1
|
Anand SK, Sanchorawala V, Verma A. Systemic Amyloidosis and Kidney Transplantation: An Update. Semin Nephrol 2024; 44:151496. [PMID: 38490903 DOI: 10.1016/j.semnephrol.2024.151496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Amyloidosis is a heterogeneous disorder characterized by abnormal protein aggregate deposition that often leads to kidney involvement and end-stage kidney disease. With advancements in diagnostic techniques and treatment options, the prevalence of patients with amyloidosis requiring chronic dialysis has increased. Kidney transplantation is a promising avenue for extending survival and enhancing quality of life in these patients. However, the complex and heterogeneous nature of amyloidosis presents challenges in determining optimal referral timing for transplantation and managing post-transplantation course. This review focuses on recent developments and outcomes of kidney transplantation for amyloidosis-related end-stage kidney disease. This review also aims to guide clinical decision-making and improve management of patients with amyloidosis-associated kidney disease, offering insights into optimizing patient selection and post-transplant care for favorable outcomes.
Collapse
Affiliation(s)
- Shankara K Anand
- Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA
| | - Vaishali Sanchorawala
- Amyloidosis Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA; Section of Hematology and Oncology, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA
| | - Ashish Verma
- Renal Section, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA; Amyloidosis Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA; Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA.
| |
Collapse
|
2
|
Mendelson L, Prokaeva T, Lau KHV, Sanchorawala V, McCausland K, Spencer B, Dasari S, McPhail ED, Kaku MC. Hereditary gelsolin amyloidosis: a rare cause of cranial, peripheral and autonomic neuropathies linked to D187N and Y447H substitutions. Amyloid 2023; 30:357-363. [PMID: 37140928 DOI: 10.1080/13506129.2023.2204999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023]
Abstract
INTRODUCTION Hereditary gelsolin (AGel) amyloidosis is a systemic disease that is characterised by neurologic, ophthalmologic, dermatologic, and other organ involvements. We describe the clinical features with a focus on neurological manifestations in a cohort of patients with AGel amyloidosis referred to the Amyloidosis Centre in the United States. METHODS Fifteen patients with AGel amyloidosis were included in the study between 2005 and 2022 with the permission of the Institutional Review Board. Data were collected from the prospectively maintained clinical database, electronic medical records and telephone interviews. RESULTS Neurologic manifestations were featured in 15 patients: cranial neuropathy in 93%, peripheral and autonomic neuropathy in 57% and bilateral carpal tunnel syndrome in 73% of cases. A novel p.Y474H gelsolin variant featured a unique clinical phenotype that differed from the one associated with the most common variant of AGel amyloidosis. DISCUSSION We report high rates of cranial and peripheral neuropathy, carpal tunnel syndrome and autonomic dysfunction in patients with systemic AGel amyloidosis. The awareness of these features will enable earlier diagnosis and timely screening for end-organ dysfunction. The characterisation of pathophysiology will assist the development of therapeutic options in AGel amyloidosis.
Collapse
Affiliation(s)
- Lisa Mendelson
- Amyloidosis Center, Boston University School of Medicine, Boston, MA, USA
- Section of Hematology and Oncology, Department of Medicine, Boston Medical Center, Boston, MA, USA
| | - Tatiana Prokaeva
- Amyloidosis Center, Boston University School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - K H Vincent Lau
- Amyloidosis Center, Boston University School of Medicine, Boston, MA, USA
- Neurology Department, Boston Medical Center, Boston, MA, USA
| | - Vaishali Sanchorawala
- Amyloidosis Center, Boston University School of Medicine, Boston, MA, USA
- Section of Hematology and Oncology, Department of Medicine, Boston Medical Center, Boston, MA, USA
| | | | - Brian Spencer
- Amyloidosis Center, Boston University School of Medicine, Boston, MA, USA
| | - Surendra Dasari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Ellen D McPhail
- Department of Laboratory of Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Michelle C Kaku
- Amyloidosis Center, Boston University School of Medicine, Boston, MA, USA
- Neurology Department, Boston Medical Center, Boston, MA, USA
| |
Collapse
|
3
|
Abstract
Various types of systemic amyloidosis can wreak havoc on the architecture and functioning of the kidneys. Amyloidosis should be suspected in patients with worsening kidney function, proteinuria, and multisystem involvement, but isolated kidney involvement also is possible. Confirming the amyloidosis type and specific organ dysfunction is of paramount importance to select the appropriately tailored treatment and aim for better survival while avoiding treatment-associated toxicities. Amyloid renal staging in light chain amyloidosis amyloidosis helps inform prognosis and risk for end-stage kidney disease. Biomarker-based staging systems and response assessment guide the therapeutic strategy and allow the timely identification of refractory or relapsing disease so that patients can be switched to salvage therapy. Kidney transplantation is a viable option for selected patients with amyloidosis. Because of the complex nature of the pathophysiology and treatment of amyloidosis, a multidisciplinary team-based approach should be used in the care of these patients.
Collapse
Affiliation(s)
- Ralph Nader
- Renal, Electrolyte and Hypertension Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Avital Angel-Korman
- Nephrology and Hypertension Institute, Samson Assuta University Hospital, Ashdod, Israel; Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheba, Israel
| | - Andrea Havasi
- Amyloidosis Center, Boston University School of Medicine, Boston, MA; Clinical Research, Alnylam Pharmaceuticals, Cambridge, MA.
| |
Collapse
|
4
|
Yamakawa K, Nishijima H, Kubota A, Naruse H, Baba S, Fujimaki Y, Kondo K, Toda T, Yamasoba T. Clinical and electrophysiological findings of facial palsy in a case of hereditary gelsolin amyloidosis. Auris Nasus Larynx 2023; 50:305-308. [PMID: 35241298 DOI: 10.1016/j.anl.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/31/2022] [Accepted: 02/13/2022] [Indexed: 11/26/2022]
Abstract
Hereditary gelsolin amyloidosis (HGA) is an autosomal dominant systemic amyloidosis, characterized by cranial and sensory peripheral neuropathy, corneal lattice dystrophy, and cutis laxa. We report a case of HGA presenting with bilateral facial palsy. A 70-year-old Japanese man presented with slowly progressive bilateral facial palsy and facial twitching, which had started in his 40s. His mother also had the same symptoms due to an unknown cause but rest of the family did not. He showed incomplete facial palsy with no frontal muscle movement and partial movement of the orbicularis oris and orbicularis oculi muscles. The patient showed no synkinesis. Electroneurography revealed symmetric low compound motor action potential amplitude of the orbicularis oris muscle, and a nerve excitability test showed a symmetric increase in the response threshold. Despite the partial voluntary movement of the orbicularis oculi muscle, bilateral blink reflexes were absent. He also showed facial spasms after contraction of the orbicularis oris muscle. Genetic testing revealed a heterozygous c.640G>A mutation (p. Asp214Asn); therefore, the patient was diagnosed with HGA. HGA related facial palsy showed moderate bilateral, upper blanch-dominant axonal degeneration of the facial nerve without reinnervation, and trigeminal nerve neuropathy.
Collapse
Affiliation(s)
- Kaoru Yamakawa
- Department of Otolaryngology, The University of Tokyo, Tokyo, Japan.
| | | | - Akatsuki Kubota
- Department of Neurology, The University of Tokyo, Tokyo, Japan
| | - Hiroya Naruse
- Department of Neurology, The University of Tokyo, Tokyo, Japan
| | - Shintaro Baba
- Department of Otolaryngology, The University of Tokyo, Tokyo, Japan
| | - Yoko Fujimaki
- Department of Otolaryngology, The University of Tokyo, Tokyo, Japan
| | - Kenji Kondo
- Department of Otolaryngology, The University of Tokyo, Tokyo, Japan
| | - Tatsushi Toda
- Department of Neurology, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Jiang Y, Wan M, Xiao X, Lin Z, Liu X, Zhou Y, Liao X, Lin J, Zhou H, Zhou L, Weng L, Wang J, Guo J, Jiang H, Zhang Z, Xia K, Li J, Tang B, Jiao B, Shen L. GSN gene frameshift mutations in Alzheimer's disease. J Neurol Neurosurg Psychiatry 2023; 94:436-447. [PMID: 36650038 DOI: 10.1136/jnnp-2022-330465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND The pathogenic missense mutations of the gelsolin (GSN) gene lead to familial amyloidosis of the Finnish type (FAF); however, our previous study identified GSN frameshift mutations existed in patients with Alzheimer's disease (AD). The GSN genotype-phenotype heterogeneity and the role of GSN frameshift mutations in patients with AD are unclear. METHOD In total, 1192 patients with AD and 1403 controls were screened through whole genome sequencing, and 884 patients with AD were enrolled for validation. Effects of GSN mutations were evaluated in vitro. GSN, Aβ42, Aβ40 and Aβ42/40 were detected in both plasma and cerebrospinal fluid (CSF). RESULTS Six patients with AD with GSN P3fs and K346fs mutations (0.50%, 6/1192) were identified, who were diagnosed with AD but not FAF. In addition, 13 patients with AD with GSN frameshift mutations were found in the validation cohort (1.47%, 13/884). Further in vitro experiments showed that both K346fs and P3fs mutations led to the GSN loss of function in inhibiting Aβ-induced toxicity. Moreover, a higher level of plasma (p=0.001) and CSF (p=0.005) GSN was observed in AD cases than controls, and a positive correlation was found between the CSF GSN and CSF Aβ42 (r=0.289, p=0.009). Besides, the GSN level was initially increasing and then decreasing with the disease course and cognitive decline. CONCLUSIONS GSN frameshift mutations may be associated with AD. An increase in plasma GSN is probably a compensatory reaction in AD, which is a potential biomarker for early AD.
