1
|
Rahmat-Zaie R, Amini J, Haddadi M, Beyer C, Sanadgol N, Zendedel A. TNF-α/STAT1/CXCL10 mutual inflammatory axis that contributes to the pathogenesis of experimental models of multiple sclerosis: A promising signaling pathway for targeted therapies. Cytokine 2023; 168:156235. [PMID: 37267677 DOI: 10.1016/j.cyto.2023.156235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Identifying mutual neuroinflammatory axis in different experimental models of multiple sclerosis (MS) is essential to evaluate the de- and re-myelination processes and improve therapeutic interventions' reproducibility. METHODS The expression profile data set of EAE (GSE47900) and cuprizone (GSE100663) models were downloaded from the Gene Expression Omnibus database. The R package and GEO2R software processed these raw chip data. Gene Ontology (GO) functional analysis, KEGG pathway analysis, and protein-protein interaction network analysis were performed to investigate interactions between common differentially expressed genes (DEGs) in all models. Finally, the ELISA method assessed the protein level of highlighted mutual cytokines in serum. RESULTS Our data introduced 59 upregulated [CXCL10, CCL12, and GBP6 as most important] and 17 downregulated [Serpinb1a, Prr18, and Ugt8a as most important] mutual genes. The signal transducer and activator of transcription 1 (STAT1) and CXCL10 were the most crucial hub proteins among mutual upregulated genes. These mutual genes were found to be mainly involved in the TNF-α, TLRs, and complement cascade signaling, and animal models shared 26 mutual genes with MS individuals. Finally, significant upregulation of serum level of TNF-α/IL-1β/CXCL10 cytokines was confirmed in all models in a relatively similar pattern. CONCLUSION For the first time, our study revealed the common neuroinflammatory pathway in animal models of MS and introduced candidate hub genes for better evaluating the preclinical efficacy of pharmacological interventions and designing prospective targeted therapies.
Collapse
Affiliation(s)
- Roya Rahmat-Zaie
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Javad Amini
- Department of Medical Biotechnology and Molecular Science, North Khorasan University of Medical Science, Bojnurd, Iran
| | - Mohammad Haddadi
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran; Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany.
| | - Adib Zendedel
- Institute of Anatomy, Department of Biomedicine, University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
2
|
Reiszadeh-Jahromi S, Haddadi M, Mousavi P, Sanadgol N. Prophylactic effects of cucurbitacin B in the EAE Model of multiple sclerosis by adjustment of STAT3/IL-23/IL-17 axis and improvement of neuropsychological symptoms. Metab Brain Dis 2022; 37:2937-2953. [PMID: 36287356 DOI: 10.1007/s11011-022-01083-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 09/06/2022] [Indexed: 10/31/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease that affects the central nervous system. Although remarkable progress has been made in treating MS, current therapies are less effective in protecting against the progression of the disease. Since cucurbitacins have shown an extreme range of pharmacological properties, in this study, we aimed to investigate the prophylactic effect of cucurbitacin B (CuB) in the experimental MS model. Experimental autoimmune encephalomyelitis (EAE) induced by subcutaneous immunization of MOG35-55 in C57BL/6 mice. CuB interventions (0.5 and 1 mg/kg, i.p.) were performed every other day from the first day of EAE induction. Assessment of clinical scores and motor function, inflammatory responses, and microglial activation were assessed by qRT-PCR, western blotting, and immunohistochemical (IHC) analyses. CuB (1 mg/kg) significantly decreased the population of CD45+ (P < 0.01), CD11b+ (P < 0.01) and CD45+/CD11b+ (P < 0.05) cells in cortical lesions of EAE mice. In addition, activation of STAT3 (P < 0.001), expression of IL-17 A and IL-23 A (both mRNA and protein), and transcription of Iba-1 significantly decreased. On the contrary, CuB (1 mg/kg) significantly increased the transcription of MBP and Olig-2. Furthermore, a significant decrease in the severity of EAE (P < 0.05), and an improvement in motor function (P < 0.05) and coordination (P < 0.05) were observed after treatment with a high dose of CuB. Our results suggest that CuB may have a wide-ranging effect on autoimmune responses in MS via a reduction in STAT3 activation, microgliosis, and adaptation of the IL-23/IL-17 axis. Further studies are needed to investigate the exact effect of CuB in glial cells and its efficiency and bioavailability in other neuroinflammatory diseases.
