and the second one population co-expressing pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) is involved in the integration of information relating to food intake control. The production and release of these peptides control food intake, and the production results from the integration of information of different nature such as levels of nutrients and hormones as well as circadian signals. The present review summarizes the knowledge and recent findings about the presence and functioning of these mechanisms in fish and their differences vs. the known mammalian model.
Collapse
Affiliation(s)
- María J. Delgado
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de MadridMadrid, Spain
| | - José M. Cerdá-Reverter
- Departamento de Fisiología de Peces y Biotecnología, Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones CientíficasCastellón, Spain
| | - José L. Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de VigoVigo, Spain
| |
Collapse
|
34
|
Carmona-Antoñanzas G, Santi M, Migaud H, Vera LM. Light- and clock-control of genes involved in detoxification. Chronobiol Int 2017; 34:1026-1041. [PMID: 28617195 DOI: 10.1080/07420528.2017.1336172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Circadian regulation of hepatic detoxification seems to be amongst the key roles of the biological clock. The liver is the major site for biotransformation, and in mammals, it contains several clock-controlled transcription factors such as proline and acidic amino acid-rich basic leucine zipper proteins (PAR bZIP) and basic-helix-loop-helix Per-Arnt-Sim (bHLH-PAS) family that act as circadian regulators of detoxification genes. This investigation explored the existence of daily and circadian expression of transcription factors involved in detoxification, as well as the temporal profile of a set of their target genes in zebrafish liver. In our study, zebrafish were able to synchronize to a light-dark (LD) cycle and displayed a diurnal pattern of activity. In addition, the expression of clock genes presented daily and circadian rhythmicity in liver. Apart from hlfa, the expression of PAR bZIP transcription factors also displayed daily rhythms, which appeared to be both light-dependent and clock-controlled, as circadian rhythms free-ran under constant conditions (continuous darkness, DD). Under LD, tefb, dbpa and dbpb expression peaked at the end of the darkness period whereas tefa showed peak levels of expression at the onset of the photophase. In addition, these four genes exhibited circadian expression under DD, with higher expression levels at the end of the subjective night. The expression of the bHLH-PAS transcription factor arh2 also showed circadian rhythmicity in zebrafish liver, peaking in the middle of the subjective night and approximately 3-4 h before peak expression of the PAR bZIP genes. Regarding the detoxification genes, the major target gene of AhR, cyp1a, showed daily and circadian expression with an acrophase 2 h after ahr2. Under LD, abcb4 also showed daily rhythmicity, with an acrophase 1-2 h after that of PAR bZIP factors during the transition between darkness and light phases, when zebrafish become active. However, the expression of six detoxification genes showed circadian rhythmicity under DD, including cyp1a and abcb4 as well as gstr1, mgst3a, abcg2 and sult2_st2. In all cases, the acrophases of these genes were found during the second half of the subjective night, in phase with the PAR bZIP transcription factors. This suggested that their expression is clock-controlled, either directly by core clock genes or through transcription factors. This study presents new data demonstrating that the process of detoxification is under circadian control in fish. Results showed that time of day should be considered when designing toxicological studies or administering drugs to fish.
Collapse
Affiliation(s)
- G Carmona-Antoñanzas
- a Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling , Stirling , UK
| | - M Santi
- a Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling , Stirling , UK.,b Life and Environmental Sciences Department , Marche Polytechnic University , Ancona , Italy
| | - H Migaud
- a Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling , Stirling , UK
| | - L M Vera
- a Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling , Stirling , UK
| |
Collapse
|
35
|
Light- and circadian-controlled genes respond to a broad light spectrum in Puffer Fish-derived Fugu eye cells. Sci Rep 2017; 7:46150. [PMID: 28418034 PMCID: PMC5394683 DOI: 10.1038/srep46150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/10/2017] [Indexed: 11/08/2022] Open
Abstract
Some cell lines retain intrinsic phototransduction pathways to control the expression of light-regulated genes such as the circadian clock gene. Here we investigated the photosensitivity of a Fugu eye, a cell line established from the eye of Takifugu rubripes, to examine whether such a photosensitive nature is present. Microarray analysis identified 15 genes that showed blue light-dependent change at the transcript level. We investigated temporal profiles of the light-induced genes, as well as Cry and Per, under light-dark, constant light (LL), and constant dark (DD) conditions by quantitative RT-PCR. Transcript levels of Per1a and Per3 genes showed circadian rhythmic changes under both LL and DD conditions, while those of Cry genes were controlled by light. All genes examined, including DNA-damage response genes and photolyase genes, were upregulated not only by blue light but also green and red light, implying the contribution of multiple photopigments. The present study is the first to identify a photosensitive clock cell line originating from a marine fish. These findings may help to characterize the molecular mechanisms underlying photic synchronization of the physiological states of fishes to not only daily light-dark cycles but also to various marine environmental cycles such as the lunar or semi-lunar cycle.
