1
|
Abbasifard M, Bagherzadeh K, Khorramdelazad H. The story of clobenpropit and CXCR4: can be an effective drug in cancer and autoimmune diseases? Front Pharmacol 2024; 15:1410104. [PMID: 39070795 PMCID: PMC11272485 DOI: 10.3389/fphar.2024.1410104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Clobenpropit is a histamine H3 receptor antagonist and has developed as a potential therapeutic drug due to its ability to inhibit CXCR4, a chemokine receptor involved in autoimmune diseases and cancer pathogenesis. The CXCL12/CXCR4 axis involves several biological phenomena, including cell proliferation, migration, angiogenesis, inflammation, and metastasis. Accordingly, inhibiting CXCR4 can have promising clinical outcomes in patients with malignancy or autoimmune disorders. Based on available knowledge, Clobenpropit can effectively regulate the release of monocyte-derived inflammatory cytokine in autoimmune diseases such as juvenile idiopathic arthritis (JIA), presenting a potential targeted target with possible advantages over current therapeutic approaches. This review summarizes the intricate interplay between Clobenpropit and CXCR4 and the molecular mechanisms underlying their interactions, comprehensively analyzing their impact on immune regulation. Furthermore, we discuss preclinical and clinical investigations highlighting the probable efficacy of Clobenpropit for managing autoimmune diseases and cancer. Through this study, we aim to clarify the immunomodulatory role of Clobenpropit and its advantages and disadvantages as a novel therapeutic opportunity.
Collapse
Affiliation(s)
- Mitra Abbasifard
- Department of Internal Medicine, School of Medicine, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Kowsar Bagherzadeh
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
2
|
Cortesi M, Soresina A, Dotta L, Gorio C, Cattalini M, Lougaris V, Porta F, Badolato R. Pathogenesis of Autoimmune Cytopenias in Inborn Errors of Immunity Revealing Novel Therapeutic Targets. Front Immunol 2022; 13:846660. [PMID: 35464467 PMCID: PMC9019165 DOI: 10.3389/fimmu.2022.846660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/21/2022] [Indexed: 12/02/2022] Open
Abstract
Autoimmune diseases are usually associated with environmental triggers and genetic predisposition. However, a few number of autoimmune diseases has a monogenic cause, mostly in children. These diseases may be the expression, isolated or associated with other symptoms, of an underlying inborn error of immunity (IEI). Autoimmune cytopenias (AICs), including immune thrombocytopenic purpura (ITP), autoimmune hemolytic anemia (AIHA), autoimmune neutropenia (AN), and Evans’ syndrome (ES) are common presentations of immunological diseases in the pediatric age, with at least 65% of cases of ES genetically determined. Autoimmune cytopenias in IEI have often a more severe, chronic, and relapsing course. Treatment refractoriness also characterizes autoimmune cytopenia with a monogenic cause, such as IEI. The mechanisms underlying autoimmune cytopenias in IEI include cellular or humoral autoimmunity, immune dysregulation in cases of hemophagocytosis or lymphoproliferation with or without splenic sequestration, bone marrow failure, myelodysplasia, or secondary myelosuppression. Genetic characterization of autoimmune cytopenias is of fundamental importance as an early diagnosis improves the outcome and allows the setting up of a targeted therapy, such as CTLA-4 IgG fusion protein (Abatacept), small molecule inhibitors (JAK-inhibitors), or gene therapy. Currently, gene therapy represents one of the most attractive targeted therapeutic approaches to treat selected inborn errors of immunity. Even in the absence of specific targeted therapies, however, whole exome genetic testing (WES) for children with chronic multilineage cytopenias should be considered as an early diagnostic tool for disease diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Manuela Cortesi
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, ASST- Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Annarosa Soresina
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, ASST- Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Laura Dotta