Collapse
Affiliation(s)
- Yaling Jiang
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Meidan Wan
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - XueWen Xiao
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Zhuojie Lin
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Xixi Liu
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Yafang Zhou
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China.,Department of Geriatrics Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Xinxin Liao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China.,Department of Geriatrics Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Jingyi Lin
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Hui Zhou
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Lu Zhou
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Ling Weng
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Zhuohua Zhang
- Institute of Molecular Precision Medicine, Key Laboratory of Molecular Precision Medicine of Hunan Province, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Kun Xia
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jiada Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
6
|
Biederman LE, Dasgupta AD, Dreyfus DE, Nadasdy T, Satoskar AA, Brodsky SV. Kidney Biopsy Corner: Amyloidosis. GLOMERULAR DISEASES 2023; 3:165-177. [PMID: 37901698 PMCID: PMC10601942 DOI: 10.1159/000533195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/17/2023] [Indexed: 10/31/2023]
Abstract
Amyloidosis is an infiltrative disease caused by misfolded proteins depositing in tissues. Amyloid infiltrates the kidney in several patterns. There are, as currently described by the International Society of Amyloidosis, 14 types of amyloid that can involve the kidney, and these types may have different locations or clinical settings. Herein we report a case of AA amyloidosis occurring in a 24-year-old male with a history of intravenous drug abuse and provide a comprehensive review of different types of amyloids involving the kidney.
Collapse
Affiliation(s)
- Laura E. Biederman
- Department of Pathology, Ohio State Wexner Medical Center, Columbus, OH, USA
- Department of Pathology, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Alana D. Dasgupta
- Department of Pathology, Ohio State Wexner Medical Center, Columbus, OH, USA
| | | | - Tibor Nadasdy
- Department of Pathology, Ohio State Wexner Medical Center, Columbus, OH, USA
| | - Anjali A. Satoskar
- Department of Pathology, Ohio State Wexner Medical Center, Columbus, OH, USA
| | - Sergey V. Brodsky
- Department of Pathology, Ohio State Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
7
|
Bollati M, Peqini K, Barone L, Natale C, Beeg M, Gobbi M, Diomede L, Trucchi M, de Rosa M, Pellegrino S. Rational Design of a Peptidomimetic Inhibitor of Gelsolin Amyloid Aggregation. Int J Mol Sci 2022; 23:ijms232213973. [PMID: 36430461 PMCID: PMC9698219 DOI: 10.3390/ijms232213973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Gelsolin amyloidosis (AGel) is characterized by multiple systemic and ophthalmic features resulting from pathological tissue deposition of the gelsolin (GSN) protein. To date, no cure is available for the treatment of any form of AGel. More than ten single-point substitutions in the GSN gene are responsible for the occurrence of the disease and, among them, D187N/Y is the most widespread variant. These substitutions undergo an aberrant proteolytic cascade, producing aggregation-prone peptides of 5 and 8 kDa, containing the Gelsolin Amyloidogenic Core, spanning residues 182-192 (GAC182-192). Following a structure-based approach, we designed and synthesized three novel sequence-specific peptidomimetics (LB-5, LB-6, and LB-7) built on a piperidine-pyrrolidine unnatural amino acid. LB-5 and LB-6, but not LB-7, efficiently inhibit the aggregation of the GAC182-192 amyloidogenic peptides at sub-stoichiometric concentrations. These peptidomimetics resulted also effective in vivo, in a C. elegans-based assay, in counteracting the proteotoxicity of aggregated GAC182-192. These data pave the way to a novel pharmacological strategy against AGel and also validate a toolbox exploitable in other amyloidogenic diseases.
Collapse
Affiliation(s)
- Michela Bollati
- Institute of Biophysics, National Research Council (IBF-CNR), c/o Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy
| | - Kaliroi Peqini
- Department of Pharmaceutical Science, “A. Marchesini” General and Organic Chemistry Section, University of Milano, Via Venezian 21, 20133 Milano, Italy
| | - Luigi Barone
- Department of Pharmaceutical Science, “A. Marchesini” General and Organic Chemistry Section, University of Milano, Via Venezian 21, 20133 Milano, Italy
| | - Carmina Natale
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Marten Beeg
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Marco Gobbi
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Michelangelo Trucchi
- Institute of Biophysics, National Research Council (IBF-CNR), c/o Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy
| | - Matteo de Rosa
- Institute of Biophysics, National Research Council (IBF-CNR), c/o Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy
- Correspondence: (M.d.R.); (S.P.)
| | - Sara Pellegrino
- Department of Pharmaceutical Science, “A. Marchesini” General and Organic Chemistry Section, University of Milano, Via Venezian 21, 20133 Milano, Italy
- Correspondence: (M.d.R.); (S.P.)
| |
Collapse
|
8
|
Park J, Kim Y, Oh K, Nahm M, Kim YJ, Kim MJ, Kim SH. Gelsolin variant amyloidosis mimicking progressive bulbar palsy. Muscle Nerve 2022; 66:E28-E30. [PMID: 36047766 PMCID: PMC9826199 DOI: 10.1002/mus.27714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Jinseok Park
- Department of NeurologyCollege of Medicine, Hanyang UniversitySeoulSouth Korea,Cell Therapy CenterHanyang University HospitalSeoulSouth Korea
| | - Young‐Eun Kim
- Department of Laboratory MedicineCollege of Medicine, Hanyang UniversitySeoulSouth Korea
| | - Ki‐Wook Oh
- Department of NeurologyCollege of Medicine, Hanyang UniversitySeoulSouth Korea,Cell Therapy CenterHanyang University HospitalSeoulSouth Korea
| | - Minyeop Nahm
- Dementia Research Group, Korea Brain Research InstituteDaeguSouth Korea
| | - Yu Jeong Kim
- Department of OphthalmologyHanyang University College of MedicineSeoulSouth Korea
| | - Mi Jung Kim
- Department of Rehabilitation MedicineHanyang University College of MedicineSeoulSouth Korea
| | - Seung Hyun Kim
- Department of NeurologyCollege of Medicine, Hanyang UniversitySeoulSouth Korea,Cell Therapy CenterHanyang University HospitalSeoulSouth Korea
| |
Collapse
|
9
|
Feitosa V, Neves P, Jorge L, Noronha I, Onuchic L. Renal amyloidosis: a new time for a complete diagnosis. Braz J Med Biol Res 2022; 55:e12284. [PMID: 36197414 PMCID: PMC9529046 DOI: 10.1590/1414-431x2022e12284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/12/2022] [Indexed: 11/22/2022] Open
Abstract
Amyloidoses are a group of disorders in which soluble proteins aggregate and deposit extracellularly in tissues as insoluble fibrils, causing organ dysfunction. Clinical management depends on the subtype of the protein deposited and the affected organs. Systemic amyloidosis may stem from anomalous proteins, such as immunoglobulin light chains or serum amyloid proteins in chronic inflammation or may arise from hereditary disorders. Hereditary amyloidosis consists of a group of rare conditions that do not respond to chemotherapy, hence the identification of the amyloid subtype is essential for diagnosis, prognosis, and treatment. The kidney is the organ most frequently involved in systemic amyloidosis. Renal amyloidosis is characterized by acellular pathologic Congo red-positive deposition of amyloid fibrils in glomeruli, vessels, and/or interstitium. This disease manifests with heavy proteinuria, nephrotic syndrome, and progression to end-stage kidney failure. In some situations, it is not possible to identify the amyloid subtype using immunodetection methods, so the diagnosis remains indeterminate. In cases where hereditary amyloidosis is suspected or cannot be excluded, genetic testing should be considered. Of note, laser microdissection/mass spectrometry is currently the gold standard for accurate diagnosis of amyloidosis, especially in inconclusive cases. This article reviews the clinical manifestations and the current diagnostic landscape of renal amyloidosis.
Collapse
Affiliation(s)
- V.A. Feitosa
- Divisão de Nefrologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil,Divisão de Medicina Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - P.D.M.M. Neves
- Divisão de Nefrologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil,Divisão de Medicina Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - L.B. Jorge
- Divisão de Nefrologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - I.L. Noronha
- Divisão de Nefrologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - L.F. Onuchic
- Divisão de Nefrologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil,Divisão de Medicina Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
10
|
Suomalainen O, Pilv J, Loimaala A, Mätzke S, Heliö T, Uusitalo V. Prognostic significance of incidental suspected transthyretin amyloidosis on routine bone scintigraphy. J Nucl Cardiol 2022; 29:1021-1029. [PMID: 33094472 PMCID: PMC9163012 DOI: 10.1007/s12350-020-02396-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/14/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND Transthyretin amyloidosis (ATTR) is an occasional incidental finding on bone scintigraphy. We studied its prognostic impact in elderly patients. METHODS The study population consisted of 2000 patients aged over 70 years who underwent bone scintigraphies with clinical indications in three nuclear medicine departments (Kymenlaakso, Jorvi and Meilahti hospitals) in Finland. All studies were performed using 99mTechnetium labeled hydroxymethylene diphosphonate (HMDP). ATTR was suspected in patients with ≥grade 2 Perugini grade uptake (grade 0-3). Heart-to-contralateral ratio (H/CL) of ≥ 1.30 was considered positive for ATTR. The overall and cardiovascular mortality were obtained from the Finnish National Statistical Service. RESULTS There were a total of 1014 deaths (51%) and 177 cardiovascular deaths (9%) during median follow-up of 4 ± 2 years. ATTR was suspected in 69 patients (3.6%) of which 54 (2.7%) had grade 2 and 15 (.8%) had grade 3 uptake and in 47 patients (2.4%) by H/CL ratio. In multivariate analyses age, bone metastasis, H/CL ratio and grade 3 uptake were independent predictors of overall and cardiovascular mortality. Grade 2 uptake was a predictor of cardiovascular mortality. CONCLUSIONS A suspected ATTR as an incidental finding on bone scintigraphy predicts elevated overall and cardiovascular mortality in elderly patients.
