1
|
Basavaraj C, Grant AD, Aras SG, Erickson EN. Deep learning model using continuous skin temperature data predicts labor onset. BMC Pregnancy Childbirth 2024; 24:777. [PMID: 39587525 PMCID: PMC11587739 DOI: 10.1186/s12884-024-06862-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/25/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Changes in body temperature anticipate labor onset in numerous mammals, yet this concept has not been explored in humans. We investigated if continuous body temperature exhibits similar changes in women and whether these changes may be linked to hormonal status. Finally, we developed a deep learning model using temperature patterning to provide a daily forecast of time to labor onset. METHODS We evaluated patterns in continuous skin temperature data in 91 (n = 54 spontaneous labors) pregnant women using a wearable smart ring. In a subset of 28 pregnancies, we examined daily steroid hormone samples leading up to labor to analyze relationships among hormones and body temperature trajectory. Finally, we applied an autoencoder long short-term memory (AE-LSTM) deep learning model to provide a novel daily estimation of days until labor onset. RESULTS Features of temperature change leading up to labor were associated with urinary hormones and labor type. Spontaneous labors exhibited greater estriol to α-pregnanediol ratio, as well as lower body temperature and more stable circadian rhythms compared to pregnancies that did not undergo spontaneous labor. Skin temperature data from 54 pregnancies that underwent spontaneous labor between 34 and 42 weeks of gestation were included in training the AE-LSTM model, and an additional 37 pregnancies that underwent artificial induction of labor or Cesarean without labor were used for further testing. The input to the pipeline was 5-min skin temperature data from a gestational age of 240 days until the day of labor onset. During cross-validation AE-LSTM average error (true - predicted) dropped below 2 days at 8 days before labor, independent of gestational age. Labor onset windows were calculated from the AE-LSTM output using a probabilistic distribution of model error. For these windows AE-LSTM correctly predicted labor start for 79% of the spontaneous labors within a 4.6-day window at 7 days before true labor, and 7.4-day window at 10 days before true labor. CONCLUSION Continuous skin temperature reflects progression toward labor and hormonal change during pregnancy. Deep learning using continuous temperature may provide clinically valuable tools for pregnancy care.
Collapse
Affiliation(s)
- Chinmai Basavaraj
- Department of Computer Science, The University of Arizona, Tucson, AZ, USA
| | | | - Shravan G Aras
- Center for Biomedical Informatics and Biostatistics, The University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
2
|
Gombert-Labedens M, Alzueta E, Perez-Amparan E, Yuksel D, Kiss O, de Zambotti M, Simon K, Zhang J, Shuster A, Morehouse A, Pena AA, Mednick S, Baker FC. Using Wearable Skin Temperature Data to Advance Tracking and Characterization of the Menstrual Cycle in a Real-World Setting. J Biol Rhythms 2024; 39:331-350. [PMID: 38767963 PMCID: PMC11294004 DOI: 10.1177/07487304241247893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The menstrual cycle is a loop involving the interplay of different organs and hormones, with the capacity to impact numerous physiological processes, including body temperature and heart rate, which in turn display menstrual rhythms. The advent of wearable devices that can continuously track physiological data opens the possibility of using these prolonged time series of skin temperature data to noninvasively detect the temperature variations that occur in ovulatory menstrual cycles. Here, we show that the menstrual skin temperature variation is better represented by a model of oscillation, the cosinor, than by a biphasic square wave model. We describe how applying a cosinor model to a menstrual cycle of distal skin temperature data can be used to assess whether the data oscillate or not, and in cases of oscillation, rhythm metrics for the cycle, including mesor, amplitude, and acrophase, can be obtained. We apply the method to wearable temperature data collected at a minute resolution each day from 120 female individuals over a menstrual cycle to illustrate how the method can be used to derive and present menstrual cycle characteristics, which can be used in other analyses examining indicators of female health. The cosinor method, frequently used in circadian rhythms studies, can be employed in research to facilitate the assessment of menstrual cycle effects on physiological parameters, and in clinical settings to use the characteristics of the menstrual cycles as health markers or to facilitate menstrual chronotherapy.
Collapse
Affiliation(s)
| | - Elisabet Alzueta
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | | | - Dilara Yuksel
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | - Orsolya Kiss
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | | | - Katharine Simon
- Department of Cognitive Science, University of California, Irvine, CA, USA
| | - Jing Zhang
- Department of Cognitive Science, University of California, Irvine, CA, USA
| | - Alessandra Shuster
- Department of Cognitive Science, University of California, Irvine, CA, USA
| | - Allison Morehouse
- Department of Cognitive Science, University of California, Irvine, CA, USA
| | | | - Sara Mednick
- Department of Cognitive Science, University of California, Irvine, CA, USA
| | - Fiona C. Baker
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
Dittmar M, Möllgaard L, Engelhard F. Menstrual cycle phases and dosage of synthetic hormonal contraceptives influence diurnal rhythm characteristics of distal skin temperature. Chronobiol Int 2024; 41:684-696. [PMID: 38634452 DOI: 10.1080/07420528.2024.2342945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
This study aimed to explore how natural menstrual cycle phases and dosage of oral hormonal contraceptives (OC) influence the diurnal rhythm of distal skin temperature (DST) under real-life conditions. Participants were 41 healthy females (23.9 ± 2.48 y), comprising 27 females taking monophasic hormonal oral contraceptives (OC users) and 14 females with menstrual cycles (non-OC users). Wrist DST was continuously recorded and averaged over two consecutive 24-hour days during (pseudo)follicular and (pseudo)luteal menstrual phases. Diurnal rhythm characteristics, i.e. acrophase and amplitude, describing timing and strength of the DST rhythm, respectively, were calculated using cosinor analysis. Results show that non-OC users experienced earlier diurnal DST maximum (acrophase, p = 0.019) and larger amplitude (p = 0.016) during the luteal phase than during the follicular phase. This was observed in most (71.4%) but not all individuals. The OC users showed no differences in acrophase or amplitude between pseudoluteal and pseudofollicular phases. OC users taking a higher dosage of progestin displayed a larger amplitude for DST rhythm during the pseudoluteal phase (p = 0.009), while estrogen dosage had no effect. In conclusion, monophasic OC cause changes in diurnal DST rhythm, similar to those observed in the luteal phase of females with menstrual cycles, suggesting that synthetic progestins act in a similar manner on skin thermoregulation as progesterone does.
Collapse
Affiliation(s)
- Manuela Dittmar
- Department of Human Biology, Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| | - Leefke Möllgaard
- Department of Human Biology, Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| | - Felicia Engelhard
- Department of Human Biology, Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
4
|
Basavaraj C, Grant AD, Aras SG, Erickson EN. Deep Learning Model Using Continuous Skin Temperature Data Predicts Labor Onset. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.25.24303344. [PMID: 38464102 PMCID: PMC10925356 DOI: 10.1101/2024.02.25.24303344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Changes in body temperature anticipate labor onset in numerous mammals, yet this concept has not been explored in humans. Methods We evaluated patterns in continuous skin temperature data in 91 pregnant women using a wearable smart ring. Additionally, we collected daily steroid hormone samples leading up to labor in a subset of 28 pregnancies and analyzed relationships among hormones and body temperature trajectory. Finally, we developed a novel autoencoder long-short-term-memory (AE-LSTM) deep learning model to provide a daily estimation of days until labor onset. Results Features of temperature change leading up to labor were associated with urinary hormones and labor type. Spontaneous labors exhibited greater estriol to α-pregnanediol ratio, as well as lower body temperature and more stable circadian rhythms compared to pregnancies that did not undergo spontaneous labor. Skin temperature data from 54 pregnancies that underwent spontaneous labor between 34 and 42 weeks of gestation were included in training the AE-LSTM model, and an additional 40 pregnancies that underwent artificial induction of labor or Cesarean without labor were used for further testing. The model was trained only on aggregate 5-minute skin temperature data starting at a gestational age of 240 until labor onset. During cross-validation AE-LSTM average error (true - predicted) dropped below 2 days at 8 days before labor, independent of gestational age. Labor onset windows were calculated from the AE-LSTM output using a probabilistic distribution of model error. For these windows AE-LSTM correctly predicted labor start for 79% of the spontaneous labors within a 4.6-day window at 7 days before true labor, and 7.4-day window at 10 days before true labor. Conclusion Continuous skin temperature reflects progression toward labor and hormonal status during pregnancy. Deep learning using continuous temperature may provide clinically valuable tools for pregnancy care.
