1
|
Xue R, Wu H, Li S, Pu N, Wei D, Zhao N, Cui Y, Li H, Song Z, Tao Y. Biodegradable microspheres come into sight: A promising biomaterial for delivering drug to the posterior segment of the eyeball. Mater Today Bio 2024; 27:101126. [PMID: 38994470 PMCID: PMC11237977 DOI: 10.1016/j.mtbio.2024.101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Posterior segment disease acts as a major cause of irreversible visual impairments. Successful treatment of posterior segment disease requires the efficient delivery of therapeutic substances to the targeted lesion. However, the complex ocular architecture makes the bioavailability of topically applied drugs extremely low. Invasive delivery approaches like intravitreal injection may cause adverse complications. To enhance the efficiency, several biomedical engineering systems have been developed to increase the penetration efficiency and improve the bioavailability of drugs at the posterior segments. Advantageously, biodegradable microspheres are found to deliver the therapeutic agents in a controlled fashion. The microspheres prepared from novel biomaterials can realize the prolonged release at the posterior segment with minimum side effects. Moreover, it will be degraded automatically into products that are non-toxic to the human body without the necessity of secondary operation to remove the residual polymer matrix. Additionally, biodegradable microspheres have decent thermoplasticity, adjustable hydrophilicity, controlled crystallinity, and high tensile strength, which make them suitable for intraocular delivery. In this review, we introduce the latest advancements in microsphere production technology and elaborate on the biomaterials that are used to prepare microspheres. We discuss systematically the pharmacological characteristics of biodegradable microspheres and compare their potential advantages and limitations in the treatment of posterior segment diseases. These findings would enrich our knowledge of biodegradable microspheres and cast light into the discovery of effective biomaterials for ocular drug delivery.
Collapse
Affiliation(s)
- Rongyue Xue
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou university, Zhengzhou, China
| | - Hao Wu
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou university, Zhengzhou, China
| | - Siyu Li
- College of Medicine, Zhengzhou university, Zhengzhou, China
| | - Ning Pu
- College of Medicine, Zhengzhou university, Zhengzhou, China
| | - Dong Wei
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou university, Zhengzhou, China
| | - Na Zhao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou university, Zhengzhou, China
| | - Yongheng Cui
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou university, Zhengzhou, China
| | - Haoyan Li
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou university, Zhengzhou, China
| | - Zongming Song
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| |
Collapse
|
2
|
Liu C, Jiang X, Liang L, Liu H, Li L, Shan Q. Intramyocardial delivery of injectable hydrogel with arctigenin alleviated myocardial ischemia-reperfusion injury in rats. Biotechnol Appl Biochem 2024; 71:501-511. [PMID: 38246885 DOI: 10.1002/bab.2554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024]
Abstract
Arctigenin belongs to a major bioactive component of Fructus arctii and has been found with cardioprotective effects on rats with ischemia‒reperfusion (I/R) injury. The application of arctigenin is limited due to poor water solubility and low bioavailability. Hydrogel drug delivery systems can improve the efficacy and safety of drugs, increase drug utilization, and reduce side effects. We hypothesized that hydrogels containing arctigenin would facilitate the effect of arctigenin and alleviate I/R injury in the rat heart. Presently, adult Sprague-Dawley (SD) rats were subjected to 1 h of I/R injury, then hydrogels comprising arctigenin were implanted into the myocardium of rats. Triphenyl tetrazolium chloride staining, hematoxylin-eosin staining, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining and Western blot were performed for evaluating the infarct size, histopathological, and vital protein alterations of hearts. It was discovered that the hydrogel combined with arctigenin abated apoptosis and reduced infarct size. In addition, the results of echocardiography and Masson staining suggested that the hydrogel with arctigenin improved cardiac function, restrained myocardial fibrosis, and activated AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1). Collectively, the injectable hydrogel delivery system enhances the effect of arctigenin, which may play a protective role in I/R injury by activating AMPK and SIRT1.
Collapse
Affiliation(s)
- Chengyin Liu
- Department of Geriatrics, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lanyu Liang
- Department of Geriatrics, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Han Liu
- Department of Geriatrics, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Li Li
- Department of Geriatrics, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qing Shan
- Department of Geriatrics, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
3
|
Guidi L, Cascone MG, Rosellini E. Light-responsive polymeric nanoparticles for retinal drug delivery: design cues, challenges and future perspectives. Heliyon 2024; 10:e26616. [PMID: 38434257 PMCID: PMC10906429 DOI: 10.1016/j.heliyon.2024.e26616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
A multitude of sight-threatening retinal diseases, affecting hundreds of millions around the globe, lack effective pharmacological treatments due to ocular barriers and common drug delivery limitations. Polymeric nanoparticles (PNPs) are versatile drug carriers with sustained drug release profiles and tunable physicochemical properties which have been explored for ocular drug delivery to both anterior and posterior ocular tissues. PNPs can incorporate a wide range of drugs and overcome the challenges of conventional retinal drug delivery. Moreover, PNPs can be engineered to respond to specific stimuli such as ultraviolet, visible, or near-infrared light, and allow precise spatiotemporal control of the drug release, enabling tailored treatment regimens and reducing the number of required administrations. The objective of this study is to emphasize the therapeutic potential of light-triggered drug-loaded polymeric nanoparticles to treat retinal diseases through an exploration of ocular pathologies, challenges in drug delivery, current production methodologies and recent applications. Despite challenges, light-responsive PNPs hold the promise of substantially enhancing the treatment landscape for ocular diseases, aiming for an improved quality of life for patients.
