1
|
Rocha Y, Jaramillo A, Neumann J, Hacke K, Palou E, Torres J. Crossmatch assays in transplantation: Physical or virtual?: A review. Medicine (Baltimore) 2023; 102:e36527. [PMID: 38115324 PMCID: PMC10727546 DOI: 10.1097/md.0000000000036527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023] Open
Abstract
The value of the crossmatch test in assessing pretransplant immunological risk is vital for clinical decisions, ranging from the indication of the transplant to the guidance of induction protocols and treatment with immunosuppressants. The crossmatch tests in transplantation can be physical or virtual, each with its advantages and limitations. Currently, the virtual crossmatch stands out for its sensitivity and specificity compared to the physical tests. Additionally, the virtual crossmatch can be performed in less time, allowing for a reduction in cold ischemia time. It shows a good correlation with the results of physical tests and does not negatively impact graft survival. Proper communication between clinicians and the transplant immunology laboratory will lead to a deeper understanding of each patient's immunological profile, better donor-recipient selection, and improved graft survival.
Collapse
Affiliation(s)
| | - Andrés Jaramillo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, AZ
| | - Jorge Neumann
- Transplant Immunology Laboratory, Santa Casa Hospital, Porto Alegre, Brazil
| | - Katrin Hacke
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, AZ
| | - Eduard Palou
- Department of Immunology, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Juan Torres
- Department of Immunology, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Vieira DSC, Wopereis S, Walter LO, de Oliveira Silva L, Ribeiro AAB, Wilkens RS, Fernandes BL, Reis ML, Golfetto L, Santos-Silva MC. Analysis of Ki-67 expression in women with breast cancer: Comparative evaluation of two different methodologies by immunophenotyping. Pathol Res Pract 2021; 230:153750. [PMID: 34971844 DOI: 10.1016/j.prp.2021.153750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 10/19/2022]
Abstract
The Ki-67 antigen is a nuclear protein with proven prognostic value in different neoplasms and recognizes the predictive value in breast cancer (BC). No consensus exists on the ideal cutoff point. In this study, Ki-67 expression was evaluated in samples of BC by flow cytometry (FC) and compared with immunohistochemical (IHC) examination. For this, the BC tissue samples were sectioned, macerated, filtered, and marked with anti-Ki-67 FITC and anti-CD45 V500 antibodies. We selected the neoplastic cells according to CD45 expression and size and internal complexity (FSC × SSC) using the Infinicity 1.7 software. Lymphocytes were negative control. We compared the results with IHC analyses carried out in parallel and independently. The expression of Ki-67 was evaluated in both methodologies through Bland-Altman analysis. Among the 44 samples analyzed, only three showed bias higher than the established confidence interval (mean bias 2.1%, p = 0.62), with no significant difference for the perfect mean bias (0%). Therefore, one can state that FC provides results equivalent to IHC analysis and possibly analyzes more cells simultaneously. The results obtained in this study show the absence of observational bias through software analysis in a larger number of tumor cell populations. We can conclude that FC may be a promising alternative method for investigating Ki-67 in solid tumours.
Collapse
Affiliation(s)
- Daniella Serafin Couto Vieira
- Experimental Oncology and Hemopathies Laboratory, Postgraduate Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Brazil; University Hospital Polydoro Ernani de São Thiago, Federal University of Santa Catarina, Florianópolis, Brazil; Federal University of Santa Catarina, Department of Pathology, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Sandro Wopereis
- University Hospital Polydoro Ernani de São Thiago, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Laura Otto Walter
- Experimental Oncology and Hemopathies Laboratory, Postgraduate Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Lisandra de Oliveira Silva
- Experimental Oncology and Hemopathies Laboratory, Postgraduate Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Amanda Abdalla Biasi Ribeiro
- Experimental Oncology and Hemopathies Laboratory, Postgraduate Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Renato Salerno Wilkens
- University Hospital Polydoro Ernani de São Thiago, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Bráulio Leal Fernandes
- University Hospital Polydoro Ernani de São Thiago, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Manoela Lira Reis
- University Hospital Polydoro Ernani de São Thiago, Federal University of Santa Catarina, Florianópolis, Brazil; Federal University of Santa Catarina, Department of Pathology, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Lisléia Golfetto
- University Hospital Polydoro Ernani de São Thiago, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Maria Cláudia Santos-Silva
- Experimental Oncology and Hemopathies Laboratory, Postgraduate Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
3
|
Staunstrup NH, Petersen CC, Fuglsang T, Starnawska A, Chernomorchenko A, Qvist P, Schack VR. Comparison of electrostatic and mechanical cell sorting with limited starting material. Cytometry A 2021; 101:298-310. [PMID: 34842347 DOI: 10.1002/cyto.a.24523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/15/2021] [Accepted: 11/17/2021] [Indexed: 11/11/2022]
Abstract