Collapse
Affiliation(s)
| | - Mohammad Haddadi
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran.
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
3
|
Saad MA, Eissa NM, Ahmed MA, ElMeshad AN, Laible G, Attia AS, Al-Ghobashy MA, Abdelsalam RM, Al-Shorbagy MY. Nanoformulated Recombinant Human Myelin Basic Protein and Rituximab Modulate Neuronal Perturbations in Experimental Autoimmune Encephalomyelitis in Mice. Int J Nanomedicine 2022; 17:3967-3987. [PMID: 36105617 PMCID: PMC9464642 DOI: 10.2147/ijn.s359114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/24/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Rituximab (RTX) and recombinant human myelin basic protein (rhMBP) were proven to be effective in ameliorating the symptoms of multiple sclerosis (MS). In this study, a nanoformulation containing rhMBP with RTX on its surface (Nano-rhMBP-RTX) was prepared and investigated in comparison with other treatment groups to determine its potential neuro-protective effects on C57BL/6 mice after inducing experimental autoimmune encephalomyelitis (EAE). Methods EAE was induced in the corresponding mice by injecting 100 μL of an emulsion containing complete Freund's adjuvant (CFA) and myelin oligodendrocyte glycoprotein (MOG). The subjects were weighed, scored and subjected to behavioural tests. After reaching a clinical score of 3, various treatments were given to corresponding EAE-induced and non-induced groups including rhMBP, RTX, empty nanoparticle prepared by poly (lactide-co-glycolide) (PLGA) or the prepared nanoformulation (Nano-rhMBP-RTX). At the end of the study, biochemical parameters were also determined as interferon-γ (IFN-γ), myeloperoxidase (MPO), interleukin-10 (IL-10), interleukin-4 (IL-4), tumor necrosis factor alpha (TNF-α), nuclear factor kappa B (NF-kB), brain derived neurotrophic factor (BDNF), 2', 3' cyclic nucleotide 3' phosphodiesterase (CNP) and transforming growth factor beta (TGF-β) along with some histopathological analyses. Results The results of the Nano-rhMBP-RTX group showed promising outcomes in terms of reducing the clinical scores, improving the behavioural responses associated with improved histopathological findings. Elevation in the levels of IL-4, CNP and TGF-β was also noticed along with marked decline in the levels of NF-kB and TNF-α. Conclusion Nano-rhMBP-RTX treated group ameliorated the adverse effects induced in the EAE model. The effectiveness of this formulation was demonstrated by the normalization of EAE-induced behavioral changes and aberrant levels of specific biochemical markers as well as reduced damage of hippocampal tissues and retaining higher levels of myelination.
Collapse
Affiliation(s)
- Muhammed A Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,School of Pharmacy, Newgiza University, Giza, Egypt
| | - Noha M Eissa
- School of Pharmacy, Newgiza University, Giza, Egypt
| | - Mohammed A Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Aliaa N ElMeshad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Giza, Egypt
| | - Götz Laible
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand.,School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Medhat A Al-Ghobashy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Bioanalysis Research Group, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Rania M Abdelsalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,School of Pharmacy, Newgiza University, Giza, Egypt
| | - Muhammad Y Al-Shorbagy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
| |
Collapse
|
4
|
Mehralikhani A, Movahedi M, Larypoor M, Golab F. Evaluation of the Effect of Foeniculum vulgare on the Expression of E-Cadherin, Dysadherin and Ki-67 in BALB/C Mice with 4T1 Model of Breast Cancer. Nutr Cancer 2020; 73:318-328. [PMID: 32266842 DOI: 10.1080/01635581.2020.1746365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: Breast cancer is described as a serious disease and one of the important factors of cancer-related deaths. Considering the drug resistance, special attention has been paid to natural compounds. This study aimed at evaluating the anti-metastatic activity of fennel in a breast cancer mouse model.Methods: A total of 28 adult female BALB/C mice were used in this study. Breast cancer was induced by subcutaneous injection of 4T1 cells in the right lower flank. The mice received fennel extracts daily via intraperitoneal injection for two weeks. Meanwhile, tumor volume was measured every day using calipers. After two weeks, each animal was anesthetized. The expression levels of ki-67 and dysadherin as tumor markers, as well as E-cadherin as a tumor suppressor, were measured in tumor tissue and ovary. Also the expression of her2 was measured in ovary.Results: Tumor size significantly decreased after nine days treatment of the fennel. Fennel treatment caused an increase in the ratio of the expression of E-cadherin to Ki-67 and dysadherin in the tumor tissues. On the other hand, the expression of Ki-67 and HER2 decreased in the ovary.Conclusion: Based on our findings, fennel has anti-tumor and anti-metastatic activities against aggressive cancers.