Collapse
Affiliation(s)
- Lorenzo Guidi
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| | - Maria Grazia Cascone
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| | - Elisabetta Rosellini
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| |
Collapse
|
4
|
Rocha F, Nunes Calumby RJ, Svetaz L, Sortino M, Teixeira Ribeiro Vidigal MC, Campos-Bermudez VA, Rius SP. Effects of Larrea nitida nanodispersions on the growth inhibition of phytopathogens. AMB Express 2023; 13:98. [PMID: 37735315 PMCID: PMC10514021 DOI: 10.1186/s13568-023-01605-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
Larrea nitida Cav. (Zygophyllaceae) is a plant endemic to Argentina and Chile, and its extract has been studied over the last years due to the presence of antimicrobial agents that can be used to control the growth of some pathogens in agriculture. However, the extract is highly hydrophobic, which strongly affects its fungicidal activity in aqueous media. In this sense, the solid dispersion technique was used to produce L. nitida extract nanodispersions with polyethylene glycol (PLE) and with polyethylene glycol and zinc acetate (PZLE). In order to further evaluate the activity of the extract in PLE and PZLE, blank nanodispersions containing only polyethylene glycol (PEG) and zinc acetate (PZ) without the addition of the extract were also produced. The fungicidal activity of the water-soluble nanoparticles was evaluated at different concentrations (0.037-0.110 g.mL-1). In general, the nanoparticles were successfully produced on a nanometric size and presented a significant inhibitory activity on the growth of the pathogens Fusarium oxysporum and Fusarium verticillioides in aqueous media. Compared to PLE, PZLE presented increased fungistatic activity, possibly due to their increased solubility in water. Even though their application in agriculture should be further investigated, the nanodispersions present great potential to be applied as a green biotechnological tool.
Collapse
Affiliation(s)
- Felipe Rocha
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Rodrigo José Nunes Calumby
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Laura Svetaz
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Farmacognosia, Universidad Nacional de Rosario, Suipacha 531, CP 2000, Rosario, Argentina
| | - Maximiliano Sortino
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Farmacognosia, Universidad Nacional de Rosario, Suipacha 531, CP 2000, Rosario, Argentina
| | | | - Valeria Alina Campos-Bermudez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina.
| | - Sebastián Pablo Rius
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina.
| |
Collapse
|
5
|
Zashikhina N, Gladnev S, Sharoyko V, Korzhikov-Vlakh V, Korzhikova-Vlakh E, Tennikova T. Synthesis and Characterization of Nanoparticle-Based Dexamethasone-Polypeptide Conjugates as Potential Intravitreal Delivery Systems. Int J Mol Sci 2023; 24:ijms24043702. [PMID: 36835114 PMCID: PMC9962198 DOI: 10.3390/ijms24043702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
The use of dexamethasone for eye disease treatment is limited by its low solubility, bioavailability, and rapid elimination when applied topically. The covalent conjugation of dexamethasone with polymeric carriers is a promising strategy to overcome existing drawbacks. In this work, amphiphilic polypeptides capable of self-assembly into nanoparticles were proposed as potential delivery systems for intravitreal delivery. The nanoparticles were prepared and characterized using poly(L-glutamic acid-co-D-phenylalanine) and poly(L-lysine-co-D/L-phenylalanine) as well as poly(L-lysine-co-D/L-phenylalanine) covered with heparin. The critical association concentration for the polypeptides obtained was in the 4.2-9.4 μg/mL range. The hydrodynamic size of the formed nanoparticles was between 90 and 210 nm, and they had an index of polydispersity between 0.08 and 0.27 and an absolute zeta-potential value between 20 and 45 mV. The ability of nanoparticles to migrate in the vitreous humor was examined using intact porcine vitreous. Conjugation of DEX with polypeptides was performed by additional succinylation of DEX and activation of carboxyl groups introduced to react with primary amines in polypeptides. The structures of all intermediate and final compounds were verified by 1H NMR spectroscopy. The amount of conjugated DEX can be varied from 6 to 220 µg/mg of polymer. The hydrodynamic diameter of the nanoparticle-based conjugates was increased to 200-370 nm, depending on the polymer sample and drug loading. The release of DEX from the conjugates due to hydrolysis of the ester bond between DEX and the succinyl moiety was studied both in a buffer medium and a vitreous/buffer mixture (50/50, v/v). As expected, the release in the vitreous medium was faster. However, the release rate could be controlled in the range of 96-192 h by varying the polymer composition. In addition, several mathematical models were used to assess the release profiles and figure out how DEX is released.