Isolation of multiple cell populations from limited starting material and with minimal influence on cell homeostasis and viability are common requirements in both basic and clinical research. Fluorescence-activated cell sorting (FACS) is the most commonly applied sorting methodology with the majority of instruments being based on high pressure and electrostatic deflection. A more recent technology is based on a mechanical valve, operating at low pressure. In the present work we compared the two technologies by parallel sorting of small amounts of peripheral blood and umbilical cord blood on a BD FACSAria™ III and Miltenyi MACSQuant® Tyto® instrument. Concurrent manually performed magnetic-based cell sorting served as reference. Sorting metrics, including purity and viability, were compared. Expression of the heat-shock protein HSPA1A immediately post sorting and the proliferation potential of sorted T-cells in vitro was assessed. In general, there was little to distinguish the two fluorescence-activated technologies with regard to sorting metrics and HSPA1A expression. Variation, however, with respect to recovery and viability, was much smaller among Tyto sorted samples. The proliferation potential of Tyto-sorted T-cells was significantly higher compared to Aria-sorted T-cells, indicating that T-cells of the Tyto instrument are less perturbed. In summary, cell types of blood origin including CD34+ cells could effectively be isolated from small input amounts with either fluorescence-activated technology with little immediate effect on viability. The mechanical valve-based sorting by the Tyto instrument; however, appeared to perturb the cells to a lesser extent as judged by their proliferation potential.
Collapse
Affiliation(s)
- Nicklas H Staunstrup
- Department of Biomedicine, University of Aarhus, Aarhus C, Denmark.,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus V, Denmark.,Center for Genomics and Personalized Medicine, CGPM, and Center for Integrative Sequencing, iSEQ, Aarhus, Denmark
| | | | - Tina Fuglsang
- Department of Biomedicine, University of Aarhus, Aarhus C, Denmark
| | - Anna Starnawska
- Department of Biomedicine, University of Aarhus, Aarhus C, Denmark.,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus V, Denmark.,Center for Genomics and Personalized Medicine, CGPM, and Center for Integrative Sequencing, iSEQ, Aarhus, Denmark
| | | | - Per Qvist
- Department of Biomedicine, University of Aarhus, Aarhus C, Denmark.,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus V, Denmark.,Center for Genomics and Personalized Medicine, CGPM, and Center for Integrative Sequencing, iSEQ, Aarhus, Denmark
| | - Vivien R Schack
- Department of Biomedicine, University of Aarhus, Aarhus C, Denmark
| |
Collapse
|
4
|
Abstract
Single-cell RNA sequencing (scRNA-seq) is a comprehensive technical tool to analyze intracellular and intercellular interaction data by whole transcriptional profile analysis. Here, we describe the application in biomedical research, focusing on the immune system during organ transplantation and rejection. Unlike conventional transcriptome analysis, this method provides a full map of multiple cell populations in one specific tissue and presents a dynamic and transient unbiased method to explore the progression of allograft dysfunction, starting from the stress response to final graft failure. This promising sequencing technology remarkably improves individualized organ rejection treatment by identifying decisive cellular subgroups and cell-specific interactions.
Collapse
|
5
|
Dwi Meiyanto J, Daryanto B, Penta Seputra K. Case Report: A five-year follow up after pediatric renal transplantation using flow cytometry crossmatch and HLA immunophenotyping based on DNA for screening test. F1000Res 2021; 10:352. [PMID: 34631020 PMCID: PMC8493425 DOI: 10.12688/f1000research.51407.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 11/20/2022] Open
Abstract
Background: There are three methods for renal replacement therapy for end stage chronic kidney disease; dialysis, continuous ambulatory peritoneal dialysis, and renal transplantation which is the best because of the least morbidity rate, the best survival rates, the best quality of life, and the best improvement in activities of daily living. In the field, flow cytometry serves a well-established role in pre- and post-transplant crossmatching, and if it is combined with human leukocyte antigen (HLA) immunophenotyping based on DNA, it will produce a more sensitive prediction of the chronic graft rejection compared to complement-dependent cytotoxicity crossmatching and can eliminate irrelevant antibody (IgM). This is the first experience using this method in our hospital. The survival rate at one, five and ten years has been shown to be 99%, 97% and 96%, respectively; therefore, we wanted to find out the five year follow up of the patient. Case presentation: We evaluated a 20-year-old female with a history of pediatric renal transplantation five years previously due to end stage renal disease caused by bilateral parenchymatous renal disease. She had a history of hypertension since December 2014 and underwent hemodialysis for three months. The transplantation took place in March 2015. A kidney from her mother was transplanted to recipient using end-to-side anastomoses. After five years, the patient was routinely monitored at the urology clinic, with creatinine serum results between 1.5 and 2 mg/dL, urea and electrolyte serum levels within normal limits and she could resume normal life. Conclusions: Survival five years after the procedure showed a beneficial outcome of the method used.