Collapse
Affiliation(s)
- Chinmai Basavaraj
- Department of Computer Science, The University of Arizona, Tucson, AZ, USA
| | | | - Shravan G Aras
- Center for Biomedical Informatics and Biostatistics, The University of Arizona Health Sciences, Tucson, AZ, USA
| | | |
Collapse
|
5
|
Silva RKDN, Matias FL, Gonçalves AF, Ferreira JJDA, Andrade PRD. Skin temperature of women: A prospective longitudinal study. J Therm Biol 2023; 118:103741. [PMID: 37944300 DOI: 10.1016/j.jtherbio.2023.103741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION The different phases of a woman's life, such as the reproductive phase and menopause, are points of great hormonal oscillation, especially estrogen and progesterone, which can interfere with skin temperature. OBJECTIVE To describe and compare skin temperatures of women during their physiological menstrual cycle, the use of exogenous hormones and menopause over a period of 28 days. METHOD This is a prospective observational study using a quantitative approach. A total of 45 volunteers participated and were equally allocated into three groups: Exogenous Hormone Group (EHG), Physiological Menstrual Cycle Group (PMCG) and Menopause Group (MG). All were submitted once a week to body composition measurements over a period of 28 days using an InBody 120 bioimpedance scale, and skin temperature using a FLIR model T-360 thermographic camera. RESULTS No significant differences were found between the mean skin temperature of women with a physiological cycle using exogenous hormones and menopause in relation to the evaluation time or between groups. However, younger women had higher temperatures in specific skin regions, such as in the breast, lower abdomen and thigh (P < 0.05) compared to menopausal women. In addition, negative correlations were observed between body fat and skin temperature of the breasts, trunk, abdomen, upper limbs and right lower limb (P < 0.05). CONCLUSION It was observed that the general skin temperature of women is not altered due to exogenous hormones, menstrual cycle phase or menopause, and that skin temperature tends to be lower in regions with an accumulation of adipose tissue.
Collapse
Affiliation(s)
| | - Francilene Lira Matias
- Postgraduate Program in Physical Therapy, Health Sciences Center, Federal University of Paraiba, João Pessoa, Brazil.
| | - Alessandra Feitosa Gonçalves
- Postgraduate Program in Physical Therapy, Health Sciences Center, Federal University of Paraiba, João Pessoa, Brazil.
| | | | - Palloma Rodrigues de Andrade
- Postgraduate Program in Physical Therapy, Health Sciences Center, Federal University of Paraiba, João Pessoa, Brazil.
| |
Collapse
|
6
|
Grant AD, Kriegsfeld LJ. Neural substrates underlying rhythmic coupling of female reproductive and thermoregulatory circuits. Front Physiol 2023; 14:1254287. [PMID: 37753455 PMCID: PMC10518419 DOI: 10.3389/fphys.2023.1254287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Coordinated fluctuations in female reproductive physiology and thermoregulatory output have been reported for over a century. These changes occur rhythmically at the hourly (ultradian), daily (circadian), and multi-day (ovulatory) timescales, are critical for reproductive function, and have led to the use of temperature patterns as a proxy for female reproductive state. The mechanisms underlying coupling between reproductive and thermoregulatory systems are not fully established, hindering the expansion of inferences that body temperature can provide about female reproductive status. At present, numerous digital tools rely on temperature to infer the timing of ovulation and additional applications (e.g., monitoring ovulatory irregularities and progression of puberty, pregnancy, and menopause are developed based on the assumption that reproductive-thermoregulatory coupling occurs across timescales and life stages. However, without clear understanding of the mechanisms and degree of coupling among the neural substrates regulating temperature and the reproductive axis, whether such approaches will bear fruit in particular domains is uncertain. In this overview, we present evidence supporting broad coupling among the central circuits governing reproduction, thermoregulation, and broader systemic physiology, focusing on timing at ultradian frequencies. Future work characterizing the dynamics of reproductive-thermoregulatory coupling across the lifespan, and of conditions that may decouple these circuits (e.g., circadian disruption, metabolic disease) and compromise female reproductive health, will aid in the development of strategies for early detection of reproductive irregularities and monitoring the efficacy of fertility treatments.
Collapse
Affiliation(s)
| | - Lance J. Kriegsfeld
- Department of Psychology, University of California, Berkeley, CA, United States
- The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States
- Department of Integrative Biology, University of California, Berkeley, CA, United States
- Graduate Group in Endocrinology, University of California, Berkeley, CA, United States
| |
Collapse
|
7
|
Effect of time-of-day on human dynamic thermal perception. Sci Rep 2023; 13:2367. [PMID: 36759630 PMCID: PMC9911694 DOI: 10.1038/s41598-023-29615-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Implementing heating and cooling set-point temperature modulations in buildings can promote energy savings and boost energy flexibility. However, time and time-of-day requirements in current indoor climate regulations are either overly simplified or ignored completely. A better understanding of how human thermal responses vary throughout the day is useful to effectively design and operate energy-flexible buildings. To date, only a handful of studies have looked at diurnal changes in thermal perception and mostly near steady-state neutrality without controlling for light exposure. This is the first experimental investigation aimed at understanding how the time of the day influences physiological and subjective human sensory responses to a localized dynamic thermal stimulus under constant light rich in long wavelengths (red). Results indicated that humans responded physiologically differently depending on the time of the day with a higher rate of change in the skin temperature in the evening compared with the afternoon. Furthermore, the increase of thermal sensation during the warming skin temperature transients was found to be greater in the evening. No differences were observed under steady-state thermal conditions. This evidence suggests that accounting for the time of the day is important when dynamically operating buildings, such as during demand-response programs.
Collapse
|
8
|
Weiss G, Strohmayer K, Koele W, Reinschissler N, Schenk M. Confirmation of human ovulation in assisted reproduction using an adhesive axillary thermometer (femSense®). Front Digit Health 2022; 4:930010. [PMID: 36339517 PMCID: PMC9634753 DOI: 10.3389/fdgth.2022.930010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Objective Timing for sexual intercourse is important in achieving pregnancy in natural menstrual cycles. Different methods of detecting the fertile window have been invented, among them luteinization hormone (LH) to predict ovulation and biphasic body basal temperature (BBT) to confirm ovulation retrospectively. The gold standard to detect ovulation in gynecology practice remains transvaginal ultrasonography in combination with serum progesterone. In this study we evaluated a wearable temperature sensing patch (femSense®) using continuous body temperature measurement to confirm ovulation and determine the end of the fertile window. Methods 96 participants received the femSense® system consisting of an adhesive axillary thermometer patch and a smartphone application, where patients were asked to document information about their previous 3 cycles. Based on the participants data, the app predicted the cycle length and the estimated day of ovulation. From these predictions, the most probable fertile window and the day for applying the patch were derived. Participants applied and activated the femSense® patch on the calculated date, from which the patch continuously recorded their body temperature throughout a period of up to 7 days to confirm ovulation. Patients documented their daily urinary LH test positivity, and a transvaginal ultrasound was performed on day cycle day 7, 10, 12 and 14/15 to investigate the growth of one dominant follicle. If a follicle reached 15 mm in diameter, an ultrasound examination was carried out every day consecutively until ovulation. On the day ovulation was detected, serum progesterone was measured to confirm the results of the ultrasound. The performance of femSense® was evaluated by comparing the day of ovulation confirmation with the results of ovulation prediction (LH test) and detection (transvaginal ultrasound). Results The femSense® system confirmed ovulation occurrence in 60 cases (81.1%) compared to 48 predicted cases (64.9%) with the LH test (p = 0.041). Subgroup analysis revealed a positive trend for the femSense® system of specific ovulation confirmation within the fertile window of 24 h after ovulation in 42 of 74 cases (56.8%). Cycle length, therapy method or infertility reason of the patient did not influence accuracy of the femSense® system. Conclusions The femSense® system poses a promising alternative to the traditional BBT method and is a valuable surrogate marker to transvaginal ultrasound for confirmation of ovulation.