Collapse
Affiliation(s)
- Natalia Zashikhina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Sergei Gladnev
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg 198504, Russia
| | - Vladimir Sharoyko
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg 198504, Russia
- Department of General and Bioorganic Chemistry, Pavlov First Saint-Petersburg State Medical University, L’va Tolstogo str. 6-8, St. Petersburg 197022, Russia
| | - Viktor Korzhikov-Vlakh
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg 198504, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg 198504, Russia
- Correspondence:
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg 198504, Russia
| |
Collapse
|
6
|
Bechinger P, Serrano Sponton L, Grützner V, Musyanovych A, Jussen D, Krenzlin H, Eldahaby D, Riede N, Kempski O, Ringel F, Alessandri B. In-vivo time course of organ uptake and blood-brain-barrier permeation of poly(L-lactide) and poly(perfluorodecyl acrylate) nanoparticles with different surface properties in unharmed and brain-traumatized rats. Front Neurol 2023; 14:994877. [PMID: 36814997 PMCID: PMC9939480 DOI: 10.3389/fneur.2023.994877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
Background Traumatic brain injury (TBI) has a dramatic impact on mortality and quality of life and the development of effective treatment strategies is of great socio-economic relevance. A growing interest exists in using polymeric nanoparticles (NPs) as carriers across the blood-brain barrier (BBB) for potentially effective drugs in TBI. However, the effect of NP material and type of surfactant on their distribution within organs, the amount of the administrated dose that reaches the brain parenchyma in areas with intact and opened BBB after trauma, and a possible elicited inflammatory response are still to be clarified. Methods The organ distribution, BBB permeation and eventual inflammatory activation of polysorbate-80 (Tw80) and sodiumdodecylsulfate (SDS) stabilized poly(L-lactide) (PLLA) and poly(perfluorodecyl acrylate) (PFDL) nanoparticles were evaluated in rats after intravenous administration. The NP uptake into the brain was assessed under intact conditions and after controlled cortical impact (CCI). Results A significantly higher NP uptake at 4 and 24 h after injection was observed in the liver and spleen, followed by the brain and kidney, with minimal concentrations in the lungs and heart for all NPs. A significant increase of NP uptake at 4 and 24 h after CCI was observed within the traumatized hemisphere, especially in the perilesional area, but NPs were still found in areas away from the injury site and the contralateral hemisphere. NPs were internalized in brain capillary endothelial cells, neurons, astrocytes, and microglia. Immunohistochemical staining against GFAP, Iba1, TNFα, and IL1β demonstrated no glial activation or neuroinflammatory changes. Conclusions Tw80 and SDS coated biodegradable PLLA and non-biodegradable PFDL NPs reach the brain parenchyma with and without compromised BBB by TBI, even though a high amount of NPs are retained in the liver and spleen. No inflammatory reaction is elicited by these NPs within 24 h after injection. Thus, these NPs could be considered as potentially effective carriers or markers of newly developed drugs with low or even no BBB permeation.
Collapse
Affiliation(s)
- Patrick Bechinger
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany,Department of Anesthesiology, Helios Dr. Horst Schmidt Clinic, Wiesbaden, Germany
| | - Lucas Serrano Sponton
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany,Department of Neurosurgery, Sana Clinic Offenbach, Offenbach, Germany,*Correspondence: Lucas Serrano Sponton ✉
| | - Verena Grützner
- Fraunhofer Institute for Microengineering and Microsystems, Mainz, Germany
| | - Anna Musyanovych
- Fraunhofer Institute for Microengineering and Microsystems, Mainz, Germany
| | - Daniel Jussen
- Department of Neurosurgery, Johann Wolfgang Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Harald Krenzlin
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| | - Daniela Eldahaby
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany,San Paolo Medical School, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Nicole Riede
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| | - Oliver Kempski
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| | - Florian Ringel
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| | - Beat Alessandri
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| |
Collapse
|
7
|
Yang C, Yang J, Lu A, Gong J, Yang Y, Lin X, Li M, Xu H. Nanoparticles in ocular applications and their potential toxicity. Front Mol Biosci 2022; 9:931759. [PMID: 35911959 PMCID: PMC9334523 DOI: 10.3389/fmolb.2022.931759] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Nanotechnology has been developed rapidly in recent decades and widely applied in ocular disease therapy. Nano-drug delivery systems overcome the bottlenecks of current ophthalmic drug delivery and are characterized with strong biocompatibility, stability, efficiency, sustainability, controllability, and few side effects. Nanoparticles have been identified as a promising and generally safe ophthalmic drug-delivery system based on the toxicity assessment in animals. Previous studies have found that common nanoparticles can be toxic to the cornea, conjunctiva, and retina under certain conditions. Because of the species differences between humans and animals, advanced in vitro cell culture techniques, such as human organoids, can mimic the human organism to a certain extent, bringing nanoparticle toxicity assessment to a new stage. This review summarizes the advanced application of nanoparticles in ocular drug delivery and the potential toxicity, as well as some of the current challenges and future opportunities in nanotoxicological evaluation.
Collapse
Affiliation(s)
- Cao Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Junling Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Ao Lu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Jing Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yuanxing Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Xi Lin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
- *Correspondence: Minghui Li, ; Haiwei Xu,
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
- *Correspondence: Minghui Li, ; Haiwei Xu,
| |
Collapse
|
8
|
Paul PS, Cho JY, Wu Q, Karthivashan G, Grabovac E, Wille H, Kulka M, Kar S. Unconjugated PLGA nanoparticles attenuate temperature-dependent β-amyloid aggregation and protect neurons against toxicity: implications for Alzheimer's disease pathology. J Nanobiotechnology 2022; 20:67. [PMID: 35120558 PMCID: PMC8817552 DOI: 10.1186/s12951-022-01269-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 01/16/2022] [Indexed: 12/26/2022] Open
Abstract
Conversion of β-amyloid (Aβ) peptides from soluble random-coil to aggregated protein enriched with β-sheet-rich intermediates has been suggested to play a role in the degeneration of neurons and development of Alzheimer's disease (AD) pathology. Aggregation of Aβ peptide can be prompted by a variety of environmental factors including temperature which can influence disease pathogenesis. Recently, we reported that FDA-approved unconjugated poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles can have beneficial effects in cellular and animal models of AD by targeting different facets of the Aβ axis. In this study, using biochemical, structural and spectroscopic analyses, we evaluated the effects of native PLGA on temperature-dependent Aβ aggregation and its ability to protect cultured neurons from degeneration. Our results show that the rate of spontaneous Aβ1-42 aggregation increases with a rise in temperature from 27 to 40 °C and PLGA with 50:50 resomer potently inhibits Aβ aggregation at all temperatures, but the effect is more profound at 27 °C than at 40 °C. It appears that native PLGA, by interacting with the hydrophobic domain of Aβ1-42, prevents a conformational shift towards β-sheet structure, thus precluding the formation of Aβ aggregates. Additionally, PLGA triggers disassembly of matured Aβ1-42 fibers at a faster rate at 40 °C than at 27 °C. PLGA-treated Aβ samples can significantly enhance viability of cortical cultured neurons compared to neurons treated with Aβ alone by attenuating phosphorylation of tau protein. Injection of native PLGA is found to influence the breakdown/clearance of Aβ peptide in the brain. Collectively, these results suggest that PLGA nanoparticles can inhibit Aβ aggregation and trigger disassembly of Aβ aggregates at temperatures outside the physiological range and can protect neurons against Aβ-mediated toxicity thus validating its unique therapeutic potential in the treatment of AD pathology.