Collapse
Affiliation(s)
- Olli Suomalainen
- Cardiology Department, Kymenlaakso Central Hospital, Kotkantie 41, 48210 Kotka, Finland
| | - Jaagup Pilv
- Clinical Physiology and Nuclear Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Antti Loimaala
- Clinical Physiology and Nuclear Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sorjo Mätzke
- Clinical Physiology and Nuclear Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tiina Heliö
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Valtteri Uusitalo
- Clinical Physiology and Nuclear Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Grunseich C, Sarkar N, Lu J, Owen M, Schindler A, Calabresi PA, Sumner CJ, Roda RH, Chaudhry V, Lloyd TE, Crawford TO, Subramony SH, Oh SJ, Richardson P, Tanji K, Kwan JY, Fischbeck KH, Mankodi A. Improving the efficacy of exome sequencing at a quaternary care referral centre: novel mutations, clinical presentations and diagnostic challenges in rare neurogenetic diseases. J Neurol Neurosurg Psychiatry 2021; 92:1186-1196. [PMID: 34103343 PMCID: PMC8522445 DOI: 10.1136/jnnp-2020-325437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 04/10/2021] [Accepted: 05/05/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND We used a multimodal approach including detailed phenotyping, whole exome sequencing (WES) and candidate gene filters to diagnose rare neurological diseases in individuals referred by tertiary neurology centres. METHODS WES was performed on 66 individuals with neurogenetic diseases using candidate gene filters and stringent algorithms for assessing sequence variants. Pathogenic or likely pathogenic missense variants were interpreted using in silico prediction tools, family segregation analysis, previous publications of disease association and relevant biological assays. RESULTS Molecular diagnosis was achieved in 39% (n=26) including 59% of childhood-onset cases and 27% of late-onset cases. Overall, 37% (10/27) of myopathy, 41% (9/22) of neuropathy, 22% (2/9) of MND and 63% (5/8) of complex phenotypes were given genetic diagnosis. Twenty-seven disease-associated variants were identified including ten novel variants in FBXO38, LAMA2, MFN2, MYH7, PNPLA6, SH3TC2 and SPTLC1. Single-nucleotide variants (n=10) affected conserved residues within functional domains and previously identified mutation hot-spots. Established pathogenic variants (n=16) presented with atypical features, such as optic neuropathy in adult polyglucosan body disease, facial dysmorphism and skeletal anomalies in cerebrotendinous xanthomatosis, steroid-responsive weakness in congenital myasthenia syndrome 10. Potentially treatable rare diseases were diagnosed, improving the quality of life in some patients. CONCLUSIONS Integrating deep phenotyping, gene filter algorithms and biological assays increased diagnostic yield of exome sequencing, identified novel pathogenic variants and extended phenotypes of difficult to diagnose rare neurogenetic disorders in an outpatient clinic setting.
Collapse
Affiliation(s)
- Christopher Grunseich
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Nathan Sarkar
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Joyce Lu
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Mallory Owen
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Alice Schindler
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter A Calabresi
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Charlotte J Sumner
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ricardo H Roda
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vinay Chaudhry
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas E Lloyd
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas O Crawford
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - S H Subramony
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Shin J Oh
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Perry Richardson
- Department of Neurology, George Washington University, Washington, District of Columbia, USA
| | - Kurenai Tanji
- Division of Neuropathology, Columbia University Medical Center, New York, New York, USA
| | - Justin Y Kwan
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Ami Mankodi
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Mustonen T, Sivonen V, Atula S, Kiuru-Enari S, Sinkkonen ST. Hearing problems in patients with hereditary gelsolin amyloidosis. Orphanet J Rare Dis 2021; 16:448. [PMID: 34689817 PMCID: PMC8543933 DOI: 10.1186/s13023-021-02077-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/10/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Gelsolin amyloidosis (AGel amyloidosis) is a hereditary form of systemic amyloidosis featuring ophthalmological, neurological and cutaneous symptoms. Previous studies based mainly on patients' self-reporting have indicated that hearing impairment might also be related to the disease, considering the progressive cranial neuropathy characteristic for AGel amyloidosis. In order to deepen the knowledge of possible AGel amyloidosis-related hearing problems, a clinical study consisting of the Speech, Spatial and Qualities of Hearing Scale (SSQ) questionnaire, clinical examination, automated pure-tone audiometry and a speech-in-noise test was designed. RESULTS Of the total 46 patients included in the study, eighteen (39%) had self-reported hearing loss. The mean scores in the SSQ were 8.2, 8.3 and 8.6 for the Speech, Spatial and Qualities subscales, respectively. In audiometry, the mean pure tone average (PTA) was 17.1 (SD 12.2) and 17.1 (SD 12.3) dB HL for the right and left ears, respectively, with no difference to gender- and age-matched, otologically normal reference values. The average speech reception threshold in noise (SRT) was - 8.2 (SD 1.5) and - 8.0 (SD 1.7) dB SNR for the right and left ears, respectively, which did not differ from a control group with a comparable range in PTA thresholds. CONCLUSION Although a significant proportion of AGel amyloidosis patients experience subjective difficulties in hearing there seems to be no peripheral or central hearing impairment at least in patients up to the age of 60 years.
Collapse
Affiliation(s)
- Tuuli Mustonen
- Clinical Neurosciences, Neurology, Helsinki University Hospital and University of Helsinki, HYKS, Tornisairaala, Neupkl, Haartmaninkatu 4, 00029, Helsinki, Finland.
- Department of Otorhinolaryngology - Head and Neck Surgery, Head and Neck Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| | - Ville Sivonen
- Department of Otorhinolaryngology - Head and Neck Surgery, Head and Neck Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sari Atula
- Clinical Neurosciences, Neurology, Helsinki University Hospital and University of Helsinki, HYKS, Tornisairaala, Neupkl, Haartmaninkatu 4, 00029, Helsinki, Finland
| | - Sari Kiuru-Enari
- Clinical Neurosciences, Neurology, Helsinki University Hospital and University of Helsinki, HYKS, Tornisairaala, Neupkl, Haartmaninkatu 4, 00029, Helsinki, Finland
| | - Saku T Sinkkonen
- Department of Otorhinolaryngology - Head and Neck Surgery, Head and Neck Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Mustonen T, Holkeri A, Holmström M, Atula S, Pakarinen S, Lehmonen L, Kiuru-Enari S, Aro AL. Cardiac manifestations in Finnish gelsolin amyloidosis patients. Amyloid 2021; 28:168-172. [PMID: 33877023 DOI: 10.1080/13506129.2021.1911798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Finnish gelsolin amyloidosis (AGel amyloidosis) is an inherited systemic amyloidosis with well-known ophthalmological, neurological and cutaneous symptoms. Additionally, cardiomyopathies, conduction disorders and need of cardiac pacemakers occur in some patients. This study focuses on electrocardiographic (ECG) findings in AGel amyloidosis and their relation to cardiac magnetic resonance (CMR) changes. We also assessed whether ECG abnormalities were associated with pacemaker implantation and mortality. MATERIALS AND METHODS In this cohort study, 51 genetically verified AGel amyloidosis patients (mean age 66 years) without cardiac pacemakers underwent 12-lead ECG and CMR imaging with contrast agent in 2017. Patients were followed-up for 3 years. RESULTS Conduction disturbances were found in 22 patients (43%). Nine (18%) presented with first-degree atrioventricular block, six (12%) with left anterior hemiblock, seven (14%) with left or right bundle branch block and two (4%) with non-specific intraventricular conduction delay. Low QRS voltage was present in two (4%) patients. Late gadolinium enhancement (LGE) concentrating on the interventricular septum and inferior parts of the heart was present in 19 (86%) patients with conduction abnormalities. During the follow-up, only one patient received a pacemaker, and one patient died. DISCUSSION Conduction disorders and septal LGE are common in AGel amyloidosis, whereas other ECG and CMR findings typically observed in most common cardiac amyloidosis types were rare. Septal pathology seen in CMR may interfere with the cardiac conduction system in AGel amyloidosis, explaining conduction disorders, although pacemaker therapy is rarely required.
Collapse
Affiliation(s)
- Tuuli Mustonen
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Arttu Holkeri
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Miia Holmström
- HUS Medical Imaging Center, Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sari Atula
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sami Pakarinen
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Lauri Lehmonen
- HUS Medical Imaging Center, Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sari Kiuru-Enari
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Aapo L Aro
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
14
|
Minnella AM, Rissotto R, Antoniazzi E, Di Girolamo M, Luigetti M, Maceroni M, Bacherini D, Falsini B, Rizzo S, Obici L. Ocular Involvement in Hereditary Amyloidosis. Genes (Basel) 2021; 12:955. [PMID: 34206500 PMCID: PMC8304974 DOI: 10.3390/genes12070955] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/06/2021] [Accepted: 06/18/2021] [Indexed: 12/27/2022] Open
Abstract
The term amyloidosis describes a group of rare diseases caused by protein conformation abnormalities resulting in extracellular deposition and accumulation of insoluble fibrillar aggregates. So far, 36 amyloid precursor proteins have been identified, and each one is responsible for a specific disease entity. Transthyretin amyloidosis (ATTRv) is one of the most common forms of systemic and ocular amyloidosis, due to the deposition of transthyretin (TTR), which is a transport protein mainly synthesized in the liver but also in the retinal pigment epithelial cells. ATTRv amyloidosis may be misdiagnosed with several other conditions, resulting in a significant diagnostic delay. Gelsolin and keratoepithelin are other proteins that, when mutated, are responsible for a systemic amyloid disease with significant ocular manifestations that not infrequently appear before systemic involvement. The main signs of ocular amyloid deposition are in the cornea, irido-corneal angle and vitreous, causing complications related to vasculopathy and neuropathy at the local level. This review aims at describing the main biochemical, histopathological and clinical features of systemic amyloidosis associated with eye involvement, with particular emphasis on the inherited forms. We discuss currently available treatments, focusing on ocular involvement and specific ophthalmologic management and highlighting the importance of a prompt treatment for the potential sight-threatening complications derived from amyloid deposition in ocular tissues.
Collapse
Affiliation(s)
- Angelo Maria Minnella
- Dipartimento Universitario Testa-Collo Rgani di Senso, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.M.M.); (M.M.); (B.F.); (S.R.)
- UOC Oculistica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy
| | - Roberta Rissotto
- Eye Clinic, San Paolo Hospital, University of Milan, 20142 Milan, Italy
| | - Elena Antoniazzi
- Institute of Ophthalmolgy, IRCCS Fondazione Policlinico San Matteo, 27100 Pavia, Italy;
| | - Marco Di Girolamo
- Former Director “Presidio Ambulatoriale per le Amiloidosi Sistemiche” Fatebenefratelli “San Giovanni Calibita” Hospital, 00135 Rome, Italy;
| | - Marco Luigetti
- Fondazione Policlinico A. Gemelli IRCCS. UOC Neurologia, 00168 Rome, Italy;
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Martina Maceroni
- Dipartimento Universitario Testa-Collo Rgani di Senso, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.M.M.); (M.M.); (B.F.); (S.R.)
| | - Daniela Bacherini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Eye Clinic, University of Florence, 50139 Florence, Italy;
| | - Benedetto Falsini
- Dipartimento Universitario Testa-Collo Rgani di Senso, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.M.M.); (M.M.); (B.F.); (S.R.)