Collapse
Affiliation(s)
- Gregor Weiss
- Das Kinderwunsch Institut Schenk GmbH, Dobl, Austria
- Correspondence: Gregor Weiss
| | | | | | | | - Michael Schenk
- Das Kinderwunsch Institut Schenk GmbH, Dobl, Austria
- Medical University of Graz, Department of Obstetrics and Gynecology, Graz, Austria
| |
Collapse
|
9
|
Grant AD, Erickson EN. Birth, love, and fear: Physiological networks from pregnancy to parenthood. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2022; 11:100138. [PMID: 35757173 PMCID: PMC9227990 DOI: 10.1016/j.cpnec.2022.100138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 12/01/2022] Open
Abstract
Pregnancy and childbirth are among the most dramatic physiological and emotional transformations of a lifetime. Despite their central importance to human survival, many gaps remain in our understanding of the temporal progression of and mechanisms underlying the transition to new parenthood. The goal of this paper is to outline the physiological and emotional development of the maternal-infant dyad from late pregnancy to the postpartum period, and to provide a framework to investigate this development using non-invasive timeseries. We focus on the interaction among neuroendocrine, emotional, and autonomic outputs in the context of late pregnancy, parturition, and post-partum. We then propose that coupled dynamics in these outputs can be leveraged to map both physiologic and pathologic pregnancy, parturition, and parenthood. This approach could address gaps in our knowledge and enable early detection or prediction of problems, with both personalized depth and broad population scale.
Collapse
Affiliation(s)
- Azure D. Grant
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, United States
- Levels Health Inc., 228 Park Ave. South, PMB 63877, New York, NY, 10003, United States
| | - Elise N. Erickson
- Oregon Health and Science University, Portland, OR, 97239, United States
| |
Collapse
|
10
|
Uchida Y, Izumizaki M. The use of wearable devices for predicting biphasic basal body temperature to estimate the date of ovulation in women. J Therm Biol 2022; 108:103290. [DOI: 10.1016/j.jtherbio.2022.103290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/18/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022]
|
11
|
Kuderer S, Vagedes K, Szöke H, Kohl M, Joos S, Gündling PW, Vagedes J. Do ginger footbaths improve symptoms of insomnia more than footbaths with warm water only? - A randomized controlled study. Complement Ther Med 2022; 67:102834. [PMID: 35439548 DOI: 10.1016/j.ctim.2022.102834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES To compare the effects between warm water (WW) and ginger footbaths (WW+ginger) on sleep quality and warmth regulation in adults with self-reported insomnia symptoms. METHODS A prospective randomized-controlled study in which 28 participants (mean age 50.9 years, 64.3% women, insomnia symptom duration 11.4 years) were randomized to receive WW (n = 13) or WW+ginger (n = 15) daily for 2 weeks. Treatment involved nightly footbaths (12 liters of 38-42 °C warm tap water, maximum duration 20 min) with and without topical ginger (80 g of powdered ginger rhizomes). MAIN OUTCOME MEASURES The primary outcome measure was self-reported sleep quality (global score from Pittsburgh Sleep Quality Index, PSQI) at 2 weeks. Secondary outcomes included measures of insomnia severity (Insomnia Severity Index, ISI) and warmth regulation (Herdecke Warmth Perception Questionnaire, HWPQ and 24-hour distal-proximal skin temperature gradient, DPG). RESULTS WW+ginger had no greater effect on PSQI (mean between-difference 0.0 [95% CI -3.0 to 2.9], Cohen's d=0.0) or ISI (-0.2 [-3.9 to 3.4], 0.0) than WW. Nor were there any significant differences in HWPQ perceived warmth (0.1 ≥d≥0.5) or DPG (0.1 ≥d≥0.4) between WW and WW+ginger. Both groups improved over time in PSQI (WW+ginger: d=0.7, WW: d=1.3) and ISI (WW+ginger: d=0.8, WW: d=1.0). Perceived warmth of the feet increased only in WW+ginger over time (d=0.6, WW: d=0.0). CONCLUSIONS This dose of ginger (6.67 g/liter) did not have greater effects on sleep quality, insomnia severity or warmth regulation than WW. Considering effect sizes, costs and risks, the use of WW would be recommended over WW+ginger in this patient population.
Collapse
Affiliation(s)
- Silja Kuderer
- Research Department, ARCIM Institute (Academic Research in Complementary and Integrative Medicine), Im Haberschlai 7, 70794 Filderstadt, Germany
| | - Katrin Vagedes
- Research Department, ARCIM Institute (Academic Research in Complementary and Integrative Medicine), Im Haberschlai 7, 70794 Filderstadt, Germany
| | - Henrik Szöke
- Department of Integrative Medicine, University of Pécs, Vörösmarty utca 3, 7623 Pécs, Hungary
| | - Matthias Kohl
- Institute of Precision Medicine, University Furtwangen, Jakob-Kienzle-Straße 17, 78054 VS-Schwenningen, Germany
| | - Stefanie Joos
- Institute for General Practice and Interprofessional Care, University Hospital Tübingen, Osianderstraße 5, 72076 Tübingen, Germany
| | - Peter W Gündling
- Hochschule Fresenius, University of Applied Sciences, Limburger Str. 2, 65510 Idstein, Germany
| | - Jan Vagedes
- Research Department, ARCIM Institute (Academic Research in Complementary and Integrative Medicine), Im Haberschlai 7, 70794 Filderstadt, Germany; Department of Neonatology, University Hospital Tübingen, Calwerstraße 7, 72076 Tübingen, Germany; Department of Pediatrics, Filderklinik, Im Haberschlai 7, 70794 Filderstadt, Germany.
| |
Collapse
|
12
|
Grant A, Smarr B. Feasibility of continuous distal body temperature for passive, early pregnancy detection. PLOS DIGITAL HEALTH 2022; 1:e0000034. [PMID: 36812529 PMCID: PMC9931282 DOI: 10.1371/journal.pdig.0000034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/01/2022] [Indexed: 01/02/2023]
Abstract
Most American women become aware of pregnancy ~3-7 weeks after conceptive sex, and all must seek testing to confirm their pregnant status. The delay between conceptive sex and pregnancy awareness is often a time in which contraindicated behaviors take place. However, there is long standing evidence that passive, early pregnancy detection may be possible using body temperature. To address this possibility, we analyzed 30 individuals' continuous distal body temperature (DBT) in the 180 days surrounding self-reported conceptive sex in comparison to self-reported pregnancy confirmation. Features of DBT nightly maxima changed rapidly following conceptive sex, reaching uniquely elevated values after a median of 5.5 ± 3.5 days, whereas individuals reported a positive pregnancy test result at a median of 14.5 ± 4.2 days. Together, we were able to generate a retrospective, hypothetical alert a median of 9 ± 3.9 days prior to the date at which individuals received a positive pregnancy test. Continuous temperature-derived features can provide early, passive indication of pregnancy onset. We propose these features for testing and refinement in clinical settings, and for exploration in large, diverse cohorts. The development of pregnancy detection using DBT may reduce the delay from conception to awareness and increase the agency of pregnant individuals.
Collapse
Affiliation(s)
- Azure Grant
- The Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Benjamin Smarr
- Department of Bioengineering, University of California, San Diego, California, United States of America
- Halicioğlu Institute for Data Science, University of California, San Diego, California, United States of America
| |
Collapse
|
13
|
Vellei M, Chinazzo G, Zitting KM, Hubbard J. Human thermal perception and time of day: A review. Temperature (Austin) 2021; 8:320-341. [PMID: 34901316 PMCID: PMC8654484 DOI: 10.1080/23328940.2021.1976004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 11/01/2022] Open
Abstract
The circadian clock regulates diurnal variations in autonomic thermoregulatory processes such as core body temperature in humans. Thus, we might expect that similar daily fluctuations also characterize human thermal perception, the ultimate role of which is to drive thermoregulatory behaviors. In this paper, we explore this question by reviewing experimental and observational thermal comfort investigations which include the "time of day" variable. We found only 21 studies considering this factor, and not always as their primary analysis. Due to the paucity of studies and the lack of a specific focus on time-of-day effects, the results are difficult to compare and appear on the whole contradictory. However, we observe a tendency for individuals to prefer higher ambient temperatures in the early evening as compared to the rest of the day, a result in line with the physiological decrease of the core body temperature over the evening. By drawing from literature on the physiology of thermoregulation and circadian rhythms, we outline some potential explanations for the inconsistencies observed in the findings, including a potential major bias due to the intensity and spectrum of the selected light conditions, and provide recommendations for conducting future target studies in highly-controlled laboratory conditions. Such studies are strongly encouraged as confirmed variations of human thermal perceptions over the day would have enormous impact on building operations, thus on energy consumption and occupant comfort. List of abbreviations: TSV: Thermal Sensation Vote; TCV: Thermal Comfort Vote; Tpref: Preferred Temperature; TA: Indoor Air Temperature; RH: Indoor Relative Humidity; Tskin: Skin Temperature; Tty: Tympanic Temperature; Tre: Rectal Temperature; Toral: Oral Temperature.