Collapse
Affiliation(s)
- Pallabi Sil Paul
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
| | - Jae-Young Cho
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2M9 Canada
| | - Qi Wu
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
| | - Govindarajan Karthivashan
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
| | - Emily Grabovac
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2M9 Canada
| | - Holger Wille
- Department of Biochemistry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
| | - Mariana Kulka
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2M9 Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1 Canada
| | - Satyabrata Kar
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
- Departments of Medicine (Neurology) and Psychiatry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
| |
Collapse
|
9
|
Shi D, Zhou X, Wang H. S14G-humanin (HNG) protects retinal endothelial cells from UV-B-induced NLRP3 inflammation activation through inhibiting Egr-1. Inflamm Res 2021; 70:1141-1150. [PMID: 34459932 DOI: 10.1007/s00011-021-01489-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 01/15/2023] Open
Abstract
UV-B stimulation can induce retinopathy, whose pathogenesis is currently unclear. UV-B mediated inflammation in retinal endothelial cells is reported to be involved in the pathogenesis of retinopathy. S14G-humanin (HNG) is a neuroprotective peptide that has recently been reported to exert significant anti-inflammatory effects and protective properties against cell death. The present study aims to investigate the protective effects of HNG against UV-B-challenged retinal endothelial cells and explore the underlying mechanism. UV-B radiation was used to induce an injury model in human retinal endothelial cells (HRECs). First, exposure to UV-B induced the expression of TXNIP. Additionally, we found that treatment with HNG inhibited the activation of the TXNIP/NLRP3 signaling pathway and mitigated the excessive release of IL-1β and IL-18 in UV-B-challenged HRECs. UV-B increased the expression of the transcriptional factor endothelial growth response-1 (Egr-1). Interestingly, overexpression of Egr-1 increased the luciferase activity of the TXNIP promoter as well as the mRNA and protein expression of TXNIP. In contrast, the knockdown of Egr-1 reduced the expression of TXNIP under both the normal and UV-B exposure conditions. Importantly, treatment with HNG attenuated UV-B-induced expression of Egr-1. However, overexpression of Egr-1 abolished the inhibitory effects of HNG-induced activation of NLRP3 as well as the production of IL-1β and IL-18. Taken together, our findings reveal that HNG protected retinal endothelial cells from UV-B-induced NLRP3 inflammation activation through inhibiting TXNIP mediated by Egr-1.
Collapse
Affiliation(s)
- Dejing Shi
- Department of Ophthalmology, The Fourth Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin, 150001, China
| | - Xuemei Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu RoadHeilongjiang Province, Harbin, 150086, China.
| | - Hongxia Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin, 150001, China
| |
Collapse
|
10
|
The emerging role of circular RNAs in cardiovascular diseases. J Physiol Biochem 2021; 77:343-353. [PMID: 33772724 DOI: 10.1007/s13105-021-00807-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/03/2021] [Indexed: 12/23/2022]
Abstract
Cardiovascular disease (CVD) is one of the vital causes of morbidity and mortality, and the number of deaths from CVD has increased worldwide. Circular RNAs (circRNAs) is a novel type of endogenous noncoding RNA, which can form covalent closed continuous rings and are highly expressed in the eukaryotic transcriptome. In recent years, research on circRNAs have been increasing and the researchers have also become cumulatively aware of the association between circRNAs and CVD. This review highlights the biogenesis and functions of circRNAs and the role in cardiovascular diseases.