- UOC Oculistica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy
| | - Stanislao Rizzo
- Dipartimento Universitario Testa-Collo Rgani di Senso, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.M.M.); (M.M.); (B.F.); (S.R.)
- UOC Oculistica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy
| | - Laura Obici
- Amyloidosis Research and Treatment Centre, IRCCS Fondazione Policlinico San Matteo, 27100 Pavia, Italy;
| |
Collapse
|
15
|
Obici L, Adams D. Acquired and inherited amyloidosis: Knowledge driving patients' care. J Peripher Nerv Syst 2021; 25:85-101. [PMID: 32378274 DOI: 10.1111/jns.12381] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022]
Abstract
Until recently, systemic amyloidoses were regarded as ineluctably disabling and life-threatening diseases. However, this field has witnessed major advances in the last decade, with significant improvements in therapeutic options and in the availability of accurate and non-invasive diagnostic tools. Outstanding progress includes unprecedented hematological response rates provided by risk-adapted regimens in light chain (AL) amyloidosis and the approval of innovative pharmacological agents for both hereditary and wild-type transthyretin amyloidosis (ATTR). Moreover, the incidence of secondary (AA) amyloidosis has continuously reduced, reflecting advances in therapeutics and overall management of several chronic inflammatory diseases. The identification and validation of novel therapeutic targets has grounded on a better knowledge of key molecular events underlying protein misfolding and aggregation and on the increasing availability of diagnostic, prognostic and predictive markers of organ damage and response to treatment. In this review, we focus on these recent advancements and discuss how they are translating into improved outcomes. Neurological involvement dominates the clinical picture in transthyretin and gelsolin inherited amyloidosis and has a significant impact on disease course and management in all patients. Neurologists, therefore, play a major role in improving patients' journey to diagnosis and in providing early access to treatment in order to prevent significant disability and extend survival.
Collapse
Affiliation(s)
- Laura Obici
- Amyloidosis Research and Treatment Centre, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - David Adams
- National Reference Center for Familial Amyloid Polyneuropathy and Other Rare Neuropathies, APHP, Université Paris Saclay, INSERM U1195, Le Kremlin Bicêtre, France
| |
Collapse
|
16
|
Mullany S, Souzeau E, Klebe S, Zhou T, Knight LSW, Qassim A, Berry EC, Marshall H, Hussey M, Dubowsky A, Breen J, Hassall MM, Mills RA, Craig JE, Siggs OM. A novel GSN variant outside the G2 calcium-binding domain associated with Amyloidosis of the Finnish type. Hum Mutat 2021; 42:818-826. [PMID: 33973672 DOI: 10.1002/humu.24214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022]
Abstract
Gelsolin (GSN) variants have been implicated in amyloidosis of the Finnish type. This case series reports a novel GSN:c.1477T>C,p.(Trp493Arg) variant in a family with ocular and systemic features consistent with Finnish Amyloidosis. Exome sequencing performed on affected individuals from two families manifesting cutis laxa and polymorphic corneal stromal opacities demonstrated the classic GSN:c.654G>A,p.Asp214Asn variant in single affected individual from one family, and a previously undocumented GSN:c.1477T>C variant in three affected first-degree relatives from a separate family. Immunohistochemical studies on corneal tissue from a proband with the c.1477T>C variant identified gelsolin protein within histologically defined corneal amyloid deposits. This study reports a novel association between the predicted pathogenic GSN:c.1477T>C variant and amyloidosis of the Finnish type, and is the first to provide functional evidence of a pathological GSN variant at a locus distant to the critical G2 calcium-binding region, resulting in the phenotype of amyloidosis of the Finnish type.
Collapse
Affiliation(s)
- Sean Mullany
- Flinders Department of Ophthalmology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Emmanuelle Souzeau
- Flinders Department of Ophthalmology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Sonja Klebe
- Department of Pathology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia.,Department of Anatomical Pathology, SA Pathology, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Tiger Zhou
- Flinders Department of Ophthalmology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Lachlan S W Knight
- Flinders Department of Ophthalmology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Ayub Qassim
- Flinders Department of Ophthalmology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Ella C Berry
- Flinders Department of Ophthalmology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Henry Marshall
- Flinders Department of Ophthalmology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Matthew Hussey
- Department of Anatomical Pathology, SA Pathology, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Andrew Dubowsky
- Department of Anatomical Pathology, SA Pathology, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - James Breen
- SAHMRI Bioinformatics Core, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Mark M Hassall
- Flinders Department of Ophthalmology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Richard A Mills
- Flinders Department of Ophthalmology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Jamie E Craig
- Flinders Department of Ophthalmology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Owen M Siggs
- Flinders Department of Ophthalmology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
17
|
Cheong EN, Paik W, Choi YC, Lim YM, Kim H, Shim WH, Park HJ. Clinical Features and Brain MRI Findings in Korean Patients with AGel Amyloidosis. Yonsei Med J 2021; 62:431-438. [PMID: 33908214 PMCID: PMC8084699 DOI: 10.3349/ymj.2021.62.5.431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE AGel amyloidosis is systemic amyloidosis caused by pathogenic variants in the GSN gene. In this study, we sought to characterize the clinical and brain magnetic resonance image (MRI) features of Korean patients with AGel amyloidosis. MATERIALS AND METHODS We examined 13 patients with AGel amyloidosis from three unrelated families. Brain MRIs were performed in eight patients and eight age- and sex-matched healthy controls. Therein, we analyzed gray and white matter content using voxel-based morphometry (VBM), tract-based spatial statistics (TBSS), and FreeSurfer. RESULTS The median age at examination was 73 (interquartile range: 64-76) years. The median age at onset of cutis laxa was 20 (interquartile range: 15-30) years. All patients over that age of 60 years had dysarthria, cutis laxa, dysphagia, and facial palsy. Two patients in their 30s had only mild cutis laxa. The median age at dysarthria onset was 66 (interquartile range: 63.5-70) years. Ophthalmoparesis was observed in three patients. No patient presented with muscle weakness of the limbs. Axial fluid-attenuated inversion recovery images of the brain showed no significant differences between the patient and control groups. Also, analysis of VBM, TBSS, and FreeSurfer revealed no significant differences in cortical thickness between patients and healthy controls at the corrected significance level. CONCLUSION Our study outlines the clinical manifestations of prominent bulbar palsy and early-onset cutis laxa in 13 Korean patients with AGel amyloidosis and confirms that AGel amyloidosis mainly affects the peripheral nervous system rather than the central nervous system.
Collapse
Affiliation(s)
- E Nae Cheong
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Medical Science and Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Wooyul Paik
- Department of Radiology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Korea
| | - Young Chul Choi
- Department of Neurology, Rehabilitation Institute of Neuromuscular Disease, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Min Lim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyunjin Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Woo Hyun Shim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Medical Science and Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Hyung Jun Park
- Department of Neurology, Rehabilitation Institute of Neuromuscular Disease, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Department of Neurology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Korea.
| |
Collapse
|
18
|
Yahya F, Kesenheimer E, Decard BF, Sinnreich M, Wand D, Goldblum D. Gelsolin-Amyloidosis - An Exceptional Cause of Blepharochalasis. Klin Monbl Augenheilkd 2021; 238:349-352. [PMID: 33930908 DOI: 10.1055/a-1386-3051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Faady Yahya
- Eye Clinic, University Hospital Basel Eye Clinic, Basel, Switzerland
| | - Eva Kesenheimer
- Departments of Medicine, Neurologic Clinic and Policlinic, University of Basel, Basel, Switzerland
| | - Bernhard F Decard
- Departments of Medicine, Neurologic Clinic and Policlinic, University of Basel, Basel, Switzerland
| | - Michael Sinnreich
- Departments of Medicine, Neurologic Clinic and Policlinic, University of Basel, Basel, Switzerland
| | - Dorothea Wand
- Department of Medical Genetics and Pathology, University of Basel, Basel, Switzerland
| | - David Goldblum
- Eye Clinic, University Hospital Basel Eye Clinic, Basel, Switzerland
| |
Collapse
|
19
|
Muchtar E, Dispenzieri A, Magen H, Grogan M, Mauermann M, McPhail ED, Kurtin PJ, Leung N, Buadi FK, Dingli D, Kumar SK, Gertz MA. Systemic amyloidosis from A (AA) to T (ATTR): a review. J Intern Med 2021; 289:268-292. [PMID: 32929754 DOI: 10.1111/joim.13169] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/15/2020] [Indexed: 01/09/2023]
Abstract
Systemic amyloidosis is a rare protein misfolding and deposition disorder leading to progressive organ failure. There are over 15 types of systemic amyloidosis, each caused by a different precursor protein which promotes amyloid formation and tissue deposition. Amyloidosis can be acquired or hereditary and can affect various organs, including the heart, kidneys, liver, nerves, gastrointestinal tract, lungs, muscles, skin and soft tissues. Symptoms are usually insidious and nonspecific resulting in diagnostic delay. The field of amyloidosis has seen significant improvements over the past decade in diagnostic accuracy, prognosis prediction and management. The advent of mass spectrometry-based shotgun proteomics has revolutionized amyloid typing and has led to the discovery of new amyloid types. Accurate typing of the precursor protein is of paramount importance as the type dictates a specific management approach. In this article, we review each type of systemic amyloidosis to provide the practitioner with practical tools to improve diagnosis and management of these rare disorders.