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, ASST- Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Chiara Gorio
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, ASST- Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Marco Cattalini
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, ASST- Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Vassilios Lougaris
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, ASST- Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Fulvio Porta
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, ASST- Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Raffaele Badolato
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, ASST- Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| |
Collapse
|
3
|
Capalbo D, Moracas C, Cappa M, Balsamo A, Maghnie M, Wasniewska MG, Greggio NA, Baronio F, Bizzarri C, Ferro G, Di Lascio A, Stancampiano MR, Azzolini S, Patti G, Longhi S, Valenzise M, Radetti G, Betterle C, Russo G, Salerno M. Primary Adrenal Insufficiency in Childhood: Data From a Large Nationwide Cohort. J Clin Endocrinol Metab 2021; 106:762-773. [PMID: 33247909 DOI: 10.1210/clinem/dgaa881] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Indexed: 01/01/2023]
Abstract
CONTEXT Primary adrenal insufficiency (PAI) is a rare and potentially life-threatening condition that is poorly characterized in children. OBJECTIVE To describe causes, presentation, auxological outcome, frequency of adrenal crisis and mortality of a large cohort of children with PAI. PATIENTS AND METHODS Data from 803 patients from 8 centers of Pediatric Endocrinology were retrospectively collected. RESULTS The following etiologies were reported: 85% (n = 682) congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD); 3.1% (n = 25) X-linked adrenoleukodystrophy; 3.1% (n = 25) autoimmune polyglandular syndrome type 1; 2.5% (n = 20) autoimmune adrenal insufficiency; 2% (n = 16) adrenal hypoplasia congenital; 1.2% (n = 10) non-21-OHD CAH; 1% (n = 8) rare syndromes; 0.6% (n = 5) familial glucocorticoid deficiency; 0.4% (n = 3) acquired adrenal insufficiency; 9 patients (1%) did not receive diagnosis. Since 21-OHD CAH has been extensively characterized, it was not further reviewed. In 121 patients with a diagnosis other than 21-OHD CAH, the most frequent symptoms at diagnosis were fatigue (67%), hyperpigmentation (50.4%), dehydration (33%), and hypotension (31%). Elevated adrenocorticotropic hormone (96.4%) was the most common laboratory finding followed by hyponatremia (55%), hyperkalemia (32.7%), and hypoglycemia (33.7%). The median age at presentation was 6.5 ± 5.1 years (0.1-17.8 years) and the mean duration of symptoms before diagnosis was 5.6 ± 11.6 months (0-56 months) depending on etiology. Rate of adrenal crisis was 2.7 per 100 patient-years. Three patients died from the underlying disease. Adult height, evaluated in 70 patients, was -0.70 ± 1.20 standard deviation score. CONCLUSIONS We characterized one of the largest cohorts of children with PAI aiming to improve the knowledge on diagnosis of this rare condition.
Collapse
Affiliation(s)
- Donatella Capalbo
- Pediatric Endocrinology Unit, Department of Mother and Child, University Hospital Federico II, Endo-ERN Center for Rare Endocrine Conditions, Naples, Italy
| | - Cristina Moracas
- Pediatric Endocrinology Unit, Department of Translational Medical Sciences, University of Naples Federico II, Endo-ERN Center for Rare Endocrine Conditions, Naples, Italy
| | - Marco Cappa
- Unit of Endocrinology, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| | - Antonio Balsamo
- Pediatric Unit, Department of Medical and Surgical Sciences, S.Orsola-Malpighi University Hospital, Endo-ERN Center for Rare Endocrine Conditions, Bologna, Italy
| | - Mohamad Maghnie
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, University of Genova, 16147 Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | | | - Nella Augusta Greggio
- Department of Women's and Children's Health of Padua, Pediatric Endocrinology and Adolescence Unit, Endo-ERN Center for Rare Endocrine Conditions, Padua, Italy
| | - Federico Baronio
- Pediatric Unit, Department of Medical and Surgical Sciences, S.Orsola-Malpighi University Hospital, Endo-ERN Center for Rare Endocrine Conditions, Bologna, Italy