Collapse
|
36
|
Isorna E, de Pedro N, Valenciano AI, Alonso-Gómez ÁL, Delgado MJ. Interplay between the endocrine and circadian systems in fishes. J Endocrinol 2017; 232:R141-R159. [PMID: 27999088 DOI: 10.1530/joe-16-0330] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/20/2016] [Indexed: 12/11/2022]
Abstract
The circadian system is responsible for the temporal organisation of physiological functions which, in part, involves daily cycles of hormonal activity. In this review, we analyse the interplay between the circadian and endocrine systems in fishes. We first describe the current model of fish circadian system organisation and the basis of the molecular clockwork that enables different tissues to act as internal pacemakers. This system consists of a net of central and peripherally located oscillators and can be synchronised by the light-darkness and feeding-fasting cycles. We then focus on two central neuroendocrine transducers (melatonin and orexin) and three peripheral hormones (leptin, ghrelin and cortisol), which are involved in the synchronisation of the circadian system in mammals and/or energy status signalling. We review the role of each of these as overt rhythms (i.e. outputs of the circadian system) and, for the first time, as key internal temporal messengers that act as inputs for other endogenous oscillators. Based on acute changes in clock gene expression, we describe the currently accepted model of endogenous oscillator entrainment by the light-darkness cycle and propose a new model for non-photic (endocrine) entrainment, highlighting the importance of the bidirectional cross-talking between the endocrine and circadian systems in fishes. The flexibility of the fish circadian system combined with the absence of a master clock makes these vertebrates a very attractive model for studying communication among oscillators to drive functionally coordinated outputs.
Collapse
Affiliation(s)
- Esther Isorna
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Nuria de Pedro
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana I Valenciano
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Ángel L Alonso-Gómez
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - María J Delgado
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
37
|
Sánchez-Bretaño A, Blanco AM, Alonso-Gómez ÁL, Delgado MJ, Kah O, Isorna E. Ghrelin induces clock gene expression in the liver of goldfish in vitro via protein kinase C and protein kinase A pathways. ACTA ACUST UNITED AC 2017; 220:1295-1306. [PMID: 28126833 DOI: 10.1242/jeb.144253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 01/23/2017] [Indexed: 01/02/2023]
Abstract
The liver is the most important link between the circadian system and metabolism. As a food-entrainable oscillator, the hepatic clock needs to be entrained by food-related signals. The objective of the present study was to investigate the possible role of ghrelin (an orexigenic peptide mainly synthesized in the gastrointestinal tract) as an endogenous synchronizer of the liver oscillator in teleosts. To achieve this aim, we first examined the presence of ghrelin receptors in the liver of goldfish. Then, the ghrelin regulation of clock gene expression in the goldfish liver was studied. Finally, the possible involvement of the phospholipase C/protein kinase C (PLC/PKC) and adenylate cyclase/protein kinase A (AC/PKA) intracellular signalling pathways was investigated. Ghrelin receptor transcripts, ghs-r1a, are present in the majority of goldfish hepatic cells. Ghrelin induced the mRNA expression of the positive (gbmal1a, gclock1a) and negative (gper genes) elements of the main loop of the molecular clock machinery, as well as grev-erbα (auxiliary loop) in cultured liver. These effects were blocked, at least in part, by a ghrelin antagonist. Incubation of liver with a PLC inhibitor (U73122), a PKC activator (phorbol 12-myristate 13-acetate) and a PKC inhibitor (chelerythrine chloride) demonstrated that the PLC/PKC pathway mediates such ghrelin actions. Experiments with an AC activator (forskolin) and a PKA inhibitor (H89) showed that grev-erbα regulation could be due to activation of PKA. Taken together, the present results show for the first time in vertebrates a direct action of ghrelin on hepatic clock genes and support a role for this hormone as a temporal messenger in the entrainment of liver circadian functions.