Collapse
Affiliation(s)
- E Muchtar
- From the, Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - A Dispenzieri
- From the, Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - H Magen
- Hematology Institute, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - M Grogan
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - M Mauermann
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - E D McPhail
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - P J Kurtin
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - N Leung
- From the, Division of Hematology, Mayo Clinic, Rochester, MN, USA.,Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - F K Buadi
- From the, Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - D Dingli
- From the, Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - S K Kumar
- From the, Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - M A Gertz
- From the, Division of Hematology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
20
|
Shah R, Amador C, Tormanen K, Ghiam S, Saghizadeh M, Arumugaswami V, Kumar A, Kramerov AA, Ljubimov AV. Systemic diseases and the cornea. Exp Eye Res 2021; 204:108455. [PMID: 33485845 PMCID: PMC7946758 DOI: 10.1016/j.exer.2021.108455] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/08/2023]
Abstract
There is a number of systemic diseases affecting the cornea. These include endocrine disorders (diabetes, Graves' disease, Addison's disease, hyperparathyroidism), infections with viruses (SARS-CoV-2, herpes simplex, varicella zoster, HTLV-1, Epstein-Barr virus) and bacteria (tuberculosis, syphilis and Pseudomonas aeruginosa), autoimmune and inflammatory diseases (rheumatoid arthritis, Sjögren's syndrome, lupus erythematosus, gout, atopic and vernal keratoconjunctivitis, multiple sclerosis, granulomatosis with polyangiitis, sarcoidosis, Cogan's syndrome, immunobullous diseases), corneal deposit disorders (Wilson's disease, cystinosis, Fabry disease, Meretoja's syndrome, mucopolysaccharidosis, hyperlipoproteinemia), and genetic disorders (aniridia, Ehlers-Danlos syndromes, Marfan syndrome). Corneal manifestations often provide an insight to underlying systemic diseases and can act as the first indicator of an undiagnosed systemic condition. Routine eye exams can bring attention to potentially life-threatening illnesses. In this review, we provide a fairly detailed overview of the pathologic changes in the cornea described in various systemic diseases and also discuss underlying molecular mechanisms, as well as current and emerging treatments.
Collapse
Affiliation(s)
- Ruchi Shah
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Cynthia Amador
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kati Tormanen
- Center for Neurobiology and Vaccine Development, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sean Ghiam
- Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Mehrnoosh Saghizadeh
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Vaithi Arumugaswami
- Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI, USA
| | - Andrei A Kramerov
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
21
|
Alafaleq M, Knoeri J, Boutboul S, Borderie V. Contact lens induced bacterial keratitis in LCD II: Management and multimodal imaging: a case report and review of literature. Eur J Ophthalmol 2020; 31:2313-2318. [PMID: 33124478 DOI: 10.1177/1120672120968724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE To describe the management and multimodal imaging of lattice corneal dystrophy type II (LCD-II) complicated by an infectious keratitis due to a bandage contact lens and to review current literature. OBSERVATION A 50-year-old female was diagnosed with Meretoja's Syndrome by the triad of facial palsy, loose skin (cutix laxa), and stromal corneal dystrophy. At slit lamp, bilateral lattice corneal dystrophy (LCD) was characterized by multiple linear refractile lines and subepithelial fibrosis along with Neurotrophic keratitis Mackie grade I. Findings of anterior segment optical coherence tomography (AS-OCT) were epithelial irregularity, subepithelial fibrosis, hyperreflectivity on anterior stromal layer, lobulated stromal surface. In vivo confocal microscopy (IVCM) showed hyperreflected deposits on the basal and Bowman layers, visible keratocytes; fine lines and streaks between corneal lamella. The sub-basal nerve plexus and the stromal nerves were no longer visible. She presented in emergency with a left red eye. A severe bacterial keratitis was diagnosed as a complication of a bandage contact lens used to treat recurrent epithelial erosion. Corneal anesthesia was complete. Corneal neovascularization was evident 10 weeks later and topical bevacizumab (5 mg/ml) was introduced twice daily. Partial regression of deep stromal vessels was noticed at 3 months. CONCLUSION In Meretoja's syndrome, neurotrophic keratopathy secondary to polyneuropathy due to systemic amyloid deposits is present in the advanced stages, promotes recurrent corneal erosions. Corneal sensitivity test, AS-OCT and IVCM are crucial in the diagnosis behind any recurrent corneal erosion. The use of bandage contact lens should be avoided in Meretoja's syndrome to prevent a possible infectious keratitis.
Collapse
Affiliation(s)
- Munirah Alafaleq
- Centre hospitalier national d'ophtalmologie des Quinze-Vingts, GRC32 Sorbonne Université, Paris, France
| | - Juliette Knoeri
- Centre hospitalier national d'ophtalmologie des Quinze-Vingts, GRC32 Sorbonne Université, Paris, France
| | - Sandrine Boutboul
- Centre hospitalier national d'ophtalmologie des Quinze-Vingts, GRC32 Sorbonne Université, Paris, France
| | - Vincent Borderie
- Centre hospitalier national d'ophtalmologie des Quinze-Vingts, GRC32 Sorbonne Université, Paris, France.,Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
22
|
Jiang Y, Jiao B, Liao X, Xiao X, Liu X, Shen L. Analyses Mutations in GSN, CST3, TTR, and ITM2B Genes in Chinese Patients With Alzheimer's Disease. Front Aging Neurosci 2020; 12:581524. [PMID: 33192475 PMCID: PMC7533594 DOI: 10.3389/fnagi.2020.581524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022] Open
Abstract
Amyloid protein deposition is a common mechanism of hereditary amyloidosis (HA) and Alzheimer’s disease (AD). Mutations of gelsolin (GSN), cystatin C (CST3), transthyretin (TTR), and integral membrane protein 2B (ITM2B) genes can lead to HA. But the relationship is unclear between these genes and AD. Genes targeted sequencing (GTS), including GSN, CST3, TTR, and ITM2B, was performed in a total of 636 patients with clinical AD and 365 normal controls from China. As a result, according to American College of Medical Genetics and Genomics (ACMG) guidelines, two novel likely pathogenic frame-shift mutations (GSN:c.1036delA:p.K346fs and GSN:c.8_35del:p.P3fs) were detected in five patients with AD, whose initial symptom was memory decline, accompanied with psychological and behavioral abnormalities later. Interestingly, the patient with K346fs mutation, presented cerebral β-amyloid protein deposition, had an early onset (48 years) and experienced rapid progression, while the other four patients with P3fs mutation had a late onset [(Mean ± SD): 69.50 ± 5.20 years] and a long course of illness [(Mean ± SD): 9.24 ± 4.86 years]. Besides, we also discovered 17 variants of uncertain significance (VUS) in these four genes. To our knowledge, we are the first to report AD phenotype with GSN mutations in patients with AD in the Chinese cohort. Although mutations in the GSN gene are rare, it may explain a small portion of clinically diagnosed AD.
Collapse
Affiliation(s)
- Yaling Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Xinxin Liao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Xuewen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xixi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
23
|
|
24
|
Schmidt EK, Mustonen T, Kiuru-Enari S, Kivelä TT, Atula S. Finnish gelsolin amyloidosis causes significant disease burden but does not affect survival: FIN-GAR phase II study. Orphanet J Rare Dis 2020; 15:19. [PMID: 31952544 PMCID: PMC6969418 DOI: 10.1186/s13023-020-1300-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/09/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Hereditary gelsolin (AGel) amyloidosis is an autosomal dominantly inherited systemic amyloidosis that manifests with the characteristic triad of progressive ophthalmological, neurological and dermatological signs and symptoms. The National Finnish Gelsolin Amyloidosis Registry (FIN-GAR) was founded in 2013 to collect clinical data on patients with AGel amyloidosis, including altogether approximately one third of the Finnish patients. We aim to deepen knowledge on the disease burden and life span of the patients using data from the updated FIN-GAR registry. We sent an updated questionnaire concerning the symptoms and signs, symptomatic treatments and subjective perception on disease progression to 240 members of the Finnish Amyloidosis Association (SAMY). We analyzed the lifespan of 478 patients using the relative survival (RS) framework. RESULTS The updated FIN-GAR registry includes 261 patients. Symptoms and signs corresponding to the classical triad of ophthalmological (dry eyes in 93%; corneal lattice amyloidosis in 89%), neurological (numbness, tingling and other paresthesias in 75%; facial paresis in 67%), and dermatological (drooping eyelids in 86%; cutis laxa in 84%) manifestations were highly prevalent. Cardiac arrhythmias were reported by 15% of the patients and 5% had a cardiac pacemaker installed. Proteinuria was reported by 13% and renal failure by 5% of the patients. A total of 65% of the patients had undergone a skin or soft tissue surgery, 26% carpal tunnel surgery and 24% at least unilateral cataract surgery. As regards life span, relative survival estimates exceeded 1 for males and females until the age group of 70-74 years, for which it was 0.96. CONCLUSIONS AGel amyloidosis causes a wide variety of ophthalmological, neurological, cutaneous, and oral symptoms that together with repeated surgeries cause a clinically significant disease burden. Severe renal and cardiac manifestations are rare as compared to other systemic amyloidoses, explaining in part the finding that AGel amyloidosis does not shorten the life span of the patients at least for the first 75 years.
Collapse
Affiliation(s)
- Eeva-Kaisa Schmidt
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, HYKS, Tornisairaala, Neupkl, Haartmaninkatu 4, 00029 HUS, Helsinki, Finland.
| | - Tuuli Mustonen
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, HYKS, Tornisairaala, Neupkl, Haartmaninkatu 4, 00029 HUS, Helsinki, Finland
| | - Sari Kiuru-Enari
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, HYKS, Tornisairaala, Neupkl, Haartmaninkatu 4, 00029 HUS, Helsinki, Finland
| | - Tero T Kivelä
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sari Atula
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, HYKS, Tornisairaala, Neupkl, Haartmaninkatu 4, 00029 HUS, Helsinki, Finland
| |
Collapse
|
25
|
Dammacco R, Merlini G, Lisch W, Kivelä TT, Giancipoli E, Vacca A, Dammacco F. Amyloidosis and Ocular Involvement: an Overview. Semin Ophthalmol 2019; 35:7-26. [PMID: 31829761 DOI: 10.1080/08820538.2019.1687738] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purpose: To describe the ophthalmic manifestations of amyloidosis and the corresponding therapeutic measures.Methods: The 178 patients included in the study had different types of amyloidosis, diagnosed at a single internal medicine institution (Bari, Italy). To provide a comprehensive review of the types of amyloidosis that can be associated with ocular involvement, the images and clinical descriptions of patients with amyloidosis structurally related to gelsolin, keratoepithelin and lactoferrin were obtained in collaborations with the ophthalmology departments of hospitals in Mainz (Germany) and Helsinki (Finland).Results: Overall, ocular morbidity was detected in 41 of the 178 patients with amyloidosis (23%). AL amyloidosis was diagnosed in 18 patients with systemic disease, 3 with multiple myeloma, and 11 with localized amyloidosis. AA amyloidosis was detected in 2 patients with rheumatoid arthritis and 3 with Behçet syndrome, and transthyretin amyloidosis in 4 patients. The treatment of AL amyloidosis is based on chemotherapy to suppress the production of amyloidogenic L-chains and on surgical excision of orbital or conjunctival masses. AA amyloidosis is managed by targeting the underlying condition. Vitreous opacities and additional findings of ocular involvement in patients with transthyretin amyloidosis indicate the need for pars plana vitrectomy. Gelsolin amyloidosis, characterized by lattice corneal amyloidosis and polyneuropathy, results in recurrent keratitis and corneal scarring, such that keratoplasty is inevitable. In patients with lattice corneal dystrophies associated with amyloid deposits of keratoepithelin fragments, corneal transparency is compromised by deposits of congophilic material in the subepithelial layer and deep corneal stroma. Patients with established corneal opacities are treated by corneal transplantation, but the prognosis is poor because recurrent corneal deposits are possible after surgery. In patients with gelatinous drop-like dystrophy, the amyloid fibrils that accumulate beneath the corneal epithelium consist of lactoferrin and can severely impair visual acuity. Keratoplasty and its variants are performed for visual rehabilitation.Conclusion: A routine ophthalmic follow-up is recommended for all patients with established or suspected amyloidosis, independent of the biochemical type of the amyloid. Close collaboration between the ophthalmologist and the internist will facilitate a more precise diagnosis of ocular involvement in amyloidosis and allow the multidisciplinary management of these patients.Abbreviations: CD: corneal dystrophy; CLA: corneal lattice amyloidosis; CNS: central nervous system; CT: computed tomography; FAP: familial amyloidotic polyneuropathy; GDLCD: gelatinous drop-like corneal dystrophy; GLN: gelsolin; LCD: lattice corneal dystrophy; MRI: magnetic resonance imaging; OLT: orthotopic liver transplantation; TEM: transmission electron microscopy; TGFBI: transforming growth factor β induced; TTR: transthyretin.