Collapse
Affiliation(s)
- Marika Vellei
- Laboratory of Engineering Sciences for the Environment (LaSIE) (Umr Cnrs 7356), La Rochelle University, La Rochelle, France
| | - Giorgia Chinazzo
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, USA
| | - Kirsi-Marja Zitting
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Ma, USA
| | - Jeffrey Hubbard
- Laboratory of Integrated Performance in Design (Lipid), School of Architecture, Civil and Environmental Engineering (Enac), École Polytechnique Fédérale De Lausanne (Epfl), Lausanne, Switzerland
| |
Collapse
|
14
|
Martinez-Nicolas A, Guaita M, Santamaría J, Montserrat JM, Madrid JA, Rol MA. Ambulatory circadian monitoring in sleep disordered breathing patients and CPAP treatment. Sci Rep 2021; 11:14711. [PMID: 34282278 PMCID: PMC8290024 DOI: 10.1038/s41598-021-94315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/17/2021] [Indexed: 11/09/2022] Open
Abstract
Our aim was to evaluate the circadian rhythm of motor activity, body position and integrated variable TAP (composed by wrist Temperature, motor Activity and body Position) in Sleep Disordered Breathing (SDB), its relation to SDB severity and the effect of continuous positive airway pressure (CPAP) on these circadian rhythms. To do this, we monitored motor activity and body position rhythms of 78 SDB patients (53.3 ± 1.2 years old, 26.9% women) and 32 healthy subjects (51.4 ± 3.2 years old, 43.8% women) for 1 week. On the last day of that week, SDB patients underwent a polysomnography followed by a Maintenance of Wakefulness Test, Multiple Sleep Latency Test and Sustained Attention to Response Task protocol. A subgroup of 18 moderate to severe SDB patients was treated with CPAP and monitored again after 3 months under treatment. A non-parametrical analysis was performed to characterize the circadian patterns to assess differences between groups and associations between sleep and circadian parameters. Circadian variables were altered in SDB, exhibiting a direct relationship to SDB severity. The motor activity pattern showed a clear improvement with CPAP treatment. Thus, circadian ambulatory monitoring, including the integrated variable TAP, could be used to evaluate the circadian alterations caused by SDB and activity pattern to monitor the effect of CPAP treatment.
Collapse
Affiliation(s)
- Antonio Martinez-Nicolas
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus. IUIE. IMIB - Arrixaca, 30100, Espinardo, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Marc Guaita
- Multidisciplinary Sleep Disorders Unit, Hospital Clinic of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Joan Santamaría
- Multidisciplinary Sleep Disorders Unit, Hospital Clinic of Barcelona, Barcelona, Spain.,Neurology Department, Hospital Clinic of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Josep M Montserrat
- Multidisciplinary Sleep Disorders Unit, Hospital Clinic of Barcelona, Barcelona, Spain.,Pneumology Department, Hospital Clinic of Barcelona, Barcelona, Spain.,Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Juan Antonio Madrid
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus. IUIE. IMIB - Arrixaca, 30100, Espinardo, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - María Angeles Rol
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus. IUIE. IMIB - Arrixaca, 30100, Espinardo, Murcia, Spain. .,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.
| |
Collapse
|
15
|
Zhu TY, Rothenbühler M, Hamvas G, Hofmann A, Welter J, Kahr M, Kimmich N, Shilaih M, Leeners B. The Accuracy of Wrist Skin Temperature in Detecting Ovulation Compared to Basal Body Temperature: Prospective Comparative Diagnostic Accuracy Study. J Med Internet Res 2021; 23:e20710. [PMID: 34100763 PMCID: PMC8238491 DOI: 10.2196/20710] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/15/2021] [Accepted: 04/19/2021] [Indexed: 01/29/2023] Open
Abstract
Background As a daily point measurement, basal body temperature (BBT) might not be able to capture the temperature shift in the menstrual cycle because a single temperature measurement is present on the sliding scale of the circadian rhythm. Wrist skin temperature measured continuously during sleep has the potential to overcome this limitation. Objective This study compares the diagnostic accuracy of these two temperatures for detecting ovulation and to investigate the correlation and agreement between these two temperatures in describing thermal changes in menstrual cycles. Methods This prospective study included 193 cycles (170 ovulatory and 23 anovulatory) collected from 57 healthy women. Participants wore a wearable device (Ava Fertility Tracker bracelet 2.0) that continuously measured the wrist skin temperature during sleep. Daily BBT was measured orally and immediately upon waking up using a computerized fertility tracker with a digital thermometer (Lady-Comp). An at-home luteinizing hormone test was used as the reference standard for ovulation. The diagnostic accuracy of using at least one temperature shift detected by the two temperatures in detecting ovulation was evaluated. For ovulatory cycles, repeated measures correlation was used to examine the correlation between the two temperatures, and mixed effect models were used to determine the agreement between the two temperature curves at different menstrual phases. Results Wrist skin temperature was more sensitive than BBT (sensitivity 0.62 vs 0.23; P<.001) and had a higher true-positive rate (54.9% vs 20.2%) for detecting ovulation; however, it also had a higher false-positive rate (8.8% vs 3.6%), resulting in lower specificity (0.26 vs 0.70; P=.002). The probability that ovulation occurred when at least one temperature shift was detected was 86.2% for wrist skin temperature and 84.8% for BBT. Both temperatures had low negative predictive values (8.8% for wrist skin temperature and 10.9% for BBT). Significant positive correlation between the two temperatures was only found in the follicular phase (rmcorr correlation coefficient=0.294; P=.001). Both temperatures increased during the postovulatory phase with a greater increase in the wrist skin temperature (range of increase: 0.50 °C vs 0.20 °C). During the menstrual phase, the wrist skin temperature exhibited a greater and more rapid decrease (from 36.13 °C to 35.80 °C) than BBT (from 36.31 °C to 36.27 °C). During the preovulatory phase, there were minimal changes in both temperatures and small variations in the estimated daily difference between the two temperatures, indicating an agreement between the two curves. Conclusions For women interested in maximizing the chances of pregnancy, wrist skin temperature continuously measured during sleep is more sensitive than BBT for detecting ovulation. The difference in the diagnostic accuracy of these methods was likely attributed to the greater temperature increase in the postovulatory phase and greater temperature decrease during the menstrual phase for the wrist skin temperatures.