Collapse
Affiliation(s)
- Johanes Dwi Meiyanto
- Urology, Faculty of Medicine, Universitas Brawijaya – Saiful Anwar General Hospital, Malang, East Java, 65145, Indonesia
| | - Besut Daryanto
- Urology, Faculty of Medicine, Universitas Brawijaya – Saiful Anwar General Hospital, Malang, East Java, 65145, Indonesia
| | - Kurnia Penta Seputra
- Urology, Faculty of Medicine, Universitas Brawijaya – Saiful Anwar General Hospital, Malang, East Java, 65145, Indonesia
| |
Collapse
|
6
|
Degandt S, Peeters B, Jughmans S, Boeckx N, Bossuyt X. Analytical performance of an automated volumetric flow cytometer for quantitation of T, B and natural killer lymphocytes. Clin Chem Lab Med 2019; 56:1277-1288. [PMID: 29466232 DOI: 10.1515/cclm-2017-0638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 01/19/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND Quantitation of lymphocyte subsets (B cells, T cells, CD4 and CD8 T cells and NK cells) classically relies on quantitation of lymphocytes and immunophenotyping by flow cytometry. AQUIOS CL (Beckman Coulter) is a fully automated system that performs an onboard volumetric cell count, automatically processes the sample (staining, lysing and fixation) and analyzes the results. We compared AQUIOS CL to a dual-platform analysis and evaluated analytical performance. METHODS We evaluated precision, sample stability, inter-sample carryover, linearity and interpanel consistency. AQUIOS CL was compared to a dual-platform method (Sysmex XE-5000 and BD FACSCanto-II). A total of 113 patient samples were included: 45 from posttransplant patients, 44 from children and 24 random routine samples. The degree of automation was scored through the need of manual revisions triggered by AQUIOS CL run notifications and run flags. RESULTS Intrarun and interrun variability was <9.1% with dedicated control material and <32.1% with patient samples. Relative values of lymphocyte subsets could be determined up to 48 h after venipuncture when the sample was kept at room temperature. There was no carryover and good linearity. Interpanel consistency was 3.3% for relative values and 9.4% for absolute values. Method comparison showed good analytical correlation between AQUIOS CL and a dual-platform method. Thirty-five percent of the samples triggered a run notification. In 74% of these samples, the results could be accepted without intervention, so in 26% of all samples, an unnecessary notification was generated. CONCLUSIONS AQUIOS CL allows for reliable fully automated immunophenotyping of lymphocyte subset quantitation. Gating algorithms could be further improved.
Collapse
Affiliation(s)
- Simon Degandt
- Department of Laboratory Medicine, UZ Leuven, Leuven, Belgium
| | - Bart Peeters
- Department of Laboratory Medicine, UZ Leuven, Leuven, Belgium
| | - Stijn Jughmans
- Department of Laboratory Medicine, UZ Leuven, Leuven, Belgium
| | - Nancy Boeckx
- Department of Laboratory Medicine, UZ Leuven, Leuven, Belgium
| | - Xavier Bossuyt
- Department of Laboratory Medicine, UZ Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Cardoso CC, Santos-Silva MC. Eight-color panel for immune phenotype monitoring by flow cytometry. J Immunol Methods 2019; 468:40-48. [DOI: 10.1016/j.jim.2019.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/13/2019] [Accepted: 03/22/2019] [Indexed: 12/24/2022]
|
8
|
Kannegieter NM, Hesselink DA, Dieterich M, de Graav GN, Kraaijeveld R, Baan CC. Differential T Cell Signaling Pathway Activation by Tacrolimus and Belatacept after Kidney Transplantation: Post Hoc Analysis of a Randomised-Controlled Trial. Sci Rep 2017; 7:15135. [PMID: 29123208 PMCID: PMC5680251 DOI: 10.1038/s41598-017-15542-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/30/2017] [Indexed: 12/13/2022] Open
Abstract
Pharmacokinetic immunosuppressive drug monitoring poorly correlates with clinical outcomes after solid organ transplantation. A promising method for pharmacodynamic monitoring of tacrolimus (TAC) in T cell subsets of transplant recipients might be the measurement of (phosphorylated) p38MAPK, ERK1/2 and Akt (activated downstream of the T cell receptor) by phospho-specific flow cytometry. Here, blood samples from n = 40 kidney transplant recipients (treated with either TAC-based or belatacept (BELA)-based immunosuppressive drug therapy) were monitored before and throughout the first year after transplantation. After transplantation and in unstimulated samples, p-p38MAPK and p-Akt were inhibited in CD8+ T cells and p-ERK in CD4+ T cells but only in patients who received TAC-based therapy. After activation with PMA/ionomycin, p-p38MAPK and p-AKT were significantly inhibited in CD4+ and CD8+ T cells when TAC was given, compared to pre-transplantation. Eleven BELA-treated patients had a biopsy-proven acute rejection, which was associated with higher p-ERK levels in both CD4+ and CD8+ T cells compared to patients without rejection. In conclusion, phospho-specific flow cytometry is a promising tool to pharmacodynamically monitor TAC-based therapy. In contrast to TAC-based therapy, BELA-based immunosuppression does not inhibit key T cell activation pathways which may contribute to the high rejection incidence among BELA-treated transplant recipients.