Collapse
Affiliation(s)
| | - Monireh Movahedi
- Department of Biochemistry, Islamic Azad University, Tehran, Iran
| | | | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Khajouei S, Ravan H, Ebrahimi A. DNA hydrogel-empowered biosensing. Adv Colloid Interface Sci 2020; 275:102060. [PMID: 31739981 PMCID: PMC7094116 DOI: 10.1016/j.cis.2019.102060] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 01/28/2023]
Abstract
DNA hydrogels as special members in the DNA nanotechnology have provided crucial prerequisites to create innovative gels owing to their sufficient stability, biocompatibility, biodegradability, and tunable multifunctionality. These properties have tailored DNA hydrogels for various applications in drug delivery, tissue engineering, sensors, and cancer therapy. Recently, DNA-based materials have attracted substantial consideration for the exploration of smart hydrogels, in which their properties can change in response to chemical or physical stimuli. In other words, these gels can undergo switchable gel-to-sol or sol-to-gel transitions upon application of different triggers. Moreover, various functional motifs like i-motif structures, antisense DNAs, DNAzymes, and aptamers can be inserted into the polymer network to offer a molecular recognition capability to the complex. In this manuscript, a comprehensive discussion will be endowed with the recognition capability of different kinds of DNA hydrogels and the alternation in physicochemical behaviors upon target introducing. Finally, we offer a vision into the future landscape of DNA based hydrogels in sensing applications.
Collapse
Affiliation(s)
- Sima Khajouei
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hadi Ravan
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Ali Ebrahimi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
6
|
Sanadgol N, Barati M, Houshmand F, Hassani S, Clarner T, Shahlaei M, Golab F. Metformin accelerates myelin recovery and ameliorates behavioral deficits in the animal model of multiple sclerosis via adjustment of AMPK/Nrf2/mTOR signaling and maintenance of endogenous oligodendrogenesis during brain self-repairing period. Pharmacol Rep 2019; 72:641-658. [PMID: 32048246 DOI: 10.1007/s43440-019-00019-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/25/2019] [Accepted: 09/05/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a devastating autoimmune disorder characterized by oligodendrocytes (OLGs) loss and demyelination. In this study, we have examined the effects of metformin (MET) on the oligodendrogenesis, redox signaling, apoptosis, and glial responses during a self-repairing period (1-week) in the animal model of MS. METHODS For induction of demyelination, C57BL/6 J mice were fed a 0.2% cuprizone (CPZ) for 5 weeks. Thereafter, CPZ was removed for 1-week and molecular and behavioral changes were monitored in the presence or absence of MET (50 mg/kg body weight/day). RESULTS MET remarkably increased the localization of precursor OLGs (NG2+/O4+ cells) and subsequently the renewal of mature OLGs (MOG+ cells) in the corpus callosum via AMPK/mammalian target of rapamycin (mTOR) pathway. Moreover, we observed a significant elevation in the antioxidant responses, especially in mature OLGs (MOG+/nuclear factor erythroid 2-related factor 2 (Nrf2+) cells) after MET intervention. MET also reduced brain apoptosis markers and lessened motor dysfunction in the open-field test. While MET was unable to decrease active astrogliosis (GFAP mRNA), it reduced microgliosis by down-regulation of Mac-3 mRNA a marker of pro-inflammatory microglia/macrophages. Molecular modeling studies, likewise, confirmed that MET exerts its effects via direct interaction with AMPK. CONCLUSIONS Altogether, our study reveals that MET effectively induces lesion reduction and elevated molecular processes that support myelin recovery via direct activation of AMPK and indirect regulation of AMPK/Nrf2/mTOR pathway in OLGs. These findings facilitate the development of new therapeutic strategies based on AMPK activation for MS in the near future.