Collapse
Affiliation(s)
- Tracy Y Zhu
- Department of Reproductive Endocrinology, University Hospital Zurich, Zurich, Switzerland
| | | | - Györgyi Hamvas
- Department of Reproductive Endocrinology, University Hospital Zurich, Zurich, Switzerland
| | - Anja Hofmann
- Department of Reproductive Endocrinology, University Hospital Zurich, Zurich, Switzerland
| | - JoEllen Welter
- Department of Reproductive Endocrinology, University Hospital Zurich, Zurich, Switzerland
| | - Maike Kahr
- Department of Reproductive Endocrinology, University Hospital Zurich, Zurich, Switzerland
| | - Nina Kimmich
- Department of Obstetrics, University Hospital Zurich, Zurich, Switzerland
| | | | - Brigitte Leeners
- Department of Reproductive Endocrinology, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Zhang S, Osumi H, Uchizawa A, Hamada H, Park I, Suzuki Y, Tanaka Y, Ishihara A, Yajima K, Seol J, Satoh M, Omi N, Tokuyama K. Changes in sleeping energy metabolism and thermoregulation during menstrual cycle. Physiol Rep 2021; 8:e14353. [PMID: 31981319 PMCID: PMC6981303 DOI: 10.14814/phy2.14353] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 11/24/2022] Open
Abstract
Women with ovulatory menstrual cycles show an increase in body temperature in the luteal phase, compared with follicular phase, particularly during the night. Several, albeit not all, studies reported higher energy expenditure in the luteal phase compared with follicular phase. Q10 of biological reactions lies between 2.0 and 3.0, predicting a 7‐12% increase in energy expenditure when body temperature rises by 1°C. In this study, temperature dependence of energy expenditure was assessed by comparing changes in sleeping energy expenditure and thermoregulation with menstrual cycle in 9 young females. Energy expenditure was measured using a metabolic chamber, in which sleep was recorded polysomnographically, and core body temperature and skin temperature were continuously monitored. Distal‐to‐proximal skin temperature gradient was assessed as an index of heat dissipation. In the luteal phase, a significant increase in average core body temperature (+0.27°C) and energy expenditure (+6.9%) were observed. Heat dissipation was suppressed during the first 2 hr of sleep in the luteal phase, compared with follicular phase. Rise in basal body temperature in the luteal phase was accompanied by increased energy expenditure and suppressed heat dissipation. The 6.9% increase in metabolic rate would require a Q10 of 12.4 to be attributable solely to temperature (+0.27°C), suggesting that energy expenditure in the luteal phase is enhanced through the mechanism, dependent and independent of luteal‐phase rise in body temperature presumably reflects other effects of the sex hormones.
Collapse
Affiliation(s)
- Simeng Zhang
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Haruka Osumi
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Akiko Uchizawa
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Haruka Hamada
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Insung Park
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Yoko Suzuki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Yoshiaki Tanaka
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Asuka Ishihara
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Katsuhiko Yajima
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado, Japan
| | - Jaehoon Seol
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Makoto Satoh
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Naomi Omi
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Kumpei Tokuyama
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
17
|
Zhang S, Takano J, Murayama N, Tominaga M, Abe T, Park I, Seol J, Ishihara A, Tanaka Y, Yajima K, Suzuki Y, Suzuki C, Fukusumi S, Yanagisawa M, Kokubo T, Tokuyama K. Subacute Ingestion of Caffeine and Oolong Tea Increases Fat Oxidation without Affecting Energy Expenditure and Sleep Architecture: A Randomized, Placebo-Controlled, Double-Blinded Cross-Over Trial. Nutrients 2020; 12:nu12123671. [PMID: 33260552 PMCID: PMC7760339 DOI: 10.3390/nu12123671] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Ingesting oolong tea or caffeine acutely increases energy expenditure, and oolong tea, but not caffeine, stimulates fat oxidation. The acute effects of caffeine, such as increased heart rate and interference with sleep, diminish over 1–4 days, known as caffeine tolerance. During each 14-day session of the present study, 12 non-obese males consumed oolong tea (100 mg caffeine, 21.4 mg gallic acid, 97 mg catechins and 125 mg polymerized polyphenol), caffeine (100 mg), or placebo at breakfast and lunch. On day 14 of each session, 24-h indirect calorimetry and polysomnographic sleep recording were performed. Caffeine and oolong tea increased fat oxidation by ~20% without affecting energy expenditure over 24-h. The decrease in the respiratory quotient by oolong tea was greater than that by caffeine during sleep. The effect of oolong tea on fat oxidation was salient in the post-absorptive state. These findings suggest a role of unidentified ingredients in oolong tea to stimulate fat oxidation, and this effect is partially suppressed in a postprandial state. Two weeks of caffeine or oolong tea ingestion increased fat oxidation without interfering with sleep. The effects of subacute ingestion of caffeine and oolong tea differed from the acute effects, which is a particularly important consideration regarding habitual tea consumption.
Collapse
Affiliation(s)
- Simeng Zhang
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; (S.Z.); (M.T.); (T.A.); (I.P.); (A.I.); (Y.T.); (Y.S.); (C.S.); (S.F.); (M.Y.); (T.K.)
| | - Jiro Takano
- Research Institute, Suntory Global Innovation Center Ltd., Soraku, Kyoto 619-0284, Japan; (J.T.); (N.M.)
| | - Norihito Murayama
- Research Institute, Suntory Global Innovation Center Ltd., Soraku, Kyoto 619-0284, Japan; (J.T.); (N.M.)
| | - Morie Tominaga
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; (S.Z.); (M.T.); (T.A.); (I.P.); (A.I.); (Y.T.); (Y.S.); (C.S.); (S.F.); (M.Y.); (T.K.)
| | - Takashi Abe
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; (S.Z.); (M.T.); (T.A.); (I.P.); (A.I.); (Y.T.); (Y.S.); (C.S.); (S.F.); (M.Y.); (T.K.)
| | - Insung Park
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; (S.Z.); (M.T.); (T.A.); (I.P.); (A.I.); (Y.T.); (Y.S.); (C.S.); (S.F.); (M.Y.); (T.K.)
| | - Jaehoon Seol
- R&D Center for Tailor-Made QOL, University of Tsukuba, Tsukuba, Ibaraki 305-8550, Japan;
| | - Asuka Ishihara
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; (S.Z.); (M.T.); (T.A.); (I.P.); (A.I.); (Y.T.); (Y.S.); (C.S.); (S.F.); (M.Y.); (T.K.)
| | - Yoshiaki Tanaka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; (S.Z.); (M.T.); (T.A.); (I.P.); (A.I.); (Y.T.); (Y.S.); (C.S.); (S.F.); (M.Y.); (T.K.)
| | - Katsuhiko Yajima
- Faculty of Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan;
| | - Yoko Suzuki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; (S.Z.); (M.T.); (T.A.); (I.P.); (A.I.); (Y.T.); (Y.S.); (C.S.); (S.F.); (M.Y.); (T.K.)
| | - Chihiro Suzuki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; (S.Z.); (M.T.); (T.A.); (I.P.); (A.I.); (Y.T.); (Y.S.); (C.S.); (S.F.); (M.Y.); (T.K.)
| | - Shoji Fukusumi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; (S.Z.); (M.T.); (T.A.); (I.P.); (A.I.); (Y.T.); (Y.S.); (C.S.); (S.F.); (M.Y.); (T.K.)
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; (S.Z.); (M.T.); (T.A.); (I.P.); (A.I.); (Y.T.); (Y.S.); (C.S.); (S.F.); (M.Y.); (T.K.)
| | - Toshio Kokubo
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; (S.Z.); (M.T.); (T.A.); (I.P.); (A.I.); (Y.T.); (Y.S.); (C.S.); (S.F.); (M.Y.); (T.K.)
| | - Kumpei Tokuyama
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; (S.Z.); (M.T.); (T.A.); (I.P.); (A.I.); (Y.T.); (Y.S.); (C.S.); (S.F.); (M.Y.); (T.K.)
- Correspondence: ; Tel.: +81-29-859-1858
| |
Collapse
|
18
|
Grant AD, Newman M, Kriegsfeld LJ. Ultradian rhythms in heart rate variability and distal body temperature anticipate onset of the luteinizing hormone surge. Sci Rep 2020; 10:20378. [PMID: 33230235 PMCID: PMC7683606 DOI: 10.1038/s41598-020-76236-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022] Open
Abstract
The menstrual cycle is characterized by predictable patterns of physiological change across timescales. Although patterns of reproductive hormones across the menstrual cycle, particularly ultradian rhythms, are well described, monitoring these measures repeatedly to predict the preovulatory luteinizing hormone (LH) surge is not practical. In the present study, we explored whether non-invasive measures coupled to the reproductive system: high frequency distal body temperature (DBT), sleeping heart rate (HR), sleeping heart rate variability (HRV), and sleep timing, could be used to anticipate the preovulatory LH surge in women. To test this possibility, we used signal processing to examine these measures in 45 premenopausal and 10 perimenopausal cycles alongside dates of supra-surge threshold LH and menstruation. Additionally, urinary estradiol and progesterone metabolites were measured daily surrounding the LH surge in 20 cycles. Wavelet analysis revealed a consistent pattern of DBT and HRV ultradian rhythm (2-5 h) power that uniquely enabled anticipation of the LH surge at least 2 days prior to its onset in 100% of individuals. Together, the present findings reveal fluctuations in distal body temperature and heart rate variability that consistently anticipate the LH surge, suggesting that automated ultradian rhythm monitoring may provide a novel and convenient method for non-invasive fertility assessment.