Collapse
Affiliation(s)
- Aída Sánchez-Bretaño
- Animal Physiology Department, Faculty of Biology, Complutense University of Madrid, Madrid 28040, Spain
| | - Ayelén M Blanco
- Animal Physiology Department, Faculty of Biology, Complutense University of Madrid, Madrid 28040, Spain
| | - Ángel L Alonso-Gómez
- Animal Physiology Department, Faculty of Biology, Complutense University of Madrid, Madrid 28040, Spain
| | - María J Delgado
- Animal Physiology Department, Faculty of Biology, Complutense University of Madrid, Madrid 28040, Spain
| | - Olivier Kah
- Neuroendocrine Effects of Endocrine Disruptors, Inserm (Research Institute for Health, Environment and Occupation, IRSET, INSERM U1085), SFR Biosit Université de Rennes 1, 35000 Rennes, France
| | - Esther Isorna
- Animal Physiology Department, Faculty of Biology, Complutense University of Madrid, Madrid 28040, Spain
| |
Collapse
|
38
|
Navarro-Guillén C, Yúfera M, Engrola S. Daily feeding and protein metabolism rhythms in Senegalese sole post-larvae. Biol Open 2017; 6:77-82. [PMID: 27895049 PMCID: PMC5278429 DOI: 10.1242/bio.021642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/23/2016] [Indexed: 12/03/2022] Open
Abstract
Fish hatcheries must adapt larval feeding protocols to feeding behavior and metabolism patterns to obtain more efficient feed utilization. Fish larvae exhibit daily ingesting rhythms rather than ingesting food continuously throughout the day. The aim of this study was to determine the daily patterns of feed intake, protein digestibility, protein retention and catabolism in Senegalese sole post-larvae (Solea senegalensis; 33 days post-hatching) using 14C-labeled Artemia protein and incubation in metabolic chambers. Sole post-larvae were fed at 09:00, 15:00, 21:00, 03:00 and 09:00+1 day; and those fed at 09:00, 21:00, 03:00 and 09:00+1 day showed significantly higher feed intake than post-larvae fed at 15:00 h (P=0.000). Digestibility and evacuation rate of ingested protein did not change during the whole cycle (P=0.114); however, post-larvae fed at 21:00 and 03:00 h showed the significantly highest protein retention efficiency and lowest catabolism (P=0.002). Therefore, results confirm the existence of daily rhythmicity in feeding activity and in the utilization of the ingested nutrients in Senegalese sole post-larvae.
Collapse
Affiliation(s)
- Carmen Navarro-Guillén
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Apartado Oficial, Cádiz, Puerto Real 11519, Spain
| | - Manuel Yúfera
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Apartado Oficial, Cádiz, Puerto Real 11519, Spain
| | - Sofia Engrola
- Centro de Ciências do Mar (CCMAR), Edifício 7, Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal
| |
Collapse
|
39
|
López-Olmeda JF. Nonphotic entrainment in fish. Comp Biochem Physiol A Mol Integr Physiol 2016; 203:133-143. [PMID: 27642096 DOI: 10.1016/j.cbpa.2016.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 12/27/2022]
Abstract
Organisms that live on the Earth are subjected to environmental variables that display cyclic variations, such as light, temperature and tides. Since these cyclic changes in the environment are constant and predictable, they have affected biological evolution through selecting the occurrence of biological rhythms in the physiology of all living organisms, from prokaryotes to mammals. Biological clocks confer organisms an adaptive advantage as they can synchronize their behavioral and physiological processes to occur at a given moment of time when effectiveness and success would be greater and/or the cost and risk for organisms would be lower. Among environmental synchronizers, light has been mostly widely studied to date. However, other environmental signals play an important role in biological rhythms, especially in aquatic animals like fish. This review focuses on current knowledge about the role of nonphotic synchronizers (temperature, food and tidal cycles) on biological rhythms in fish, and on the entrainment of the fish circadian system to these synchronizers.