Collapse
Affiliation(s)
- Rosanna Dammacco
- Department of Ophthalmology and Neuroscience, University of Bari "Aldo Moro", Medical School, Bari, Italy
| | - Giampaolo Merlini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Walter Lisch
- Department of Ophthalmology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tero T Kivelä
- Department of Ophthalmology, University of Helsinki, Helsinki, Finland.,Helsinki University Central Hospital, Helsinki, Finland
| | - Ermete Giancipoli
- Department of Biomedical Sciences, Ophthalmology Unit, University of Sassari, Sassari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Medical School, Bari, Italy
| | - Franco Dammacco
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Medical School, Bari, Italy
| |
Collapse
|
26
|
Pande M, Srivastava R. Molecular and clinical insights into protein misfolding and associated amyloidosis. Eur J Med Chem 2019; 184:111753. [PMID: 31622853 DOI: 10.1016/j.ejmech.2019.111753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022]
Abstract
The misfolding of normally soluble proteins causes their aggregation and deposition in the tissues which disrupts the normal structure and function of the corresponding organs. The proteins with high β-sheet contents are more prone to form amyloids as they exhibit high propensity of self-aggregation. The self aggregated misfolded proteins act as template for further aggregation that leads to formation of protofilaments and eventually amyloid fibrils. More than 30 different types of proteins are known to be associated with amyloidosis related diseases. Several aspects of the amyloidogenic behavior of proteins remain elusive. The exact reason that causes misfolding of the protein and its association into amyloid fibrils is not known. These misfolded intermediates surpass the over engaged quality control system of the cell which clears the misfolded intermediates. This promotes the self-aggregation, accumulation and deposition of these misfolded species in the form of amyloids in the different parts of the body. The amyloid deposition can be localized as in Alzheimer disease or systemic as reported in most of the amyloidosis. The amyloidosis can be of acquired type or familial. The current review aims at bringing together recent updates and comprehensive information about protein amyloidosis and associated diseases at one place.
Collapse
Affiliation(s)
- Monu Pande
- Department of Biochemistry, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ragini Srivastava
- Department of Biochemistry, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
27
|
Abstract
Objectives: Previous clinical studies have shown frequent cardiac symptoms in patients with hereditary gelsolin (AGel) amyloidosis, possibly related to amyloid deposition in the heart and other internal organs. Previous studies on internal organ amyloid deposition in AGel amyloidosis have been based on small patient series. Methods: Paraffin-embedded tissue sections from 25 autopsied individuals (age at death 44.4-88.6 years) with AGel amyloidosis were stained with HE, Congo red and Herovici stains and immunohistochemistry against the low molecular weight gelsolin fraction was performed. The amount of amyloid was estimated semi-quantitatively. Results: AGel-based amyloid deposits were found in the myocardium and cardiac blood vessels in every patient. The deposits were mainly small and co-localized with regions with excess fibrosis in the myocardium. The lungs were positive for amyloid in 79%, renal parenchyma in 54% and renal blood vessels in 71% of the cases. The amount of myocardial, renal and hepatic amyloid correlated with age at death of the patients. Conclusions: We show the constant presence of AGel amyloid in the hearts of patients with AGel amyloidosis. Although the deposits were mainly small, the co-localization of amyloid with fibrosis may amplify the effect of pure amyloid deposition, possibly leading to clinical signs and symptoms.
Collapse
Affiliation(s)
- Eeva-Kaisa Schmidt
- a Department of Neurosciences, Faculty of Medicine, University of Helsinki , Helsinki , Finland
| | - Sari Kiuru-Enari
- a Department of Neurosciences, Faculty of Medicine, University of Helsinki , Helsinki , Finland
| | - Sari Atula
- a Department of Neurosciences, Faculty of Medicine, University of Helsinki , Helsinki , Finland.,b Department of Neurology, Helsinki University Hospital , Helsinki , Finland
| | - Maarit Tanskanen
- c Department of Pathology, HUSLAB, Helsinki University Hospital , Helsinki , Finland.,d Department of Pathology, Faculty of Medicine, University of Helsinki , Helsinki , Finland
| |
Collapse
|
28
|
Kessel K, Mattila J, Linder N, Kivelä T, Lundin J. Deep Learning Algorithms for Corneal Amyloid Deposition Quantitation in Familial Amyloidosis. Ocul Oncol Pathol 2019; 6:58-65. [PMID: 32002407 DOI: 10.1159/000500896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/13/2019] [Indexed: 12/20/2022] Open
Abstract
Objectives The aim of this study was to train and validate deep learning algorithms to quantitate relative amyloid deposition (RAD; mean amyloid deposited area per stromal area) in corneal sections from patients with familial amyloidosis, Finnish (FAF), and assess its relationship with visual acuity. Methods Corneal specimens were obtained from 42 patients undergoing penetrating keratoplasty, stained with Congo red, and digitally scanned. Areas of amyloid deposits and areas of stromal tissue were labeled on a pixel level for training and validation. The algorithms were used to quantify RAD in each cornea, and the association of RAD with visual acuity was assessed. Results In the validation of the amyloid area classification, sensitivity was 86%, specificity 92%, and F-score 81. For corneal stromal area classification, sensitivity was 74%, specificity 82%, and F-score 73. There was insufficient evidence to demonstrate correlation (Spearman's rank correlation, -0.264, p = 0.091) between RAD and visual acuity (logMAR). Conclusions Deep learning algorithms can achieve a high sensitivity and specificity in pixel-level classification of amyloid and corneal stromal area. Further modeling and development of algorithms to assess earlier stages of deposition from clinical images is necessary to better assess the correlation between amyloid deposition and visual acuity. The method might be applied to corneal dystrophies as well.
Collapse
Affiliation(s)
- Klaus Kessel
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jaakko Mattila
- Cornea Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Nina Linder
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.,Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| | - Tero Kivelä
- Ophthalmic Pathology Laboratory, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Ophthalmic Pathology, Hospital District of Helsinki and Uusimaa Laboratory (HUSLAB), Helsinki, Finland
| | - Johan Lundin
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.,Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
29
|
Hereditary transthyretin amyloidosis: a model of medical progress for a fatal disease. Nat Rev Neurol 2019; 15:387-404. [PMID: 31209302 DOI: 10.1038/s41582-019-0210-4] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2019] [Indexed: 02/06/2023]
Abstract
Hereditary amyloidogenic transthyretin (ATTRv) amyloidosis with polyneuropathy (also known as familial amyloid polyneuropathy) is a condition with adult onset caused by mutation of transthyretin (TTR) and characterized by extracellular deposition of amyloid and destruction of the somatic and autonomic PNS, leading to loss of autonomy and death. This disease represents a model of the scientific and medical progress of the past 30 years. ATTRv amyloidosis is a worldwide disease with broad genetic and phenotypic heterogeneity that presents a diagnostic challenge for neurologists. The pathophysiology of the neuropathy is increasingly understood and includes instability and proteolysis of mutant TTR leading to deposition of amyloid with variable lengths of fibrils, microangiopathy and involvement of Schwann cells. Wild-type TTR is amyloidogenic in older individuals. The main symptoms are neuropathic, but the disease is systemic; neurologists should be aware of cardiac, eye and kidney involvement that justify a multidisciplinary approach to management. Infiltrative cardiomyopathy is usually latent but present in half of patients. Disease-modifying therapeutics that have been developed include liver transplantation and TTR stabilizers, both of which can slow progression of the disease and increase survival in the early stages. Most recently, gene-silencing drugs have been used to control disease in the more advanced stages and produce some degree of improvement.
Collapse
|
30
|
Myocardial tissue characterization in patients with hereditary gelsolin (AGel) amyloidosis using novel cardiovascular magnetic resonance techniques. Int J Cardiovasc Imaging 2019; 35:351-358. [PMID: 30848402 PMCID: PMC6428907 DOI: 10.1007/s10554-019-01570-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/21/2019] [Indexed: 02/03/2023]
Abstract
Gelsolin (AGel) amyloidosis is a hereditary condition with common neurological effects. Myocardial involvement, especially strain, T1, or extracellular volume (ECV), in this disease has not been investigated before. Local myocardial effects and possible amyloid accumulation were the targets of interest in this study. Fifty patients with AGel amyloidosis were enrolled in the study. All patients underwent cardiovascular magnetic resonance imaging, including cine imaging, T1 mapping, tagging, and late gadolinium enhancement (LGE) imaging at 1.5 T. Results for volumetry, myocardial feature-tracking strain, rotation, torsion, native T1, ECV, and LGE were investigated. The population mean native T1 values in different segments of the left ventricle (LV) varied between 1003 and 1080 ms. Myocardial mean T1 was 1031 ± 37 ms. T1 was highest in the basal plane of the LV (1055 ± 40 ms), similarly to ECV (30.0% ± 4.4%). ECV correlated with native T1 in all LV segments (p < 0.005). Basal LGE was detected in 76% of patients, and mid-ventricular LGE in 32%. LV longitudinal strain was impaired (- 17.4% ± 2.6%), significantly decreasing apical rotation (p = 0.018) and concurrently myocardial torsion (p = 0.005). LV longitudinal strain correlated with mean T1 and ECV of different LV planes (p < 0.04; basal p < 0.01). Myocardial involvement in AGel amyloidosis is significant, but the effects are local, focusing on the basal plane of the LV.