Collapse
Affiliation(s)
- Azure D Grant
- The Helen Wills Neuroscience Institute, University of California, 175 Li Ka Shing Center, MC # 3370, Berkeley, CA, 94720, USA
| | - Mark Newman
- Precision Analytical, McMinnville, OR, 97128, USA
| | - Lance J Kriegsfeld
- The Helen Wills Neuroscience Institute, University of California, 175 Li Ka Shing Center, MC # 3370, Berkeley, CA, 94720, USA.
- Department of Psychology, University of California, Berkeley, CA, 94720, USA.
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA.
- Graduate Group in Endocrinology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
19
|
Bach V, Abbiss CR, Libert JP, McCabe SM. Skin Temperatures of Back or Neck Are Better Than Abdomen for Indication of Average Proximal Skin Temperature During Sleep of School-Aged Children. Front Psychiatry 2020; 11:494528. [PMID: 33061911 PMCID: PMC7530240 DOI: 10.3389/fpsyt.2020.494528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 08/31/2020] [Indexed: 11/16/2022] Open
Abstract
PURPOSE The tight association between sleep, body temperature regulation, and patterns of skin temperature change highlights the necessity for accurate and valid assessment of skin temperatures during sleep. With increased interest in this functional relationship in infants and children, it is important to identify where to best measure proximal skin temperature and whether it is possible to reduce the number of sites of measures, in order to limit the experimental effects in natural settings. Thus, the aim of this study was to determine the most suitable single skin temperature sites for representation of average proximal skin temperature during sleep of school aged children. METHODS Statistical analyses were applied to skin temperature data of 22 children, aged 6 to 12 years, measured over four consecutive school nights in their home settings, to compare single site measures of abdomen, back, neck, forehead and subclavicular skin temperatures (local temperatures) with average proximal skin temperatures. RESULTS Abdomen and forehead skin temperatures were significantly different (respectively higher and lower) to the other local proximal temperatures and to average proximal skin temperatures. Moreover, the time pattern of forehead temperature was very different from that of the other local temperatures. CONCLUSIONS Local forehead and abdomen skin temperatures are least suitable as single site representations of average proximal skin temperatures in school aged children when considering both the level and the time course pattern of the temperature across the night. Conversely, back and neck temperatures provide most fitting representation of average proximal skin temperatures.
Collapse
Affiliation(s)
- Véronique Bach
- Peritox, UMR_I 01, University of Picardy Jules Verne, Amiens, France
| | - Chris R Abbiss
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | | | - Susan M McCabe
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
20
|
Baker FC, Siboza F, Fuller A. Temperature regulation in women: Effects of the menstrual cycle. Temperature (Austin) 2020; 7:226-262. [PMID: 33123618 PMCID: PMC7575238 DOI: 10.1080/23328940.2020.1735927] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 02/08/2023] Open
Abstract
Core body temperature changes across the ovulatory menstrual cycle, such that it is 0.3°C to 0.7°C higher in the post-ovulatory luteal phase when progesterone is high compared with the pre-ovulatory follicular phase. This temperature difference, which is most evident during sleep or immediately upon waking before any activity, is used by women as a retrospective indicator of an ovulatory cycle. Here, we review both historical and current literature aimed at characterizing changes in core body temperature across the menstrual cycle, considering the assessment of the circadian rhythm of core body temperature and thermoregulatory responses to challenges, including heat and cold exposure, exercise, and fever. We discuss potential mechanisms for the thermogenic effect of progesterone and the temperature-lowering effect of estrogen, and discuss effects on body temperature of exogenous formulations of these hormones as contained in oral contraceptives. We review new wearable temperature sensors aimed at tracking daily temperature changes of women across multiple menstrual cycles and highlight the need for future research on the validity and reliability of these devices. Despite the change in core body temperature across the menstrual cycle being so well identified, there remain gaps in our current understanding, particularly about the underlying mechanisms and microcircuitry involved in the temperature changes.
Collapse
Affiliation(s)
- Fiona C. Baker
- Center for Health Sciences, SRI International, Menlo Park, USA
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Felicia Siboza
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Andrea Fuller
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
21
|
Maijala A, Kinnunen H, Koskimäki H, Jämsä T, Kangas M. Nocturnal finger skin temperature in menstrual cycle tracking: ambulatory pilot study using a wearable Oura ring. BMC WOMENS HEALTH 2019; 19:150. [PMID: 31783840 PMCID: PMC6883568 DOI: 10.1186/s12905-019-0844-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 11/12/2019] [Indexed: 11/11/2022]
Abstract
Background Body temperature is a common method in menstrual cycle phase tracking because of its biphasic form. In ambulatory studies, different skin temperatures have proven to follow a similar pattern. The aim of this pilot study was to assess the applicability of nocturnal finger skin temperature based on a wearable Oura ring to monitor menstrual cycle and predict menstruations and ovulations in real life. Methods Volunteer women (n = 22) wore the Oura ring, measured ovulation through urine tests, and kept diaries on menstruations at an average of 114.7 days (SD 20.6), of which oral temperature was measured immediately after wake-up at an average of 1.9 cycles (SD 1.2). Skin and oral temperatures were compared by assessing daily values using repeated measures correlation and phase mean values and differences between phases using dependent t-test. Developed algorithms using skin temperature were tested to predict the start of menstruation and ovulation. The performance of algorithms was assessed with sensitivity and positive predictive values (true positive defined with different windows around the reported day). Results Nocturnal skin temperatures and oral temperatures differed between follicular and luteal phases with higher temperatures in the luteal phase, with a difference of 0.30 °C (SD 0.12) for skin and 0.23 °C (SD 0.09) for oral temperature (p < 0.001). Correlation between skin and oral temperatures was found using daily temperatures (r = 0.563, p < 0.001) and differences between phases (r = 0.589, p = 0.004). Menstruations were detected with a sensitivity of 71.9–86.5% in window lengths of ±2 to ±4 days. Ovulations were detected with the best-performing algorithm with a sensitivity of 83.3% in fertile window from − 3 to + 2 days around the verified ovulation. Positive predictive values had similar percentages to those of sensitivities. The mean offset for estimations were 0.4 days (SD 1.8) for menstruations and 0.6 days (SD 1.5) for ovulations with the best-performing algorithm. Conclusions Nocturnal skin temperature based on wearable ring showed potential for menstrual cycle monitoring in real life conditions.
Collapse
Affiliation(s)
- Anna Maijala
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.
| | - Hannu Kinnunen
- Oura Health, Oulu, Finland.,Optoelectronics and Measurement Techniques Research Group, University of Oulu, Oulu, Finland
| | - Heli Koskimäki
- Oura Health, Oulu, Finland.,Biomimetics and Intelligent Systems Group, University of Oulu, Oulu, Finland
| | - Timo Jämsä
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Maarit Kangas
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| |
Collapse
|
22
|
Uchida Y, Ueshima K, Kano K, Minami M, Mizukami Y, Morimoto K. Correlations between "hie-sho" interview score and progesterone, fat intake, and Kupperman index in pre- and post-menopausal women: a pilot study. J Physiol Sci 2019; 69:673-681. [PMID: 31062233 PMCID: PMC10717765 DOI: 10.1007/s12576-019-00680-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/26/2019] [Indexed: 11/29/2022]
Abstract
Japanese menopausal women who feel cold, even in a warm room, are said to be experiencing "hie-sho." We assessed the magnitude of coldness by a "hie-sho" interview score. The association between the magnitude of coldness and female hormones, fat intake, and menopausal symptoms is unknown. The aim of the present study was to elucidate the relationship between the hie-sho interview scores and female hormones, fat intake, Kupperman index in pre- (pre group) and post- (post group) menopausal women. The hie-sho interview scores, Kupperman index questionnaire results, dietary survey to analyze fat intake, and body weight were analyzed, and plasma estradiol, progesterone, and lipid levels were measured in the subjects in the pre (n = 9) and post (n = 11) groups. Plasma female hormones and fat intake were different, but the total Kupperman index was not different between pre and post groups. Plasma progesterone was positively correlated with the hie-sho score only in the post group. Plasma triglyceride was positively correlated with the hie-sho score only in the pre group. Intake of cholesterol, arachidonic acid, and docosapentaenoic acid was negatively correlated with the hie-sho score only in the pre group. The positive correlation between total Kupperman index and hie-sho score was observed only in the pre group. These results indicated that progesterone level was related to coldness in post-menopausal women. Fat intake, plasma triglyceride, and menopausal symptoms may be related to coldness in pre-menopausal women.