Collapse
Affiliation(s)
- Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Mahmood Barati
- Department of Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Fariba Houshmand
- Department of Physiology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group, Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Tim Clarner
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, 52074, Aachen, Germany
| | - Mohsen Shahlaei
- Nano Drug Delivery Research Center, School of Pharmacy, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Science, P.O. Box 14155-6451, Tehran, Iran.
| |
Collapse
|
7
|
Shirazi MK, Azarnezhad A, Abazari MF, Poorebrahim M, Ghoraeian P, Sanadgol N, Bokharaie H, Heydari S, Abbasi A, Kabiri S, Aleagha MN, Enderami SE, Dashtaki AS, Askari H. The role of nitric oxide signaling in renoprotective effects of hydrogen sulfide against chronic kidney disease in rats: Involvement of oxidative stress, autophagy and apoptosis. J Cell Physiol 2018; 234:11411-11423. [PMID: 30478901 DOI: 10.1002/jcp.27797] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 11/01/2018] [Indexed: 12/29/2022]
Abstract
The interplay between H2 S and nitric oxide (NO) is thought to contribute to renal functions. The current study was designed to assess the role of NO in mediating the renoprotective effects of hydrogen sulfide in the 5/6 nephrectomy (5/6 Nx) animal model. Forty rats were randomly assigned to 5 experimental groups: (a) Sham; (b) 5/6 Nx; (c) 5/6Nx+sodium hydrosulfide-a donor of H 2 S, (5/6Nx+sodium hydrosulfide [NaHS]); (d) 5/6Nx+NaHS+ L-NAME (a nonspecific nitric oxide synthase [NOS] inhibitor); (e) 5/6Nx+NaHS+aminoguanidine (a selective inhibitor of inducible NOS [iNOS]). Twelve weeks after 5/6 Nx, we assessed the expressions of iNOS and endothelial NOS (eNOS), oxidative/antioxidant status, renal fibrosis, urine N-acetyl-b-glucosaminidase (NAG) activity as the markers of kidney injury and various markers of apoptosis, inflammation, remodeling, and autophagy. NaHS treatment protected the animals against chronic kidney injury as depicted by improved oxidative/antioxidant status, reduced apoptosis, and autophagy and attenuated messenger RNA (mRNA) expression of genes associated with inflammation, remodeling, and NAG activity. Eight weeks Nω-nitro-l-arginine methyl ester ( L-NAME) administration reduced the protective effects of hydrogen sulfide. In contrast, aminoguanidine augmented the beneficial effects of hydrogen sulfide. Our finding revealed some fascinating interactions between NO and H 2 S in the kidney. Moreover, the study suggests that NO, in an isoform-dependent manner, can exert renoprotective effects in 5/6 Nx model of CKD.
Collapse
Affiliation(s)
| | - Asaad Azarnezhad
- Cellular and Molecular Research Center, Kurdistan niversity of Medical Sciences, Sanandaj, Iran
| | - Mohammad Foad Abazari
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mansour Poorebrahim
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pegah Ghoraeian
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Hanieh Bokharaie
- Department of Genetics, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Sahar Heydari
- Department of genetic, Biology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Amin Abbasi
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sahra Kabiri
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Nouri Aleagha
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | | | - Amir Savar Dashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Askari
- Cardiac Surgery and Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Keshavarz-Bahaghighat H, Sepand MR, Ghahremani MH, Aghsami M, Sanadgol N, Omidi A, Bodaghi-Namileh V, Sabzevari O. Acetyl-L-Carnitine Attenuates Arsenic-Induced Oxidative Stress and Hippocampal Mitochondrial Dysfunction. Biol Trace Elem Res 2018; 184:422-435. [PMID: 29189995 DOI: 10.1007/s12011-017-1210-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/21/2017] [Indexed: 01/05/2023]
Abstract
Augmentation of mitochondrial oxidative stress through activating a series of deadly events has implicated as the main culprit of arsenic toxicity and therapeutic approaches based on improving mitochondrial function hold a great promise for attenuating the arsenic-induced toxicity. Acetyl-L-carnitine (ALC) through balancing the coenzyme A (CoA)/acyl-CoA ratio plays an important role in mitochondrial metabolism and thereby can help protect hippocampal neurons from oxidative damage. In the present study, we aimed to explore the effect of arsenic interactions on the mitochondrial function in the hippocampus of rats. Rats were randomly divided into five groups of control (distilled water), sodium arsenite (NaAsO2, 20 mg/kg), and co-treatment of NaAsO2 with various doses of ALC in three groups (100, 200, 300 mg/kg) and were treated orally for 21 consecutive days. Our results point out that arsenic exposure caused oxidative stress in rats' hippocampus, which led to the reactive oxygen species (ROS) generation, mitochondrial swelling, the collapse of the mitochondrial membrane potential, and release of cytochrome c. It also altered Bcl-2/Bax expression ratio and increased caspase-3 and caspase-9 activities. Furthermore, arsenic exposure via activation of NF-κB and microglia increased inflammation. ALC could concentration-dependently counteract the arsenic-induced oxidative stress, modulate the antioxidant defense capacity, and improve mitochondrial functions. In addition, ALC decreased the expression of both death-associated proteins and of inflammatory markers. These findings indicate that ALC improved the arsenic-induced hippocampal mitochondrial dysfunction which underlines the importance of ALC in providing a possible therapeutic strategy for the prevention of arsenic-induced neurodegeneration.