Collapse
Affiliation(s)
- Jose F López-Olmeda
- Department of Animal Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
40
|
Circadian rhythms of clock gene expression in Nile tilapia (Oreochromis niloticus) central and peripheral tissues: influence of different lighting and feeding conditions. J Comp Physiol B 2016; 186:775-85. [PMID: 27085855 DOI: 10.1007/s00360-016-0989-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/01/2016] [Accepted: 04/03/2016] [Indexed: 01/18/2023]
Abstract
The present research aimed to investigate the existence of clock gene expression rhythms in tilapia, their endogenous origin, and how light and feeding cycles synchronize these rhythms. In the first experiment, two groups of fish were kept under an LD cycle and fed at two different time points: in the middle of the light (ML) or in the middle of the dark (MD) phase. In the second experiment, fish fed at ML was fasted and kept under constant lighting (LL) conditions for 1 day. In both experiments, the samples from central (optic tectum and hypothalamus) and peripheral (liver) tissues were collected every 3 h throughout a 24 h cycle. The expression levels of clock genes bmal1a, clock1, per1b, cry2a, and cry5 were analyzed by quantitative PCR. All the clock genes analyzed in brain regions showed daily rhythms: clock1, bmal1a, and cry2a showed the acrophase approximately at the end of the light phase (ZT 8:43-11:22 h), whereas per1b and cry5 did so between the end of the dark phase and the beginning of the light phase, respectively (ZT 21:16-4:00 h). These rhythms persisted under constant conditions. No effect of the feeding time was observed in the brain. In the liver, however, the rhythms of clock1 and cry5 were influenced by feeding, and a shift was observed in the MD fish group (ZT 3:58 h for clock1 and 11:20 h for cry5). This study provides the first insights into the molecular clock of tilapia, a very important fish species for aquaculture. It also reveals the endogenous origin of clock gene rhythms and the ability of feeding time to shift the phase in some clock genes in the peripheral, but not the central, oscillator.
Collapse
|
41
|
Vera LM, Migaud H. Hydrogen peroxide treatment in Atlantic salmon induces stress and detoxification response in a daily manner. Chronobiol Int 2016; 33:530-42. [DOI: 10.3109/07420528.2015.1131164] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- L. M. Vera
- Genetics and Reproduction Group, Institute of Aquaculture, University of Stirling, Stirling, UK
| | - H. Migaud
- Genetics and Reproduction Group, Institute of Aquaculture, University of Stirling, Stirling, UK
| |
Collapse
|
42
|
Paredes JF, López-Olmeda JF, Martínez FJ, Sánchez-Vázquez FJ. Daily rhythms of lipid metabolic gene expression in zebra fish liver: Response to light/dark and feeding cycles. Chronobiol Int 2015; 32:1438-48. [PMID: 26595085 DOI: 10.3109/07420528.2015.1104327] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Despite numerous studies about fish nutrition and lipid metabolism, very little is known about the daily rhythm expression of lipogenesis and lipolysis genes. This research aimed to investigate the existence of daily rhythm expressions of the genes involved in lipid metabolism and their synchronization to different light/dark (LD) and feeding cycles in zebra fish liver. For this purpose, three groups of zebra fish were submitted to a 12:12 h LD cycle. A single daily meal was provided to each group at various times: in the middle of the light phase (ML); in the middle of the dark phase (MD); at random times. After 20 days of acclimation to these experimental conditions, liver samples were collected every 4 h in one 24-h cycle. The results revealed that most genes displayed a significant daily rhythm with an acrophase of expression in the dark phase. The acrophase of lipolytic genes (lipoprotein lipase - lpl, peroxisome proliferator-activated receptor - pparα and hydroxyacil CoA dehydrogenase - hadh) was displayed between ZT 02:17 h and ZT 18:31 h. That of lipogenic genes (leptin-a - lepa, peroxisome proliferator-activated receptor - pparγ, liver X receptor - lxr, insulin-like growth factor - igf1, sterol regulatory element-binding protein - srebp and fatty acid synthase - fas) was displayed between ZT 15:25 h and 20:06 h (dark phase). Feeding time barely influenced daily expression rhythms, except for lxr in the MD group, whose acrophase shifted by about 14 h compared with the ML group (ZT 04:31 h versus ZT 18:29 h, respectively). These results evidence a strong synchronization to the LD cycle, but not to feeding time, and most genes showed a nocturnal acrophase. These findings highlight the importance of considering light and feeding time to optimize lipid metabolism and feeding protocols in fish farming.