Collapse
Affiliation(s)
- Yuki Uchida
- Women's Environmental Science Laboratory, Department of Health Sciences, Faculty of Human Life and Environment, Nara Women's University, Kita-uoya Nishimachi, Nara, Nara, 630-8506, Japan.
| | - Kyoko Ueshima
- Faculty of Human Life and Environment, Nara Women's University, Kita-uoya Nishimachi, Nara, Nara, 630-8506, Japan
| | - Koko Kano
- Faculty of Human Life and Environment, Nara Women's University, Kita-uoya Nishimachi, Nara, Nara, 630-8506, Japan
| | - Mayuko Minami
- Faculty of Human Life and Environment, Nara Women's University, Kita-uoya Nishimachi, Nara, Nara, 630-8506, Japan
| | - Yuri Mizukami
- Faculty of Human Life and Environment, Nara Women's University, Kita-uoya Nishimachi, Nara, Nara, 630-8506, Japan
| | - Keiko Morimoto
- Faculty of Human Life and Environment, Nara Women's University, Kita-uoya Nishimachi, Nara, Nara, 630-8506, Japan
| |
Collapse
|
23
|
Skin temperature response to a liquid meal intake is different in men than in women. Clin Nutr 2019; 38:1339-1347. [DOI: 10.1016/j.clnu.2018.05.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/08/2018] [Accepted: 05/29/2018] [Indexed: 02/04/2023]
|
24
|
Shilaih M, Goodale BM, Falco L, Kübler F, De Clerck V, Leeners B. Modern fertility awareness methods: wrist wearables capture the changes in temperature associated with the menstrual cycle. Biosci Rep 2018; 38:BSR20171279. [PMID: 29175999 PMCID: PMC6265623 DOI: 10.1042/bsr20171279] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 11/17/2022] Open
Abstract
Core and peripheral body temperatures are affected by changes in reproductive hormones during the menstrual cycle. Women worldwide use the basal body temperature (BBT) method to aid and prevent conception. However, prior research suggests that taking one's daily temperature can prove inconvenient and subject to environmental factors. We investigate whether a more automatic, non-invasive temperature measurement system can detect changes in temperature across the menstrual cycle. We examined how wrist skin temperature (WST), measured with wearable sensors, correlates with urinary tests of ovulation and may serve as a new method of fertility tracking. One hundred and thirty-six eumenorrheic, non-pregnant women participated in an observational study. Participants wore WST biosensors during sleep and reported their daily activities. An at-home luteinizing hormone (LH) test was used to confirm ovulation. WST was recorded across 437 cycles (mean cycles/participant = 3.21, S.D. = 2.25). We tested the relationship between the fertile window and WST temperature shifts, using the BBT three-over-six rule. A sustained 3-day temperature shift was observed in 357/437 cycles (82%), with the lowest cycle temperature occurring in the fertile window 41% of the time. Most temporal shifts (307/357, 86%) occurred on ovulation day (OV) or later. The average early-luteal phase temperature was 0.33°C higher than in the fertile window. Menstrual cycle changes in WST were impervious to lifestyle factors, like having sex, alcohol, or eating prior to bed, that, in prior work, have been shown to obfuscate BBT readings. Although currently costlier than BBT, the present study suggests that WST could be a promising, convenient parameter for future multiparameter fertility awareness methods.
Collapse
Affiliation(s)
- Mohaned Shilaih
- Clinic for Reproductive Endocrinology, University Hospital, Zurich, Switzerland
| | | | | | | | | | - Brigitte Leeners
- Clinic for Reproductive Endocrinology, University Hospital, Zurich, Switzerland
| |
Collapse
|
25
|
Martinez-Nicolas A, Guaita M, Santamaría J, Montserrat JM, Rol MÁ, Madrid JA. Circadian Impairment of Distal Skin Temperature Rhythm in Patients With Sleep-Disordered Breathing: The Effect of CPAP. Sleep 2018; 40:3748299. [PMID: 28444396 DOI: 10.1093/sleep/zsx067] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Study objectives Our aim was to evaluate the circadian rhythm of distal skin temperature (DST) in sleep-disordered breathing (SDB), its relation to excessive daytime sleepiness and the effect of continuous positive airway pressure (CPAP) on DST. Methods Eighty SDB patients (53.1 ± 1.2 years old, 27.6% women) and 67 healthy participants (52.3 ± 1.6 years old, 26.9% women) wore a temperature data logger for 1 week. On the last day of that week, SDB patients underwent a polysomnography followed by a Maintenance of Wakefulness Test (MWT), Multiple Sleep Latency Test, and Sustained Attention to Response Task protocol to objectively quantify daytime sleepiness. A subset of 21 moderate to severe SDB patients were treated with CPAP during at least 3 months and revaluated with the same procedure. A nonparametric analysis was performed to characterize DST to assess differences between groups and associations among DST, polysomnography, and daytime sleepiness measures. Results SDB patients showed an unstable, fragmented, flattened, phase-advanced, and less robust DST rhythm as compared to healthy participants. The more severe the SDB, the worse the DST pattern was, as indicated by the correlation coefficient. Sleepiness, according to MWT sleep latencies, was also associated with the higher fragmentation, lower amplitude, and less robustness of the DST rhythm. Treatment with CPAP improved DST pattern regularity and robustness. Conclusion DST is altered in SDB, exhibiting a direct relationship to the severity of this condition, and improves with CPAP treatment. DST independently correlates with sleepiness, thus, its measurement may contribute to the understanding of the pathophysiology of sleepiness in these patients.
Collapse
Affiliation(s)
- Antonio Martinez-Nicolas
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus. IUIE, IMIB-Arrixaca, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Marc Guaita
- Multidisciplinary Sleep Disorders Unit, Hospital Clinic of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Joan Santamaría
- Multidisciplinary Sleep Disorders Unit, Hospital Clinic of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Neurology Department, Hospital Clinic of Barcelona, Spain
| | - Josep M Montserrat
- Multidisciplinary Sleep Disorders Unit, Hospital Clinic of Barcelona, Barcelona, Spain.,Pneumology Department, Hospital Clinic of Barcelona, Spain.,Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - María Ángeles Rol
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus. IUIE, IMIB-Arrixaca, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Juan Antonio Madrid
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus. IUIE, IMIB-Arrixaca, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| |
Collapse
|
26
|
Cuesta M, Boudreau P, Cermakian N, Boivin DB. Skin Temperature Rhythms in Humans Respond to Changes in the Timing of Sleep and Light. J Biol Rhythms 2017; 32:257-273. [PMID: 28569119 DOI: 10.1177/0748730417702974] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Body temperature is known to vary with circadian phase and to be influenced by factors that can mask its circadian expression. We wanted to test whether skin temperature rhythms were sensitive to an abrupt shift of the sleep schedule and to the resetting effects of light. Nineteen healthy subjects spent 6 days in time isolation and underwent a simulated night-shift procedure. They were assigned to either a control group ( n = 10) or bright light group ( n = 9) and measurements were taken under a baseline day-oriented schedule and during the 4th cycle of a night-oriented schedule. In the bright light group, participants were exposed to a 3-cycle 8-h exposure of ~6,500 lux at night, while the control group remained in dim light conditions (~3 lux). Skin temperature was recorded in 10 and 4 participants from the control and bright light groups, respectively. We found significant circadian rhythms of plasma melatonin, core body temperature (CBT), and skin temperature at baseline for both groups ( p < 0.001 for all). Rhythms of melatonin, CBT, and skin temperature following night shifts were significantly phase delayed by about 7 to 9 h ( p < 0.05) in response to bright light at night, whereas there was no shift in the control group. In addition, we found that at bedtime melatonin does not consistently increase before the increase in distal skin temperature and subsequent decrease in CBT, in contrast to what has been previously reported. The present study shows that, in constant posture conditions, skin temperature rhythms have an evoked component sensitive to abrupt changes in the timing of sleep. They also comprise an endogenous component that is sensitive to the resetting effects of bright light exposure. These results have applications for the determination of circadian phase, as skin temperature is less intrusive than rectal temperature recordings.