Collapse
|
31
|
Feng X, Zhu H, Zhao T, Hou Y, Liu J. A new heterozygous G duplicate in exon1 (c.100dupG) of gelsolin gene causes Finnish gelsolin amyloidosis in a Chinese family. Brain Behav 2018; 8:e01151. [PMID: 30417985 PMCID: PMC6305910 DOI: 10.1002/brb3.1151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/11/2018] [Accepted: 10/05/2018] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES In this study, we report a case of Finnish gelsolin amyloidosis (FGA) in a Chinese family. METHODS The proband presented with a range of clinical symptoms that included epileptic seizures and multiple lesions in the brain. Whole exome sequencing of the Gelsolin (GSN) gene was performed, and the GSN mutation was identified through comparison with the known human genome sequences using Genetic Testing Intelligent Execution System. RESULTS The GSN gene sequencing revealed that a heterozygous G duplicate in exon1 (c.100dupG) of the GSN gene, which caused a frameshift in GSN transcript translation in the proband, his mother and daughter, but his brother did not have it. CONCLUSION We presented a new autosomal dominant heterozygous G duplicate mutation in exon1 of GSN gene, leading to FGA in a Chinese family.
Collapse
Affiliation(s)
- Xuemin Feng
- Department of Neurology, The First Hospital, Jilin University, Jinlin, China
| | - Hui Zhu
- Department of Neurology, The First Hospital, Jilin University, Jinlin, China
| | - Teng Zhao
- Department of Neurology, The First Hospital, Jilin University, Jinlin, China
| | - Yanbo Hou
- Department of Internal Medicine, The center Hospital of Gongzhuling, Jilin, China
| | - Jingyao Liu
- Department of Neurology, The First Hospital, Jilin University, Jinlin, China
| |
Collapse
|
32
|
Bartoletti-Stella A, Baiardi S, Stanzani-Maserati M, Piras S, Caffarra P, Raggi A, Pantieri R, Baldassari S, Caporali L, Abu-Rumeileh S, Linarello S, Liguori R, Parchi P, Capellari S. Identification of rare genetic variants in Italian patients with dementia by targeted gene sequencing. Neurobiol Aging 2018. [DOI: 10.1016/j.neurobiolaging.2018.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Oregel KZ, Shouse GP, Oster C, Martinez F, Wang J, Rosenzweig M, Deisch JK, Chen CS, Nagaraj G. Atypical Presentation of Gelsolin Amyloidosis in a Man of African Descent with a Novel Mutation in the Gelsolin Gene. AMERICAN JOURNAL OF CASE REPORTS 2018; 19:374-381. [PMID: 29599423 PMCID: PMC5890616 DOI: 10.12659/ajcr.907550] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Gelsolin amyloidosis is a very rare systemic disease presenting with a pathognomonic triad of corneal lattice dystrophy, cutis laxa, and polyneuropathy. The disease is mostly restricted to a Finnish population with known mutations (G654A, G654T) in exon 4 of the gelsolin gene. The mutations lead to errors in protein processing and folding, and ultimately leads to deposition of an amyloidogenic fragment in the extracellular space, causing the symptoms of disease. CASE REPORT We present a case of gelsolin amyloidosis in a male of African descent with an atypical clinical presentation including fevers, skin rash, polyneuropathy, and anemia. Gelsolin amyloidosis was diagnosed based on mass spectrometry of tissue samples. Importantly, a novel mutation in the gelsolin gene (C1375G) in exon 10 was found in this patient. His atypical presentation can possibly be attributed to the presence of a novel mutation in the gelsolin gene as the likely underlying cause of the syndrome. PCR primers were used to amplify the gelsolin gene from genomic DNA. Purified PCR products were then shipped to Eton Biosciences (San Diego, CA) for sequencing. CONCLUSIONS This study carries several important lessons relevant to the practice of medicine. First, the differential diagnosis for multisystem disease presentations should always include amyloidosis. Second, despite what has been uncovered about the molecular biology of disease, there is always more that can be discovered. Finally, further work to verify the link between this mutation and the clinical syndrome is still needed, as are effective treatments for this disease.
Collapse
Affiliation(s)
- Karlos Z Oregel
- Division of Hematology/Oncology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Geoffrey P Shouse
- Division of Hematology/Oncology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Cyrus Oster
- Division of Pathology, Harbor UCLA Medical Center, Los Angeles, CA, USA
| | | | - Jun Wang
- Division of Pathology and Laboratory Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Michael Rosenzweig
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, USA
| | - Jeremy K Deisch
- Division of Pathology and Laboratory Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Chien-Shing Chen
- Division of Hematology/Oncology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Gayathri Nagaraj
- Division of Hematology/Oncology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
34
|
Mustonen T, Schmidt EK, Valori M, Tienari PJ, Atula S, Kiuru-Enari S. Common origin of the gelsolin gene variant in 62 Finnish AGel amyloidosis families. Eur J Hum Genet 2018; 26:117-123. [PMID: 29167514 PMCID: PMC5838978 DOI: 10.1038/s41431-017-0026-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 10/03/2017] [Accepted: 10/10/2017] [Indexed: 12/23/2022] Open
Abstract
Finnish gelsolin amyloidosis (AGel amyloidosis) is an autosomal dominantly inherited systemic disorder with ophthalmologic, neurologic and dermatologic symptoms. Only the gelsolin (GSN) c.640G>A variant has been found in the Finnish patients thus far. The purpose of this study was to examine whether the Finnish patients have a common ancestor or whether multiple mutation events have occurred at c.640G, which is a known mutational hot spot. A total of 79 Finnish AGel amyloidosis families including 707 patients were first discovered by means of patient interviews, genealogic studies and civil and parish registers. From each family 1-2 index patients were chosen. Blood samples were available from 71 index patients representing 64 families. After quality control, SNP array genotype data were available from 68 patients from 62 nuclear families. All the index patients had the same c.640G>A variant (rs121909715). Genotyping was performed using the Illumina CoreExome SNP array. The homozygosity haplotype method was used to analyse shared haplotypes. Haplotype analysis identified a shared haplotype, common to all studied patients. This shared haplotype included 17 markers and was 361 kb in length (GRCh37 coordinates 9:124003326-124364349) and this level of haplotype sharing was found to occur highly unlikely by chance. This GSN haplotype ranked as the largest shared haplotype in the 68 patients in a genome-wide analysis of haplotype block lengths. These results provide strong evidence that although there is a known mutational hot spot at GSN c.640G, all of the studied 62 Finnish AGel amyloidosis families are genetically linked to a common ancestor.
Collapse
Affiliation(s)
- Tuuli Mustonen
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Miko Valori
- Molecular Neurology, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, Department of Neurology, Helsinki, Finland
| | - Pentti J Tienari
- Molecular Neurology, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, Department of Neurology, Helsinki, Finland
| | - Sari Atula
- Helsinki University Hospital, Department of Neurology, Helsinki, Finland
- Clinical Neurosciences, Neurology, University of Helsinki, Helsinki, Finland
| | - Sari Kiuru-Enari
- Clinical Neurosciences, Neurology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
35
|
Friedhofer H, Vassiliadis AH, Scarpa MB, Luitgards BF, Gemperli R. Meretoja Syndrome: General Considerations and Contributions of Plastic Surgery in Surgical Treatment. Aesthet Surg J 2017; 38:NP10-NP15. [PMID: 29149274 DOI: 10.1093/asj/sjx172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Henri Friedhofer
- Plastic Surgery Division, University of São Paulo Medical School, São Paulo, Brazil
| | | | | | | | - Rolf Gemperli
- Plastic Surgery Division, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
36
|
Abstract
Degenerative or hereditary corneal diseases are sometimes difficult to discriminate. Corneal dystrophies affect approximately 0.09 % of the population. They are identified by the IC3D classification based on their phenotype, genotype and evidence gathered for their diagnosis. Practically, the ophthalmologist manages functional symptoms, such as recurrent erosions, visual loss and amblyopia, photophobia, foreign body sensation, and sometimes pain and aesthetic concerns. Medical treatments consist of drops to promote healing, ointments, hyperosmotic agents and bandage contact lenses. Less invasive surgical treatments are used as second line therapy (phototherapeutic keratectomy, lamellar keratectomy). More invasive procedures may eventually be utilized (lamellar or penetrating keratoplasty). Anterior lamellar or endothelial keratoplasty are now preferred to penetrating keratoplasty, although the latter still remains the only possible option in some cases. Some rare dystrophies require coordinated and comprehensive medical care.
Collapse
Affiliation(s)
- J-L Bourges
- Université Paris Descartes, Sorbonne Paris Cité, 15, rue École-de-Médecine, 75006 Paris, France; Unité d'ophtalmologie de l'Hôtel-Dieu, service d'ophtalmologie, hôpitaux universitaires Paris Centre, Assistance publique-Hôpitaux de Paris, 1, place du Parvis-Notre-Dame, 75004 Paris, France; Équipe 17, Inserm UMRS 1138, centre de recherche des Cordeliers, 15, rue de l'École-de-Médecine, 75006 Paris, France.
| |
Collapse
|
37
|
Bourges JL. Corneal dystrophies. J Fr Ophtalmol 2017; 40:e177-e192. [PMID: 28583694 DOI: 10.1016/j.jfo.2017.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 10/19/2022]
Abstract
Degenerative or hereditary corneal diseases are sometimes difficult to discriminate. Corneal dystrophies affect approximately 0.09% of the population. They are identified by the IC3D classification based on their phenotype, genotype and evidence gathered for their diagnosis. In practice, the ophthalmologist manages functional symptoms such as recurrent erosions, visual loss and amblyopia, photophobia, foreign body sensation, and sometimes pain and aesthetic concerns. Medical treatments consist of drops to promote healing, ointments, hyperosmotic agents and bandage contact lenses. Less invasive surgical treatments are used as second line therapy (phototherapeutic keratectomy, lamellar keratectomy). More invasive procedures may eventually be utilized (lamellar or penetrating keratoplasty). Anterior lamellar or endothelial keratoplasty are now preferred to penetrating keratoplasty, although the latter still remains the only possible option in some cases. Some rare dystrophies require coordinated and comprehensive medical care.