Collapse
Affiliation(s)
- J F Paredes
- a Department of Physiology , Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia , Murcia , Spain
| | - J F López-Olmeda
- a Department of Physiology , Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia , Murcia , Spain
| | - F J Martínez
- a Department of Physiology , Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia , Murcia , Spain
| | - F J Sánchez-Vázquez
- a Department of Physiology , Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia , Murcia , Spain
| |
Collapse
|
43
|
Hernández-Pérez J, Míguez JM, Librán-Pérez M, Otero-Rodiño C, Naderi F, Soengas JL, López-Patiño MA. Daily rhythms in activity and mRNA abundance of enzymes involved in glucose and lipid metabolism in liver of rainbow trout, Oncorhynchus mykiss. Influence of light and food availability. Chronobiol Int 2015; 32:1391-408. [PMID: 26587750 DOI: 10.3109/07420528.2015.1100633] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The present research aimed to investigate in a model of teleost fish (rainbow trout) the existence of daily changes in activity and mRNA abundance of several proteins involved in major pathways of carbohydrate and lipid metabolism in liver, and to test whether or not both the light-dark cycle and food availability might influence such rhythms. For this purpose, four cohorts of animals previously adapted to normal housing conditions (12L:12D; Lights on at ZT0; feeding time at ZT2) were subjected to: normal conditions (LD); 48-h constant darkness (DD); 96-h food deprivation (LD + Fasting); or constant darkness and food deprivation (DD + Fasting) respectively. After such time periods, fish were sacrificed and sampled every 4-h on the following 24-h period (ZT/CT0, 4, 8, 12, 16, 20 and 0'). Our results reveal that cortisol and all the analysed genes (gk, pepck, g6pase, pk, glut2, hoad and fas) exhibited well defined daily rhythms, which persisted even in the absence of light and/or food indicating the endogenous nature of such rhythms. Even when the variations of enzyme activities were not significant, their rhythms mostly paralleled those of the respective gene expression. The rhythms of mRNA abundance were apparently dependent on the presence of food, but the light/dark cycle also influenced such rhythms. Since cortisol does not appear to be mainly involved in generating such daily rhythms in liver, alternative mechanisms might be involved, such as a direct interaction between metabolism and the circadian system.