Collapse
|
11
|
Sun X, Deng K, Zang Y, Zhang Z, Zhao B, Fan J, Huang L. Exploring the regulatory roles of circular RNAs in the pathogenesis of atherosclerosis. Vascul Pharmacol 2021; 141:106898. [PMID: 34302990 DOI: 10.1016/j.vph.2021.106898] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/04/2021] [Accepted: 07/19/2021] [Indexed: 01/19/2023]
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNAs with a covalently closed loop structure. Recent evidence has shown that circRNAs can regulate gene transcription, alternative splicing, microRNA (miRNA) "molecular sponges", RNA-binding proteins and protein translation. Atherosclerosis is one of the leading causes of death worldwide, and more studies have indicated that circRNAs are related to atherosclerosis pathogenesis, including vascular endothelial cells, vascular smooth muscle cells, inflammation and lipid metabolism. In this review, we systematically summarize the biogenesis, characteristics and functions of circRNAs with a focus on their roles in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Xueyuan Sun
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Kaiyuan Deng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Yunhui Zang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Zhiyong Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Boxin Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Jingyao Fan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Lijuan Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China.
| |
Collapse
|
12
|
Alhakamy NA, Ahmed OAA, Fahmy UA, Md S. Development and In Vitro Evaluation of 2-Methoxyestradiol Loaded Polymeric Micelles for Enhancing Anticancer Activities in Prostate Cancer. Polymers (Basel) 2021; 13:884. [PMID: 33805675 PMCID: PMC7998642 DOI: 10.3390/polym13060884] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to formulate and optimize 2ME-loaded PMs (2ME-PMs) for enhancing the anticancer activity of 2ME in prostate cancer (PC). The 2ME-PMs were formulated using PEG-PLGA (PL), Tween 80 (TW80), and alpha-lipoic acid (ALA). The optimization was carried out using a Box-Behnken design with the PL, TW80, and ALA as the independent variables and particle size (PS) as the response. The formulation was optimized for the lowest possible PS, and the software suggested optimum formula with 100.282 mg, 2%, and 40 mg for PL, TW80, and ALA, respectively. The optimized PMs had spherical morphology with PS of 65.36 ± 2.2 nm, polydispersity index (PDI) of 0.273 ± 0.03, and entrapment efficiency of 65.23 ± 3.5%. The in vitro drug release was 76.3 ± 3.2% after 24 h. The cell line studies using PC-3 cells showed IC50 values of 18.75 and 54.41 µmol for 2ME-PM and 2ME, respectively. The estimation of tumor biomarkers was also carried out. The tumor biomarkers caspase-9 (17.38 ± 1.42 ng/mL), tumor protein P53 (p53) (1050.0 ± 40.9 pg/mL), nitric oxide (NO) (0.693 ± 0.03 pg/mL), interleukin-1β (IL-1β) (25.84 ± 2.23 pg/mL), nuclear factor kappa B (NF-kB) (0.719 ± 0.07 pg/mL), interleukin-6 (IL-6) (2.53 ± 0.16 folds), and cyclooxygenase-2 (COX-2) (3.04 ± 0.5 folds) were determined for 2ME-PMs and the results showed that these values changed significantly compared to those of 2ME. Overall, the results showed that the formulation of 2ME to 2ME-PMs enhances the anticancer effect. The exploration of the combined advantages of PEG, PLGA, ALA, and PMs in cancer therapy and the delivery of 2ME is the major importance of this research work. PEG reduces the elimination of 2ME, PLGA enhances 2ME loading, ALA has an inherent apoptotic effect, and PMs can efficiently target tumor cells.
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutics, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (U.A.F.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (U.A.F.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Usama A. Fahmy
- Department of Pharmaceutics, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (U.A.F.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shadab Md
- Department of Pharmaceutics, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (U.A.F.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
13
|
Bittner A, Gosselet F, Sevin E, Dehouck L, Ducray AD, Gaschen V, Stoffel MH, Cho H, Mevissen M. Time-Dependent Internalization of Polymer-Coated Silica Nanoparticles in Brain Endothelial Cells and Morphological and Functional Effects on the Blood-Brain Barrier. Int J Mol Sci 2021; 22:ijms22041657. [PMID: 33562136 PMCID: PMC7915594 DOI: 10.3390/ijms22041657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/16/2022] Open
Abstract
Nanoparticle (NP)-assisted procedures including laser tissue soldering (LTS) offer advantages compared to conventional microsuturing, especially in the brain. In this study, effects of polymer-coated silica NPs used in LTS were investigated in human brain endothelial cells (ECs) and blood-brain barrier models. In the co-culture setting with ECs and pericytes, only the cell type directly exposed to NPs displayed a time-dependent internalization. No transfer of NPs between the two cell types was observed. Cell viability was decreased relatively to NP exposure duration and concentration. Protein expression of the nuclear factor ĸ-light-chain-enhancer of activated B cells and various endothelial adhesion molecules indicated no initiation of inflammation or activation of ECs after NP exposure. Differentiation of CD34+ ECs into brain-like ECs co-cultured with pericytes, blood-brain barrier (BBB) characteristics were obtained. The established endothelial layer reduced the passage of integrity tracer molecules. NP exposure did not result in alterations of junctional proteins, BBB formation or its integrity. In a 3-dimensional setup with an endothelial tube formation and tight junctions, barrier formation was not disrupted by the NPs and NPs do not seem to cross the blood-brain barrier. Our findings suggest that these polymer-coated silica NPs do not damage the BBB.