Collapse
Affiliation(s)
- Hedieh Keshavarz-Bahaghighat
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411, Tehran, Iran
- Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Sepand
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411, Tehran, Iran
| | - Mehdi Aghsami
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411, Tehran, Iran
| | - Nima Sanadgol
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411, Tehran, Iran
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
- Young Researchers and Elite Club, Zahedan Branch, Islamic Azad University, Zahedan, Iran
| | - Ameneh Omidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vida Bodaghi-Namileh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411, Tehran, Iran
| | - Omid Sabzevari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411, Tehran, Iran.
- Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Immunomodulatory effects of a rationally designed peptide mimetic of human IFNβ in EAE model of multiple sclerosis. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:49-61. [PMID: 29203302 DOI: 10.1016/j.pnpbp.2017.11.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 12/21/2022]
Abstract
The efficiency of interferon beta (IFNβ)-based drugs is considerably limited due to their undesirable properties, especially high immunogenicity. In this study, for the first time we investigated the impact of a computationally designed peptide mimetic of IFNβ, called MSPEP27, in the animal model of MS. A peptide library was constructed using the Rosetta program based on the predominant IFNAR1-binding site of IFNβ. Molecular docking studies were carried out using ClusPro and HADDOCK tools. The GROMACS package was subsequently used for molecular dynamics (MD) simulations. Validation of peptide-receptor interaction was carried out using intrinsic fluorescence measurements. To explore in silico findings further, experimental autoimmune encephalomyelitis (EAE) was induced by subcutaneous immunization of myelin oligodendrocyte glycoprotein (MOG35-55). Mice were then separated into distinct groups and intravenously received 10 or 20mgkg-1 of MSPEP27 or IFNβ. The inflammatory mediators were monitored by immunohistochemistry (IL17, CD11b, CD45), quantitative real-time PCR (MMP2, MMP9, TIMP-1) and enzyme-linked immunosorbent assay (IL1β, TNFα) methods. Among the library of tolerated peptides, MSPEP27, a peptide with favorable physicochemical properties, was chosen for further experiments. This peptide was shown to significantly interact with IFNAR1 in a dose-dependent manner. Like IFNβ, MSPEP27 could efficiently bind to IFNAR1 and form a stable peptide-receptor complex during 30ns MD simulations. In vivo analyses revealed that MSPEP27 could lessen inflammation by modulating the levels of inflammatory mediators. According to our results, MSPEP27 peptide could efficiently bind to IFNAR1 and suppress neuroinflammation in vivo. We conclude that MSPEP27 has protective effects against MOG-induced EAE via reduction of immune dysfunction and inflammation.
Collapse
|
10
|
Low, but not high, dose triptolide controls neuroinflammation and improves behavioral deficits in toxic model of multiple sclerosis by dampening of NF-κB activation and acceleration of intrinsic myelin repair. Toxicol Appl Pharmacol 2018; 342:86-98. [DOI: 10.1016/j.taap.2018.01.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 01/15/2018] [Accepted: 01/29/2018] [Indexed: 12/12/2022]
|
11
|
Sanadgol N, Golab F, Askari H, Moradi F, Ajdary M, Mehdizadeh M. Alpha-lipoic acid mitigates toxic-induced demyelination in the corpus callosum by lessening of oxidative stress and stimulation of polydendrocytes proliferation. Metab Brain Dis 2018; 33:27-37. [PMID: 29022246 DOI: 10.1007/s11011-017-0099-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/21/2017] [Indexed: 12/26/2022]
Abstract
Multiple Sclerosis (MS), is a disease that degenerates myelin in central nervous system (CNS). Reactive oxygen species (ROSs) are toxic metabolites, and accumulating data indicate that ROSs-mediated apoptosis of oligodendrocytes (OLGs) plays a major role in the pathogenesis of MS under oxidative stress conditions. In this study, we investigated the role of endogenous antioxidant alpha-lipoic acid (ALA) as ROSs scavenger in the OLGs loss and myelin degeneration during cuprizone (cup)-induced demyelination in the experimental model of MS. Our results have shown that ALA treatment significantly increased population of mature OLGs (MOG+ cells), as well as decreased oxidative stress (ROSs, COX-2 and PGE2) and apoptosis mediators (caspase-3 and Bax/Bcl2 ratio) in corpus callosum (CC). Surprisingly, ALA significantly stimulates population of NG2 chondroitin sulfate proteoglycan positive glia (NG2+ cells or polydendrocytes), from week 4 afterward. Accordingly ALA could prevents apoptosis, delays demyelination and recruits OLGs survival and regeneration mechanisms in CC. We conclude that ALA has protective effects against toxic demyelination via reduction of redox signaling, and alleviation of polydendrocytes vulnerability to excitotoxic challenge.