Collapse
Affiliation(s)
- Juan Hernández-Pérez
- a Laboratorio de Fisioloxía Animal , Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo , Vigo (Pontevedra) , Spain
| | - Jesús M Míguez
- a Laboratorio de Fisioloxía Animal , Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo , Vigo (Pontevedra) , Spain
| | - Marta Librán-Pérez
- a Laboratorio de Fisioloxía Animal , Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo , Vigo (Pontevedra) , Spain
| | - Cristina Otero-Rodiño
- a Laboratorio de Fisioloxía Animal , Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo , Vigo (Pontevedra) , Spain
| | - Fatemeh Naderi
- a Laboratorio de Fisioloxía Animal , Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo , Vigo (Pontevedra) , Spain
| | - José L Soengas
- a Laboratorio de Fisioloxía Animal , Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo , Vigo (Pontevedra) , Spain
| | - Marcos A López-Patiño
- a Laboratorio de Fisioloxía Animal , Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo , Vigo (Pontevedra) , Spain
| |
Collapse
|
44
|
Takeuchi Y, Hada N, Imamura S, Hur SP, Bouchekioua S, Takemura A. Existence of a photoinducible phase for ovarian development and photoperiod-related alteration of clock gene expression in a damselfish. Comp Biochem Physiol A Mol Integr Physiol 2015; 188:32-9. [DOI: 10.1016/j.cbpa.2015.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/05/2015] [Accepted: 06/09/2015] [Indexed: 12/22/2022]
|
45
|
Sánchez-Bretaño A, Alonso-Gómez ÁL, Delgado MJ, Isorna E. The liver of goldfish as a component of the circadian system: Integrating a network of signals. Gen Comp Endocrinol 2015; 221:213-6. [PMID: 25963042 DOI: 10.1016/j.ygcen.2015.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/30/2015] [Accepted: 05/02/2015] [Indexed: 11/24/2022]
Abstract
The circadian system drives daily physiological and behavioral rhythms that allow animals to anticipate cyclic environmental changes. The discovery of the known as "clock genes", which are very well conserved through vertebrate phylogeny, highlighted the molecular mechanism of circadian oscillators functioning, based on transcription and translation cycles (∼ 24 h) of such clock genes. Studies in goldfish have shown that the circadian system in this species is formed by a net of oscillators distributed at central and peripheral locations, as the retina, brain, gut and liver, among others. In this work we review the existing information about the hepatic oscillator in goldfish due to its relevance in metabolism, and its key role as target of a variety of humoral signals. Different input signals modify the molecular clockwork in the liver of goldfish. Among them, there are environmental cues (photocycle and feeding regime) and different encephalic and peripheral endogenous signals (orexin, ghrelin and glucocorticoids). Per clock genes seem to be a common target for different signals. Thus, this genes family might be important for shifting the hepatic oscillator. The physiological relevance of the crosstalking between metabolic and feeding-related hormones and the hepatic clock sets the stage for the hypothesis that these hormones could act as "internal zeitgebers" communicating oscillators in the goldfish circadian system.
Collapse
Affiliation(s)
- Aída Sánchez-Bretaño
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ángel L Alonso-Gómez
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María J Delgado
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Esther Isorna
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
46
|
Mata-Sotres JA, Martínez-Rodríguez G, Pérez-Sánchez J, Sánchez-Vázquez FJ, Yúfera M. Daily rhythms of clock gene expression and feeding behavior during the larval development in gilthead seabream,Sparus aurata. Chronobiol Int 2015; 32:1061-74. [DOI: 10.3109/07420528.2015.1058271] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
Poletini MO, Ramos BC, Moraes MN, Castrucci AML. Nonvisual Opsins and the Regulation of Peripheral Clocks by Light and Hormones. Photochem Photobiol 2015; 91:1046-55. [DOI: 10.1111/php.12494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/23/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Maristela O. Poletini
- Department of Physiology and Biophysics; Institute of Biological Sciences; Federal University of Minas Gerais; Belo Horizonte Brazil
- Department of Physiology; Institute of Biosciences; University of São Paulo; São Paulo Brazil
| | - Bruno C. Ramos
- Department of Physiology; Institute of Biosciences; University of São Paulo; São Paulo Brazil
| | - Maria Nathalia Moraes
- Department of Physiology; Institute of Biosciences; University of São Paulo; São Paulo Brazil
| | - Ana Maria L. Castrucci
- Department of Physiology; Institute of Biosciences; University of São Paulo; São Paulo Brazil
| |
Collapse
|
48
|
Herrero MJ, Lepesant JMJ. Daily and seasonal expression of clock genes in the pituitary of the European sea bass (Dicentrarchus labrax). Gen Comp Endocrinol 2014; 208:30-8. [PMID: 25148807 DOI: 10.1016/j.ygcen.2014.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/27/2014] [Accepted: 08/04/2014] [Indexed: 11/20/2022]
Abstract
The expression of select clock genes (clock, bmal, per1, per2, cry1, cry2) was investigated throughout the day and across the four seasons for two consecutive years in the pituitary of adult sea bass (Dicentrarchus labrax). A rhythmic pattern of daily expression was consistently observed in summer and autumn, while arrhythmicity was observed for some clock genes during spring and winter, concomitant with low water temperatures. The expression of clock and bmal showed highest values at the end of the day and during the night, while that of per and cry was mostly antiphasic, with high values during the day. Melatonin affects clock-gene expression in the pituitary of mammals. We therefore sought to test the effect of melatonin on clock-gene expression in the pituitary of sea bass both in vivo and in vitro. Melatonin modestly affected the expression of some clock genes (in particular cry genes) when added to the fish diet or the culture medium of pituitary glands. Our data show that clock genes display rhythmic daily expression in the pituitary of adult sea bass, which are profoundly modified according to the season. We suggest that the effect of photoperiod on clock gene expression may be mediated, at least in part, by melatonin, and that temperature may have a key role adjusting seasonal variations.