Collapse
Affiliation(s)
- Aniela Bittner
- Division of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, 3012 Bern, Switzerland; (A.B.); (A.D.D.)
| | - Fabien Gosselet
- Blood-Brain-Barrier Laboratory, University of Artois, UR265, Faculté Jean Perrin, Rue Jean Souvraz–SP 18, 62307 Lens, France; (F.G.); (E.S.); (L.D.)
| | - Emmanuel Sevin
- Blood-Brain-Barrier Laboratory, University of Artois, UR265, Faculté Jean Perrin, Rue Jean Souvraz–SP 18, 62307 Lens, France; (F.G.); (E.S.); (L.D.)
| | - Lucie Dehouck
- Blood-Brain-Barrier Laboratory, University of Artois, UR265, Faculté Jean Perrin, Rue Jean Souvraz–SP 18, 62307 Lens, France; (F.G.); (E.S.); (L.D.)
| | - Angélique D. Ducray
- Division of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, 3012 Bern, Switzerland; (A.B.); (A.D.D.)
| | - Véronique Gaschen
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Länggassstrasse 120, 3012 Bern, Switzerland; (V.G.); (M.H.S.)
| | - Michael H. Stoffel
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Länggassstrasse 120, 3012 Bern, Switzerland; (V.G.); (M.H.S.)
| | - Hansang Cho
- Institute of Quantum Biophysics, Department of Biophysics, Department of Intelligent Precision Healthcare Concergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, #868715 N-Center Suwon-si, Gyeonggi-do 16419, Korea;
| | - Meike Mevissen
- Division of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, 3012 Bern, Switzerland; (A.B.); (A.D.D.)
- Correspondence: ; Tel.: +41-31-631-22-31
| |
Collapse
|
14
|
Tang Y, Bao J, Hu J, Liu L, Xu DY. Circular RNA in cardiovascular disease: Expression, mechanisms and clinical prospects. J Cell Mol Med 2020; 25:1817-1824. [PMID: 33350091 PMCID: PMC7882961 DOI: 10.1111/jcmm.16203] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/15/2020] [Accepted: 12/03/2020] [Indexed: 12/21/2022] Open
Abstract
Circular RNAs (circRNAs) are a group of covalently closed, endogenous, non‐coding RNAs, which exist widely in human tissues including the heart. Increasing evidence has shown that cardiac circRNAs play crucial regulatory roles in cardiovascular diseases (CVDs). In this review, we aimed to provide a systemic understanding of circRNAs with a special emphasis on the cardiovascular system. We have summarized the current research on the classification, biogenesis and properties of circRNAs as well as their participation in the pathogenesis of CVDs. CircRNAs are conserved, stable and have specific spatiotemporal expression; thus, they have been accepted as a potential diagnostic marker or an incremental prognostic biomarker for CVDs.
Collapse
Affiliation(s)
- Ying Tang
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinghui Bao
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiahui Hu
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Leiling Liu
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dan-Yan Xu
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Teixeira M, Pedro M, Nascimento MSJ, Pinto MMM, Barbosa CM. Development and characterization of PLGA nanoparticles containing 1,3-dihydroxy-2-methylxanthone with improved antitumor activity on a human breast cancer cell line. Pharm Dev Technol 2019; 24:1104-1114. [DOI: 10.1080/10837450.2019.1638398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Maribel Teixeira
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies, Gandra, Portugal
| | - Madalena Pedro
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies, Gandra, Portugal
| | - Maria São José Nascimento
- Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Madalena M. M. Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - Carlos Maurício Barbosa
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
16
|
Bittner A, Ducray AD, Widmer HR, Stoffel MH, Mevissen M. Effects of gold and PCL- or PLLA-coated silica nanoparticles on brain endothelial cells and the blood-brain barrier. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:941-954. [PMID: 31165021 PMCID: PMC6541356 DOI: 10.3762/bjnano.10.95] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Nanomedicine is a constantly expanding field, facilitating and improving diagnosis and treatment of diseases. As nanomaterials are foreign objects, careful evaluation of their toxicological and functional aspects prior to medical application is imperative. In this study, we aimed to determine the effects of gold and polymer-coated silica nanoparticles used in laser tissue soldering on brain endothelial cells and the blood-brain barrier using rat brain capillary endothelial cells (rBCEC4). All types of nanoparticles were taken up time-dependently by the rBCEC4 cells, albeit to a different extent, causing a time- and concentration-dependent decrease in cell viability. Nanoparticle exposure did not change cell proliferation, differentiation, nor did it induce inflammation. rBCEC4 cells showed blood-brain barrier characteristics including tight junctions. None of the nanoparticles altered the expression of tight junctions or impaired the blood-brain barrier permeability. The findings suggest that effects of these nanoparticles on the metabolic state of cells have to be further characterized before use for medical purposes.
Collapse
Affiliation(s)
- Aniela Bittner
- Division of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, 3012 Bern, Switzerland
| | - Angélique D Ducray
- Division of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, 3012 Bern, Switzerland
| | - Hans Rudolf Widmer
- Department of Neurosurgery, Research Unit, Inselspital, University of Bern, Freiburgstrasse 8, 3010 Bern, Switzerland
| | - Michael H Stoffel
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Länggassstrasse 120, 3012 Bern, Switzerland
| | - Meike Mevissen
- Division of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, 3012 Bern, Switzerland
| |
Collapse
|
17
|
Polymer-based carriers for ophthalmic drug delivery. J Control Release 2018; 285:106-141. [DOI: 10.1016/j.jconrel.2018.06.031] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 12/22/2022]
|
18
|
Vighi E, Trifunović D, Veiga-Crespo P, Rentsch A, Hoffmann D, Sahaboglu A, Strasser T, Kulkarni M, Bertolotti E, van den Heuvel A, Peters T, Reijerkerk A, Euler T, Ueffing M, Schwede F, Genieser HG, Gaillard P, Marigo V, Ekström P, Paquet-Durand F. Combination of cGMP analogue and drug delivery system provides functional protection in hereditary retinal degeneration. Proc Natl Acad Sci U S A 2018; 115:E2997-E3006. [PMID: 29531030 PMCID: PMC5879685 DOI: 10.1073/pnas.1718792115] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Inherited retinal degeneration (RD) is a devastating and currently untreatable neurodegenerative condition that leads to loss of photoreceptor cells and blindness. The vast genetic heterogeneity of RD, the lack of "druggable" targets, and the access-limiting blood-retinal barrier (BRB) present major hurdles toward effective therapy development. Here, we address these challenges (i) by targeting cGMP (cyclic guanosine- 3',5'-monophosphate) signaling, a disease driver common to different types of RD, and (ii) by combining inhibitory cGMP analogs with a nanosized liposomal drug delivery system designed to facilitate transport across the BRB. Based on a screen of several cGMP analogs we identified an inhibitory cGMP analog that interferes with activation of photoreceptor cell death pathways. Moreover, we found liposomal encapsulation of the analog to achieve efficient drug targeting to the neuroretina. This pharmacological treatment markedly preserved in vivo retinal function and counteracted photoreceptor degeneration in three different in vivo RD models. Taken together, we show that a defined class of compounds for RD treatment in combination with an innovative drug delivery method may enable a single type of treatment to address genetically divergent RD-type diseases.