Collapse
Affiliation(s)
- J-L Bourges
- Université Paris Descartes, Sorbonne Paris Cité, 15, rue de l'École-de-Médecine, 75006 Paris, France; Ophthalmology Unit, Ophthalmology Service, Hôtel-Dieu, Hôpitaux Universitaires Paris Centre, Assistance publique-Hôpitaux de Paris, 1, place du Parvis-Notre-Dame, 75004 Paris, France; Équipe 17, Inserm UMRS 1138, Centre de Recherche des Cordeliers, 15, rue de l'École-de-Médecine, 75006 Paris, France.
| |
Collapse
|
38
|
Sagnelli A, Piscosquito G, Di Bella D, Fadda L, Melzi L, Morico A, Ciano C, Taroni F, Facchetti D, Salsano E, Pareyson D. Hereditary gelsolin amyloidosis (HGA): a neglected cause of bilateral progressive or recurrent facial palsy. J Peripher Nerv Syst 2017; 22:59-63. [DOI: 10.1111/jns.12200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/08/2016] [Accepted: 12/11/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Anna Sagnelli
- Department of Clinical Neurosciences; IRCCS Foundation, “C. Besta” Neurological Institute; Milan Italy
| | - Giuseppe Piscosquito
- Department of Clinical Neurosciences; IRCCS Foundation, “C. Besta” Neurological Institute; Milan Italy
| | - Daniela Di Bella
- Department of Diagnostic and Applied Technology; IRCCS Foundation, “C. Besta” Neurological Institute; Milan Italy
| | - Laura Fadda
- Department of Neurology; University of Cagliari; Cagliari Italy
| | - Lisa Melzi
- Department of Ophthalmology, Neuro-ophthalmology Unit; Milan Italy
| | - Antonio Morico
- Department of Ophthalmology, Corneal Service; IRCCS Istituto Auxologico Italiano; Milan Italy
| | - Claudia Ciano
- Department of Diagnostic and Applied Technology; IRCCS Foundation, “C. Besta” Neurological Institute; Milan Italy
| | - Franco Taroni
- Department of Diagnostic and Applied Technology; IRCCS Foundation, “C. Besta” Neurological Institute; Milan Italy
| | - Dante Facchetti
- Department of Neurology; ASST Niguarda Hospital; Milan Italy
| | - Ettore Salsano
- Department of Clinical Neurosciences; IRCCS Foundation, “C. Besta” Neurological Institute; Milan Italy
| | - Davide Pareyson
- Department of Clinical Neurosciences; IRCCS Foundation, “C. Besta” Neurological Institute; Milan Italy
| |
Collapse
|
39
|
Sethi S, Dasari S, Amin MS, Vrana JA, Theis JD, Alexander MP, Kurtin PJ. Clinical, biopsy, and mass spectrometry findings of renal gelsolin amyloidosis. Kidney Int 2017; 91:964-971. [PMID: 28139293 DOI: 10.1016/j.kint.2016.11.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/01/2016] [Accepted: 11/21/2016] [Indexed: 01/13/2023]
Abstract
Gelsolin amyloidosis is a rare type of amyloidosis typically involving the cranial and peripheral nerves, but rarely the kidney. Here we report the clinical, kidney biopsy, and mass spectrometry findings in 12 cases of renal gelsolin amyloidosis. Of the 12 patients, five were men and seven were women with mean age at diagnosis of 63.8 years. Gelsolin amyloidosis was most common in Caucasians (six patients) and Asians (four patients), and included one each African-American and Hispanic patients. Nephrotic syndrome was the most common cause of biopsy, although most patients also had progressive loss of kidney function. Hematological and serological evaluation was negative in 11 patients, while one patient had a monoclonal gammopathy. The renal biopsy showed large amounts of pale eosinophilic Congo red-positive amyloid deposits typically restricted to the glomeruli. Immunofluorescence studies were negative for immunoglobulins in nine cases with three cases of smudgy glomerular staining for IgG. Electron microscopy showed mostly random arrangement of amyloid fibrils with focally parallel bundles/sheets of amyloid fibrils present. Laser microdissection of the amyloid deposits followed by mass spectrometry showed large spectra numbers for gelsolin, serum amyloid P component, and apolipoproteins E and AIV. Furthermore, the p. Asn211Lys gelsolin mutation on mass spectrometry studies was detected in three patients by mass spectrometry, which appears to represent a renal-limited form of gelsolin amyloidosis. Thus, renal gelsolin amyloidosis is seen in older patients, presents with nephrotic syndrome and progressive chronic kidney disease, and histologically exhibits glomerular involvement. The diagnosis can be confirmed by mass spectrometry studies.
Collapse
Affiliation(s)
- Sanjeev Sethi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA.
| | - Surendra Dasari
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Md Shahrier Amin
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Julie A Vrana
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jason D Theis
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mariam P Alexander
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Paul J Kurtin
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
40
|
Schmidt EK, Atula S, Tanskanen M, Nikoskinen T, Notkola IL, Kiuru-Enari S. Causes of death and life span in Finnish gelsolin amyloidosis. Ann Med 2016; 48:352-8. [PMID: 27137880 DOI: 10.1080/07853890.2016.1177197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Finnish type of hereditary gelsolin amyloidosis (AGel amyloidosis) is an autosomal dominant disorder. Until recently, there has only been little knowledge of fatal complications of the disease and its possible impact on the patients' life span. METHODS We identified 272 deceased patients based on patient interviews and genealogical data. After collecting their death certificates, we recorded the patients' underlying and immediate causes of death (CoD) and life span and compared them to the general Finnish population. We then calculated proportional mortality ratios (PMR), standardised for age and sex, for the CoDs. RESULTS The underlying CoD in 20% of the patients was AGel amyloidosis (PMR = 114.2; 95% CI: 85.6-149.4). The frequency of fatal cancers (10%) was significantly diminished (PMR = 0.47; 95% CI: 0.31-0.69). Renal complications were overrepresented as the immediate CoD in female patients (PMR = 2.82 95% CI: 1.13-5.81). The mean life span for male patients was 73.9 years (95% CI: 72.0-75.6) and 78.0 years for female patients (95% CI: 76.4-79.5) compared to 72.1 and 80.1 years for the general population. CONCLUSIONS Our results suggest that the disease increases the risk of fatal renal complications but does not substantially shorten the life span, possibly due to the significantly lower frequency of fatal cancers. Key Messages AGel amyloidosis may increase the risk of renal complications, especially among female patients. The frequency of fatal cancers is significantly lower. The patients' life span is comparable to that of the general population.
Collapse
Affiliation(s)
| | - Sari Atula
- b Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital , Helsinki , Finland
| | - Maarit Tanskanen
- c Department of Pathology , University of Helsinki and HUSLAB , Helsinki , Finland
| | - Tuuli Nikoskinen
- a Faculty of Medicine , University of Helsinki , Helsinki , Finland
| | | | - Sari Kiuru-Enari
- e Department of Clinical Neurosciences, Neurology , University of Helsinki , Helsinki , Finland
| |
Collapse
|
41
|
Patel DV. Systemic associations of corneal deposits: a review and photographic guide. Clin Exp Ophthalmol 2016; 45:14-23. [DOI: 10.1111/ceo.12790] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 06/01/2016] [Accepted: 06/07/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Dipika V Patel
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences; University of Auckland; Auckland New Zealand
| |
Collapse
|
42
|
Koskelainen S, Pihlamaa T, Suominen S, Zhao F, Salo T, Risteli J, Baumann M, Kalimo H, Kiuru-Enari S. Gelsolin amyloid angiopathy causes severe disruption of the arterial wall. APMIS 2016; 124:639-48. [PMID: 27198069 DOI: 10.1111/apm.12554] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/18/2016] [Indexed: 11/26/2022]
Abstract
Hereditary gelsolin amyloidosis (HGA) is a dominantly inherited systemic disease reported worldwide. HGA is characterized by ophthalmological, neurological, and dermatological manifestations. AGel amyloid accumulates at basal lamina of epithelial and muscle cells, thus amyloid angiopathy is encountered in nearly every organ. HGA patients have cardiovascular, hemorrhagic, and potentially vascularly induced neurological problems. To clarify pathomechanisms of AGel angiopathy, we performed histological, immunohistochemical, and electron microscopic analyses on facial temporal artery branches from 8 HGA patients and 13 control subjects. We demonstrate major pathological changes in arteries: disruption of the tunica media, disorganization of vascular smooth muscle cells, and accumulation of AGel fibrils in arterial walls, where they associate with the lamina elastica interna, which becomes fragmented and diminished. We also provide evidence of abnormal accumulation and localization of collagen types I and III and an increase of collagen type I degradation product in the tunica media. Vascular smooth muscle cells appear to be morphologically and semi-quantitatively normal, only their basal lamina is often thickened. In conclusion, angiopathy in HGA results in severe disruption of arterial walls, characterized by prominent AGel deposition, collagen derangement and severe elastolysis, and it may be responsible for several, particularly hemorrhagic, disease manifestations in HGA.
Collapse
Affiliation(s)
- Susanna Koskelainen
- Meilahti Clinical Proteomics Core Facility, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tiia Pihlamaa
- Department of Plastic Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Sinikka Suominen
- Department of Plastic Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Fang Zhao
- Advanced Microscopy Unit, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tuula Salo
- Research Group of Cancer and Translational Medicine, Medical Faculty, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Juha Risteli
- Research Group of Cancer and Translational Medicine, Medical Faculty, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Marc Baumann
- Meilahti Clinical Proteomics Core Facility, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hannu Kalimo
- Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Forensic Medicine, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sari Kiuru-Enari
- Clinical Neurosciences, Neurology, University of Helsinki, Helsinki, Finland
| |
Collapse
|