Collapse
Affiliation(s)
- María Jesús Herrero
- CNRS, UMR7232 BIOM, Laboratoire Arago, Banyuls-sur-Mer, France; Université Pierre et Marie Curie-Paris6, UMR7232, Laboratoire Arago, Banyuls-sur-Mer, France.
| | - Julie M J Lepesant
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Université Paul Sabatier Toulouse III, Toulouse, France
| |
Collapse
|
49
|
Kim JH, White SL, Devlin RH. Interaction of growth hormone overexpression and nutritional status on pituitary gland clock gene expression in coho salmon,Oncorhynchus kisutch. Chronobiol Int 2014; 32:113-27. [DOI: 10.3109/07420528.2014.958160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
50
|
Betancor MB, McStay E, Minghetti M, Migaud H, Tocher DR, Davie A. Daily rhythms in expression of genes of hepatic lipid metabolism in Atlantic salmon (Salmo salar L.). PLoS One 2014; 9:e106739. [PMID: 25184355 PMCID: PMC4153669 DOI: 10.1371/journal.pone.0106739] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/08/2014] [Indexed: 01/29/2023] Open
Abstract
In mammals, several genes involved in liver lipid and cholesterol homeostasis are rhythmically expressed with expression shown to be regulated by clock genes via Rev-erb 1α. In order to elucidate clock gene regulation of genes involved in lipid metabolism in Atlantic salmon (Salmo salar L.), the orphan nuclear receptor Rev-erb 1α was cloned and 24 h expression of clock genes, transcription factors and genes involved in cholesterol and lipid metabolism determined in liver of parr acclimated to a long-day photoperiod, which was previously shown to elicit rhythmic clock gene expression in the brain. Of the 31 genes analysed, significant daily expression was demonstrated in the clock gene Bmal1, transcription factor genes Srebp1, Lxr, Pparα and Pparγ, and several lipid metabolism genes Hmgcr, Ipi, ApoCII and El. The possible regulatory mechanisms and pathways, and the functional significance of these patterns of expression were discussed. Importantly and in contrast to mammals, Per1, Per2, Fas, Srebp2, Cyp71α and Rev-erb 1α did not display significant daily rhythmicity in salmon. The present study is the first report characterising 24 h profiles of gene expression in liver of Atlantic salmon. However, more importantly, the predominant role of lipids in the nutrition and metabolism of fish, and of feed efficiency in determining farming economics, means that daily rhythmicity in the regulation of lipid metabolism will be an area of considerable interest for future research in commercially important species.
Collapse
Affiliation(s)
- Mónica B. Betancor
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, Scotland, United Kingdom
- * E-mail:
| | - Elsbeth McStay
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| | - Matteo Minghetti
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| | - Hervé Migaud
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| | - Douglas R. Tocher
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| | - Andrew Davie
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| |
Collapse
|