Collapse
Affiliation(s)
- Eleonora Vighi
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, 41125 Modena, Italy
| | - Dragana Trifunović
- Forschungsinstitut für Augenheilkunde, Department für Augenheilkunde, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Patricia Veiga-Crespo
- Ophthalmology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, 22184 Lund, Sweden
| | - Andreas Rentsch
- BIOLOG Life Science Institute Forschungslabor und Biochemica-Vertrieb GmbH, 28199 Bremen, Germany
| | - Dorit Hoffmann
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, 41125 Modena, Italy
| | - Ayse Sahaboglu
- Forschungsinstitut für Augenheilkunde, Department für Augenheilkunde, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Torsten Strasser
- Forschungsinstitut für Augenheilkunde, Department für Augenheilkunde, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Manoj Kulkarni
- Forschungsinstitut für Augenheilkunde, Department für Augenheilkunde, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
- Centre for Integrative Neuroscience, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Evelina Bertolotti
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, 41125 Modena, Italy
| | | | - Tobias Peters
- Forschungsinstitut für Augenheilkunde, Department für Augenheilkunde, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | | | - Thomas Euler
- Forschungsinstitut für Augenheilkunde, Department für Augenheilkunde, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
- Centre for Integrative Neuroscience, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Marius Ueffing
- Forschungsinstitut für Augenheilkunde, Department für Augenheilkunde, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Frank Schwede
- BIOLOG Life Science Institute Forschungslabor und Biochemica-Vertrieb GmbH, 28199 Bremen, Germany
| | - Hans-Gottfried Genieser
- BIOLOG Life Science Institute Forschungslabor und Biochemica-Vertrieb GmbH, 28199 Bremen, Germany
| | - Pieter Gaillard
- to-BBB technologies BV, 2333 CH Leiden, The Netherlands
- 2-BBB Medicines BV, 2333 CH Leiden, The Netherlands
| | - Valeria Marigo
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, 41125 Modena, Italy;
| | - Per Ekström
- Ophthalmology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, 22184 Lund, Sweden;
| | - François Paquet-Durand
- Forschungsinstitut für Augenheilkunde, Department für Augenheilkunde, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany;
| |
Collapse
|
19
|
Martins FTA, Miranda PMDAD, Fernandes MSA, Maciel-Guerra AT, Sartorato EL. Optimization of a genotyping screening based on hydrolysis probes to detect the main mutations related to Leber hereditary optic neuropathy (LHON). Mol Vis 2017; 23:495-503. [PMID: 28761322 PMCID: PMC5524431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/19/2017] [Indexed: 10/25/2022] Open
Abstract
PURPOSE Leber hereditary optic neuropathy (LHON) is a mitochondrial inherited disease characterized by bilateral vision problems, such as reduced visual acuity, dyschromatopsia, and central or centrocecal scotoma. Of these cases, 95% are caused by three mutations in mitochondrial DNA (mtDNA): m.G11778A, followed by m.T14484C and m.G3460A. The remaining 5% of cases of LHON are caused by rare mutations also present in mtDNA. Although conventional molecular tools for molecular screening of LHON are becoming popular, in most cases these tools are still expensive and time-consuming and are difficult to reproduce. Therefore, to meet the need for more accurate, faster, and cheaper techniques for molecular screening, as well as make it more accessible, we used the high-throughput method TaqMan® OpenArray™ Genotyping platform for developing a customized high-throughput assay for the three main mutations related to LHON. METHODS The assay was performed for 87 individuals diagnosed with LHON or acquired optic neuropathy of unknown origin. The three main mutations were screened using the customized assay with the TaqMan® OpenArray™ Genotyping platform, and all reactions were performed in triplicate. The positive and negative results were revalidated with restriction fragment length polymorphism PCR (RFLP-PCR) and Sanger sequencing. RESULTS The main mutations related to LHON were detected in 34 patients with genotyping reactions, of which 27 cases had the m.G11778A mutation, and seven had the m.T14484C mutation. CONCLUSIONS The TaqMan® OpenArray™ Genotyping platform was shown to be an effective tool for molecular screening of the most common mutations related to LHON without presenting false positive or negative results for the analyzed mutations. In addition, this tool can be considered a cheaper, faster, and more accurate alternative for molecular screening of LHON mutations than PCR and Sanger sequencing, as 94 genotyping reactions can be performed within 6 h and specific TaqMan probes are used.