Collapse
Affiliation(s)
- Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Science, P.O. Box 14665-354, Tehran, Iran
| | - Hassan Askari
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Ajdary
- Cellular and Molecular Research Center, Iran University of Medical Science, P.O. Box 14665-354, Tehran, Iran
| | - Mehdi Mehdizadeh
- Cellular and Molecular Research Center, Faculty of Advanced Technologies in Medicine, Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Sanadgol N, Golab F, Tashakkor Z, Taki N, Moradi Kouchi S, Mostafaie A, Mehdizadeh M, Abdollahi M, Taghizadeh G, Sharifzadeh M. Neuroprotective effects of ellagic acid on cuprizone-induced acute demyelination through limitation of microgliosis, adjustment of CXCL12/IL-17/IL-11 axis and restriction of mature oligodendrocytes apoptosis. PHARMACEUTICAL BIOLOGY 2017; 55:1679-1687. [PMID: 28447514 PMCID: PMC6130560 DOI: 10.1080/13880209.2017.1319867] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/29/2016] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
CONTEXT Ellagic acid (EA) is a natural phenol antioxidant with various therapeutic activities. However, the efficacy of EA has not been examined in neuropathologic conditions. OBJECTIVE In vivo neuroprotective effects of EA on cuprizone (cup)-induced demyelination were evaluated. MATERIAL AND METHODS C57BL/6 J mice were fed with chow containing 0.2% cup for 4 weeks to induce oligodendrocytes (OLGs) depletion predominantly in the corpus callosum (CC). EA was administered at different doses (40 or 80 mg/kg body weight/day/i.p.) from the first day of cup diet. Oligodendrocytes apoptosis [TUNEL assay and myelin oligodendrocyte glycoprotein (MOG+)/caspase-3+ cells), gliosis (H&E staining, glial fibrillary acidic protein (GFAP+) and macrophage-3 (Mac-3+) cells) and inflammatory markers (interleukin 17 (IL-17), interleukin 11 (IL-11) and stromal cell-derived factor 1 α (SDF-1α) or CXCL12] during cup intoxication were examined. RESULTS High dose of EA (EA-80) increased mature oligodendrocytes population (MOG+ cells, p < 0.001), and decreased apoptosis (p < 0.05) compared with the cup mice. Treatment with both EA doses did not show any considerable effects on the expression of CXCL12, but significantly down-regulated the expression of IL-17 and up-regulated the expression of IL-11 in mRNA levels compared with the cup mice. Only treatment with EA-80 significantly decreased the population of active macrophage (MAC-3+ cells, p < 0.001) but not reactive astrocytes (GFAP+ cells) compared with the cup mice. DISCUSSION AND CONCLUSION In this model, EA-80 effectively reduces lesions via reduction of neuroinflammation and toxic effects of cup on mature OLGs. EA is a suitable therapeutic agent for moderate brain damage in neurodegenerative diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Nima Sanadgol
- Department of Pharmacology and Toxicology, Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Science, Tehran, Iran
| | - Zakiyeh Tashakkor
- MSc in Cell and Developmental Biology, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Nooshin Taki
- MSc in Cell and Developmental Biology, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Samira Moradi Kouchi
- MSc in Cell and Developmental Biology, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Ali Mostafaie
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Mehdizadeh
- Cellular and Molecular Research Center, Iran University of Medical Science, Tehran, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghorban Taghizadeh
- Department of Occupational Therapy, Faculty of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Ulusoy C, Çavuş F, Yılmaz V, Tüzün E. Immunization with Recombinantly Expressed LRP4 Induces Experimental Autoimmune Myasthenia Gravis in C57BL/6 Mice. Immunol Invest 2017; 46:490-499. [PMID: 28375749 DOI: 10.1080/08820139.2017.1299754] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Myasthenia gravis (MG) is an autoimmune disease of the neuromuscular junction (NMJ), characterized with muscle weakness. While MG develops due to acetylcholine receptor (AChR) antibodies in most patients, antibodies to muscle-specific receptor tyrosine kinase (MuSK) or low-density lipoprotein receptor-related protein 4 (LRP4) may also be identified. Experimental autoimmune myasthenia gravis (EAMG) has been previously induced by both LRP4 immunization and passive transfer of LRP4 antibodies. OBJECTIVE Our aim was to confirm previous results and to test the pathogenic effects of LRP4 immunization in a commonly used mouse strain C57BL/6 (B6) using a recombinantly expressed human LRP4 protein. METHODS B6 mice were immunized with human LRP4 in CFA, Torpedo Californica AChR in CFA or only CFA. Clinical and pathogenic aspects of EAMG were compared among groups. RESULTS LRP4- and AChR-immunized mice showed comparable EAMG clinical severity. LRP4-immunized mice displayed serum antibodies to LRP4 and NMJ IgG and complement factor C3 deposits. IgG2 was the dominant anti-LRP4 isotype. Cultured lymph node cells of LRP4- and AChR-immunized mice gave identical pro-inflammatory cytokine (IL-6, IFN-γ and IL-17) responses to LRP4 and AChR stimulation, respectively. CONCLUSION Our results confirm the EAMG-inducing action of LRP4 immunization and identify B6 as a LRP4-EAMG-susceptible mouse strain. Demonstration of complement fixing anti-LRP4 antibodies in sera and complement/IgG deposits at the NMJ of LRP4-immunized mice indicates complement activation as a putative pathogenic mechanism. We have thus developed a practical LRP4-induced EAMG model using a non-conformational protein and a widely available mouse strain for future investigation of LRP4-related MG.
Collapse
Affiliation(s)
- Canan Ulusoy
- a Department of Neuroscience , Aziz Sancar Institute for Experimental Medical Research, Istanbul Faculty of Medicine, Istanbul University , Istanbul , Turkey
| | - Filiz Çavuş
- b Department of Genetics, Aziz Sancar Institute for Experimental Medical Research, Istanbul Faculty of Medicine , Istanbul University , Istanbul , Turkey
| | - Vuslat Yılmaz
- a Department of Neuroscience , Aziz Sancar Institute for Experimental Medical Research, Istanbul Faculty of Medicine, Istanbul University , Istanbul , Turkey
| | - Erdem Tüzün
- a Department of Neuroscience , Aziz Sancar Institute for Experimental Medical Research, Istanbul Faculty of Medicine, Istanbul University , Istanbul , Turkey
| |
Collapse
|
14
|
Aghajani M, Faghihi M, Imani A, Vaez Mahdavi MR, Shakoori A, Rastegar T, Parsa H, Mehrabi S, Moradi F, Kazemi Moghaddam E. Post-infarct sleep disruption and its relation to cardiac remodeling in a rat model of myocardial infarction. Chronobiol Int 2017; 34:587-600. [PMID: 28156163 DOI: 10.1080/07420528.2017.1281823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sleep disruption after myocardial infarction (MI) by affecting ubiquitin-proteasome system (UPS) is thought to contribute to myocardial remodeling and progressive worsening of cardiac function. The aim of current study was to test the hypothesis about the increased risk of developing heart failure due to experience of sleep restriction (SR) after MI. Male Wistar rats (n = 40) were randomly assigned to four experimental groups: (1) Sham, (2) MI, (3) MI and SR (MI + SR) (4) Sham and SR (Sham + SR). MI was induced by permanent ligation of left anterior descending coronary artery. Twenty-four hours after surgery, animals were subjected to chronic SR paradigm. Blood sampling was performed at days 1, 8 and 21 after MI for determination of serum levels of creatine kinase-MB (CK-MB), corticosterone, malondialdehyde (MDA) and nitric oxide (NO). Finally, at 21 days after MI, echocardiographic parameters and expression of MuRF1, MaFBx, A20, eNOS, iNOS and NF-kB in the heart were evaluated. We used H&E staining to detect myocardial hypertrophy. We found out that post infarct SR increased corticosterone levels. Our results highlighted deteriorating effects of post-MI SR on NO production, oxidative stress, and echocardiographic indexes (p < 0.05). Moreover, its detrimental effects on myocardial damage were confirmed by overexpression of MuRF1, MaFBx, iNOS and NF-kB (p < 0.001) in left ventricle and downregulation of A20 and eNOS (p < 0.05). Furthermore, histological examination revealed that experience of SR after MI increased myocardial diameter as compared to Sham subjects (p < 0.05). Our data suggest that SR after MI leads to an enlargement of the heart within 21 days, marked by an increase in oxidative stress and NO production as well as an imbalance in UPS that ultimately results in cardiac dysfunction and heart failure.