Collapse
Affiliation(s)
- Nynke M Kannegieter
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Dennis A Hesselink
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marjolein Dieterich
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gretchen N de Graav
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rens Kraaijeveld
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
9
|
Tait BD. Detection of HLA Antibodies in Organ Transplant Recipients - Triumphs and Challenges of the Solid Phase Bead Assay. Front Immunol 2016; 7:570. [PMID: 28018342 PMCID: PMC5146910 DOI: 10.3389/fimmu.2016.00570] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/23/2016] [Indexed: 01/18/2023] Open
Abstract
This review outlines the development of human leukocyte antigen (HLA) antibody detection assays and their use in organ transplantation in both antibody screening and crossmatching. The development of sensitive solid phase assays such as the enzyme-linked immunosorbent assay technique, and in particular the bead-based technology has revolutionized this field over the last 10-15 years. This revolution however has created a new paradigm in clinical decision making with respect to the detection of low level pretransplant HLA sensitization and its clinical relevance. The relative sensitivities of the assays used are discussed and the relevance of conflicting inter-assay results. Each assay has its advantages and disadvantages and these are discussed. Over the last decade, the bead-based assay utilizing the Luminex® fluorocytometer instrument has become established as the "gold standard" for HLA antibody testing. However, there are still unresolved issues surrounding this technique, such as the presence of denatured HLA molecules on the beads which reveal cryptic epitopes and the issue of appropriate fluorescence cut off values for positivity. The assay has been modified to detect complement binding (CB) in addition to non-complement binding (NCB) HLA antibodies although the clinical relevance of the CB and NCB IgG isotypes is not fully resolved. The increase sensitivity of the Luminex® bead assay over the complement-dependent cytotoxicity crossmatch has permitted the concept of the "virtual crossmatch" whereby the crossmatch is predicted to a high degree of accuracy based on the HLA antibody specificities detected by the solid phase assay. Dialog between clinicians and laboratory staff on an individual patient basis is essential for correct clinical decision making based on HLA antibody results obtained by the various techniques.
Collapse
Affiliation(s)
- Brian D. Tait
- Clinical Services and Research, Australian Red Cross Blood Service, West Melbourne, VIC, Australia
| |
Collapse
|
10
|
McFarlin BK, Gary MA. Flow cytometry what you see matters: Enhanced clinical detection using image-based flow cytometry. Methods 2016; 112:1-8. [PMID: 27620330 DOI: 10.1016/j.ymeth.2016.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/01/2016] [Accepted: 09/08/2016] [Indexed: 02/08/2023] Open
Abstract
Image-based flow cytometry combines the throughput of traditional flow cytometry with the ability to visually confirm findings and collect novel data that would not be possible otherwise. Since image-based flow cytometry borrows measurement parameters and analysis techniques from microscopy, it is possible to collect unique measures (i.e. nuclear translocation, co-localization, cellular synapse, cellular endocytosis, etc.) that would not be possible with traditional flow cytometry. The ability to collect unique outcomes has led many researchers to develop novel assays for the monitoring and detection of a variety of clinical conditions and diseases. In many cases, investigators have innovated and expanded classical assays to provide new insight regarding clinical conditions and chronic disease. Beyond human clinical applications, image-based flow cytometry has been used to monitor marine biology changes, nano-particles for solar cell production, and particle quality in pharmaceuticals. This review article summarizes work from the major scientists working in the field of image-based flow cytometry.
Collapse
Affiliation(s)
- Brian K McFarlin
- University of North Texas, Applied Physiology Laboratory, United States; University of North Texas, Department of Biological Sciences, United States.
| | - Melody A Gary
- University of North Texas, Applied Physiology Laboratory, United States
| |
Collapse
|
11
|
Affiliation(s)
- James A Hutchinson
- 1 Department of Experimental Surgery, University Hospital Regensburg, Bavaria, Germany
| |
Collapse
|
12
|
Mosca T, Forte WCN. Comparative Efficiency and Impact on the Activity of Blood Neutrophils Isolated by Percoll, Ficoll and Spontaneous Sedimentation Methods. Immunol Invest 2015; 45:29-37. [DOI: 10.3109/08820139.2015.1085393] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|