Collapse
Affiliation(s)
- Fábio Tadeu Arrojo Martins
- Human Molecular Genetics Laboratory - Center for Molecular and Genetic Engineering (CBMEG) - University of Campinas (UNICAMP) – Campinas/Brazil
| | | | - Marcela Scabello Amaral Fernandes
- Human Molecular Genetics Laboratory - Center for Molecular and Genetic Engineering (CBMEG) - University of Campinas (UNICAMP) – Campinas/Brazil
| | - Andréa Trevas Maciel-Guerra
- Department of Medical Genetics - Faculty of Medical Sciences- University of Campinas (UNICAMP) - Campinas/Brazil
| | - Edi Lúcia Sartorato
- Human Molecular Genetics Laboratory - Center for Molecular and Genetic Engineering (CBMEG) - University of Campinas (UNICAMP) – Campinas/Brazil
| |
Collapse
|
20
|
Kowluru RA. Diabetic retinopathy, metabolic memory and epigenetic modifications. Vision Res 2017; 139:30-38. [PMID: 28700951 DOI: 10.1016/j.visres.2017.02.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/22/2017] [Accepted: 02/26/2017] [Indexed: 02/07/2023]
Abstract
Retinopathy, a sight-threatening disease, remains one of the most feared complications of diabetes. Although hyperglycemia is the main initiator, progression of diabetic retinopathy continues even after re-institution of normal glycemic control in diabetic patients, and the deleterious effects of prior hyperglycemic insult depend on the duration and the severity of this insult, suggesting a 'metabolic memory' phenomenon. Metabolic memory phenomenon is successfully duplicated in the experimental models of diabetic retinopathy. Hyperglycemia, in addition to initiating many other biochemical and functional abnormalities and altering expression of genes associated with them, also increases oxidative stress. Increased production of cytosolic reactive oxygen species dysfunctions the mitochondria, and a compromised antioxidant defense system becomes overwhelmed to neutralize free radicals. With the duration of diabetes extending, mitochondrial DNA (mtDNA) is also damaged, and transcription of mtDNA-encoded genes, important for function of the electron transport chain, is compromised. This fuels into a 'self-propagating' vicious cycle of free radicals, and retinopathy continues to progress. Hyperglycemic insult also affects the enzymatic machinery responsible for epigenetic modifications; these modifications alter gene expression without affecting the DNA sequence. Histones and/or DNA modifications of many enzymes, important in mitochondrial homeostasis, affect their activities and disturb mitochondrial homeostasis. Experimental models have shown that these epigenetic modifications have potential to halt only if normal glycemia is maintained from the day of induction of diabetes (streptozotocin) in rats, but if hyperglycemia is allowed to proceed even for couple months before initiation of normal glycemia, these epigenetic modification resist reversal. Supplementation of a therapy targeted to prevent increased oxidative stress or epigenetic modifications, during the normal glucose phase, which has followed high glucose insult, however, helps ameliorate these abnormalities and prevents the progression of diabetic retinopathy. Thus, without undermining the importance of tight glycemic control for a diabetic patient, supplementation of their 'best possible' glycemic control with such targeted therapies has potential to retard further progression of this blinding disease.
Collapse
Affiliation(s)
- Renu A Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, MI, United States.
| |
Collapse
|
21
|
Circular RNA hsa_circ_0010729 regulates vascular endothelial cell proliferation and apoptosis by targeting the miR-186/HIF-1α axis. Biochem Biophys Res Commun 2017; 490:104-110. [PMID: 28571741 DOI: 10.1016/j.bbrc.2017.05.164] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 05/28/2017] [Indexed: 12/21/2022]
Abstract
Circular RNAs (circRNAs) are a group of non-protein-coding RNAs generated from back splicing. Emerging evidence has demonstrated its vital regulation on angiogenesis. However, the underlying mechanism responsible for circRNAs effects on vascular endothelial cells is still unclear. In the present study, we screened the expression profiles and investigated the physiological role of circRNAs in hypoxia-induced human umbilical vein endothelial cells (HUVECs). Using circRNA microarray analysis, we identified 36 circRNAs that were significantly dysregulated including 14 down-regulated circRNAs and 22 up-regulated with 2-fold change (P < 0.05). From the over-expressed circRNAs, hsa_circ_0010729 was selected as candidate circRNA and which was validated to be significantly up-regulated using RT-PCR. In loss-of-function experiments of HUVECs, hsa_circ_0010729 knockdown suppressed the proliferation and migration ability and enhanced apoptosis. Bioinformatic prediction and luciferase assay revealed that hsa_circ_0010729 and hypoxia inducible factor 1 alpha (HIF-1α) were targeted by miR-186. Validation experiments verified that hsa_circ_0010729 was co-expressed with HIF-1α, being negatively correlated with miR-186. Moreover, rescue experiments demonstrated that miR-186 inhibitor could reverse the role of hsa_circ_0010729 knockdown on HUVECs progression. Overall, the present study identifies the crucial regulation of hsa_circ_0010729 on vascular endothelial cell proliferation and apoptosis via targeting miR-186/HIF-1α axis.
Collapse
|
22
|
Sharma M, Bhowmick R, Gappa-Fahlenkamp H. Drug-Loaded Nanoparticles Embedded in a Biomembrane Provide a Dual-Release Mechanism for Drug Delivery to the Eye. J Ocul Pharmacol Ther 2016; 32:565-573. [DOI: 10.1089/jop.2016.0050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Munish Sharma
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma
| | - Rudra Bhowmick
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma
| | | |
Collapse
|