Collapse
Affiliation(s)
- Marc Cuesta
- Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Québec, Canada.,Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Québec, Canada
| | - Philippe Boudreau
- Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Québec, Canada
| | - Nicolas Cermakian
- Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Québec, Canada
| | - Diane B Boivin
- Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Québec, Canada
| |
Collapse
|
27
|
Flammer J, Konieczka K. The discovery of the Flammer syndrome: a historical and personal perspective. EPMA J 2017; 8:75-97. [PMID: 28725290 PMCID: PMC5486542 DOI: 10.1007/s13167-017-0090-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/27/2017] [Indexed: 12/21/2022]
Abstract
This review describes the clinical and basic research that led to the description of Flammer syndrome. It is narrated from a personal perspective. This research was initiated by the observation of an increased long-term fluctuation of visual fields in a subgroup of glaucoma patients. As these patients had strikingly cold hands, peripheral blood flow was tested with a capillary microscopy, and vasospastic syndrome (VS) was diagnosed. Further studies on these patients revealed frequently weakened autoregulation of ocular blood flow and increased flow resistivity in retroocular vessels. Their retinal vessels were more rigid and irregular and responded less to flickering light. Holistic investigation demonstrated low blood pressure, silent myocardial ischaemia, altered beat-to-beat variation, altered gene expression in the lymphocytes, slightly increased plasma endothelin level and increased systemic oxidative stress. This combination of signs and symptoms was better described by the term primary vascular dysregulation (PVD) than by VS. Subsequent studies showed additional symptoms frequently related to PVD, such as low body mass index, cold extremities combined with slightly increased core temperature, prolonged sleep onset time, reduced feelings of thirst, increased sensitivity to smell and also for certain drugs and increased retinal venous pressure. To better characterise this entire syndrome, the term Flammer syndrome (FS) was introduced. Most subjects with FS were healthy. Nevertheless, FS seemed to increase the risk for certain eye diseases, particularly in younger patients. This included normal-tension glaucoma, anterior ischaemic optic neuropathy, retinal vein occlusions, Susac syndrome and central serous chorioretinopathy. Hereditary diseases, such as Leber’s optic neuropathy or retinitis pigmentosa, were also associated with FS, and FS symptoms and sings occurred more frequent in patients with multiple sclerosis or with acute hearing loss. Further research should lead to a more concise definition of FS, a precise diagnosis and tools for recognizing people at risk for associated diseases. This may ultimately lead to more efficient and more personalised treatment.
Collapse
Affiliation(s)
- Josef Flammer
- Department of Ophthalmology, University of Basel, Mittlere Strasse 91, CH-4031 Basel, Switzerland
| | - Katarzyna Konieczka
- Department of Ophthalmology, University of Basel, Mittlere Strasse 91, CH-4031 Basel, Switzerland
| |
Collapse
|
28
|
Majumder S, Mondal T, Deen MJ. Wearable Sensors for Remote Health Monitoring. SENSORS (BASEL, SWITZERLAND) 2017; 17:E130. [PMID: 28085085 PMCID: PMC5298703 DOI: 10.3390/s17010130] [Citation(s) in RCA: 387] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/12/2016] [Accepted: 12/21/2016] [Indexed: 01/01/2023]
Abstract
Life expectancy in most countries has been increasing continually over the several few decades thanks to significant improvements in medicine, public health, as well as personal and environmental hygiene. However, increased life expectancy combined with falling birth rates are expected to engender a large aging demographic in the near future that would impose significant burdens on the socio-economic structure of these countries. Therefore, it is essential to develop cost-effective, easy-to-use systems for the sake of elderly healthcare and well-being. Remote health monitoring, based on non-invasive and wearable sensors, actuators and modern communication and information technologies offers an efficient and cost-effective solution that allows the elderly to continue to live in their comfortable home environment instead of expensive healthcare facilities. These systems will also allow healthcare personnel to monitor important physiological signs of their patients in real time, assess health conditions and provide feedback from distant facilities. In this paper, we have presented and compared several low-cost and non-invasive health and activity monitoring systems that were reported in recent years. A survey on textile-based sensors that can potentially be used in wearable systems is also presented. Finally, compatibility of several communication technologies as well as future perspectives and research challenges in remote monitoring systems will be discussed.
Collapse
Affiliation(s)
- Sumit Majumder
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada.
| | - Tapas Mondal
- Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada.
| | - M Jamal Deen
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
29
|
Keppler C, Rosburg T, Lemoine P, Pflüger M, Gyr N, Mager R. Functional Somatic Syndromes: Skin Temperatures and Activity Measurements Under Ambulatory Conditions. Appl Psychophysiol Biofeedback 2016; 41:363-373. [PMID: 27207257 DOI: 10.1007/s10484-016-9337-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Functional somatic syndromes are mostly associated with pain and emotional distress. As one marker for the autonomic stress response, the distal skin temperature decreases during psychological stress. In patients with functional somatic syndromes, the distal skin temperature under baseline conditions (without stress induction) is usually lower than in healthy subjects, which could be due to the sustained presence of pain-related stress in such patients. The aim of our study was to investigate whether patients with functional somatic syndromes show altered skin temperatures also under everyday life conditions. 14 patients with functional somatic syndromes and 14 matched healthy control subjects were investigated under ambulatory conditions over six consecutive days. During this time, distal and proximal skin temperatures were continuously recorded and sleep-wake cycles were monitored by actimetry and sleep-wake diaries. Unexpectedly, the patients showed higher distal skin temperatures than control subjects in the afternoon. The objective temperature data did not match the patients' subjective experience: ratings of thermal comfort did not vary between the two groups. Moreover, similar levels of daytime activity were recorded in the two samples, even though patients reported more tiredness and more body tension than controls. We interpret the observed dissociation between objective skin temperature measurements and subjective ratings of the bodily thermal comfort as support for the notion of an alexisomia account (reduced bodily awareness) for functional somatic syndromes. Moreover, findings indicate that subjective complaints of tiredness and tension do not necessarily result in physical avoidance behaviour.
Collapse
Affiliation(s)
- Carole Keppler
- Department of Forensic Psychiatry, University Psychiatric Clinics Basel, Wilhelm Klein-Str. 27, 4012, Basel, Switzerland.
| | - Timm Rosburg
- Department of Forensic Psychiatry, University Psychiatric Clinics Basel, Wilhelm Klein-Str. 27, 4012, Basel, Switzerland
| | - Patrick Lemoine
- Department of Forensic Psychiatry, University Psychiatric Clinics Basel, Wilhelm Klein-Str. 27, 4012, Basel, Switzerland
| | - Marlon Pflüger
- Department of Forensic Psychiatry, University Psychiatric Clinics Basel, Wilhelm Klein-Str. 27, 4012, Basel, Switzerland
| | - Niklaus Gyr
- Faculty of Medicine, University of Basel, Karl Jaspers-Allee 10, 4052, Basel, Switzerland
| | - Ralph Mager
- Department of Forensic Psychiatry, University Psychiatric Clinics Basel, Wilhelm Klein-Str. 27, 4012, Basel, Switzerland
| |
Collapse
|
30
|
Martinez-Nicolas A, Meyer M, Hunkler S, Madrid JA, Rol MA, Meyer AH, Schötzau A, Orgül S, Kräuchi K. Daytime variation in ambient temperature affects skin temperatures and blood pressure: Ambulatory winter/summer comparison in healthy young women. Physiol Behav 2015; 149:203-11. [DOI: 10.1016/j.physbeh.2015.06.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 01/07/2023]
|