Collapse
Affiliation(s)
- Marjan Aghajani
- a Physiology Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Mahdieh Faghihi
- a Physiology Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Alireza Imani
- a Physiology Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran.,b Occupational Sleep Research Center, Tehran University of Medical Sciences , Tehran , Iran
| | - Mohammad Reza Vaez Mahdavi
- c Traditional Medicine Clinical Trial Research Center, Shahed University , Tehran , Iran.,d Department of Physiology , Medical Faculty, Shahed University , Tehran , Iran
| | - Abbas Shakoori
- e Genetic Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Tayebeh Rastegar
- f Anatomy Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Hoda Parsa
- a Physiology Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Saman Mehrabi
- e Genetic Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Fatemeh Moradi
- a Physiology Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Ehsan Kazemi Moghaddam
- g Shiraz Burn and Wound Healing Research Center, Amir-al-momenin Burn Hospital, Shiraz University of Medical Sciences , Iran.,h Department of Microbiology , Medical Faculty, Shahed University , Tehran , Iran
| |
Collapse
|
15
|
Rittenhouse-Olson K. Letter from the Editor 2016. Immunol Invest 2016; 45:703-707. [PMID: 27775449 DOI: 10.1080/08820139.2016.1235387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Gong C, Ni Z, Yao C, Zhu X, Ni L, Wang L, Zhu S. A High-Throughput Assay for Screening of Natural Products that Enhanced Tumoricidal Activity of NK Cells. Biol Proced Online 2015; 17:12. [PMID: 26516316 PMCID: PMC4625435 DOI: 10.1186/s12575-015-0026-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/21/2015] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Recently, immunotherapy has shown a lot of promise in cancer treatment and different immune cell types are involved in this endeavor. Among different immune cell populations, NK cells are also an important component in unleashing the therapeutic activity of immune cells. Therefore, in order to enhance the tumoricidal activity of NK cells, identification of new small-molecule natural products is important. Despite the availability of different screening methods for identification of natural products, a simple, economic and high-throughput method is lacking. Hence, in this study, we have developed a high-throughput assay for screening and indentifying natural products that can enhance NK cell-mediated killing of cancer cells. RESULTS We expanded human NK cell population from human peripheral blood mononuclear cells (PBMCs) by culturing these PBMCs with membrane-bound IL-21 and CD137L engineered K562 cells. Next, expanded NK cells were co-cultured with non-small cell lung cancer (NSCLC) cells with or without natural products and after 24 h of co-culturing, harvested supernatants were analyzed for IFN-γ secretions by ELISA method. We screened 502 natural products and identified that 28 candidates has the potential to induce IFN-γ secretion by NK cells to varying degrees. Among the 28 natural product candidates, we further confirmed and analyzed the potential of one molecule, andrographolide. It actually increased IFN-γ secretion by NK cells and enhanced NK cell-mediated killing of NSCLC cells. CONCLUSIONS Our results demonstrated that this IFN-γ based high-throughput assay for screening of natural products for NK cell tumoricidal activity is a simple, economic and reliable method.
Collapse
Affiliation(s)
- Chenyuan Gong
- Laboratory of Integrative Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203 P.R. China
| | - Zhongya Ni
- Laboratory of Integrative Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203 P.R. China
| | - Chao Yao
- Laboratory of Integrative Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203 P.R. China
| | - Xiaowen Zhu
- Laboratory of Integrative Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203 P.R. China
| | - Lulu Ni
- Laboratory of Integrative Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203 P.R. China
| | - Lixin Wang
- Laboratory of Integrative Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203 P.R. China
| | - Shiguo Zhu
- Laboratory of Integrative Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203 P.R. China
| |
Collapse
|