| | - Carla Bizzarri
- Unit of Endocrinology, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| | - Giusy Ferro
- Unit of Endocrinology, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| | - Alessandra Di Lascio
- Department of Pediatrics, Endocrine Unit, IRCCS San Raffaele Scientific Institute, Endo-ERN Center for Rare Endocrine Conditions, Milan, Italy
| | - Marianna Rita Stancampiano
- Department of Pediatrics, Endocrine Unit, IRCCS San Raffaele Scientific Institute, Endo-ERN Center for Rare Endocrine Conditions, Milan, Italy
| | - Sara Azzolini
- Department of Women's and Children's Health of Padua, Pediatric Endocrinology and Adolescence Unit, Endo-ERN Center for Rare Endocrine Conditions, Padua, Italy
| | - Giuseppa Patti
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, University of Genova, 16147 Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Silvia Longhi
- Department of Pediatrics, Regional Hospital, Bolzano, Italy
| | - Mariella Valenzise
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | | | - Corrado Betterle
- Unit of Endocrinology, Department of Medicine (DIMED) University of Padua, Padua, Italy
| | - Gianni Russo
- Department of Pediatrics, Endocrine Unit, IRCCS San Raffaele Scientific Institute, Endo-ERN Center for Rare Endocrine Conditions, Milan, Italy
| | - Mariacarolina Salerno
- Pediatric Endocrinology Unit, Department of Translational Medical Sciences, University of Naples Federico II, Endo-ERN Center for Rare Endocrine Conditions, Naples, Italy
| |
Collapse
|
4
|
Thymic and Postthymic Regulation of Naïve CD4(+) T-Cell Lineage Fates in Humans and Mice Models. Mediators Inflamm 2016; 2016:9523628. [PMID: 27313405 PMCID: PMC4904118 DOI: 10.1155/2016/9523628] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/28/2016] [Indexed: 12/14/2022] Open
Abstract
Our understanding of how thymocytes differentiate into many subtypes has been increased progressively in its complexity. At early life, the thymus provides a suitable microenvironment with specific combination of stromal cells, growth factors, cytokines, and chemokines to induce the bone marrow lymphoid progenitor T-cell precursors into single-positive CD4+ and CD8+ T effectors and CD4+CD25+ T-regulatory cells (Tregs). At postthymic compartments, the CD4+ T-cells acquire distinct phenotypes which include the classical T-helper 1 (Th1), T-helper 2 (Th2), T-helper 9 (Th9), T-helper 17 (Th17), follicular helper T-cell (Tfh), and induced T-regulatory cells (iTregs), such as the regulatory type 1 cells (Tr1) and transforming growth factor-β- (TGF-β-) producing CD4+ T-cells (Th3). Tregs represent only a small fraction, 5–10% in mice and 1-2% in humans, of the overall CD4+ T-cells in lymphoid tissues but are essential for immunoregulatory circuits mediating the inhibition and expansion of all lineages of T-cells. In this paper, we first provide an overview of the major cell-intrinsic developmental programs that regulate T-cell lineage fates in thymus and periphery. Next, we introduce the SV40 immortomouse as a relevant mice model for implementation of new approaches to investigate thymus organogenesis, CD4 and CD8 development, and thymus cells tumorogenesis.
Collapse
|
5
|
De Martino L, Capalbo D, Improda N, Lorello P, Ungaro C, Di Mase R, Cirillo E, Pignata C, Salerno M. Novel Findings into AIRE Genetics and Functioning: Clinical Implications. Front Pediatr 2016; 4:86. [PMID: 27597936 PMCID: PMC4992815 DOI: 10.3389/fped.2016.00086] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/02/2016] [Indexed: 01/22/2023] Open
Abstract
Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED), formerly known as autoimmune polyendocrine syndrome type 1, is a paradigm of a monogenic autoimmune disease caused by mutations of a gene, named autoimmune regulator (AIRE). AIRE acts as a transcription regulator that promotes immunological central tolerance by inducing the ectopic thymic expression of many tissue-specific antigens. Although the syndrome is a monogenic disease, it is characterized by a wide variability of the clinical expression with no significant correlation between genotype and phenotype. Indeed, many aspects regarding the exact role of AIRE and APECED pathogenesis still remain unraveled. In the last decades, several studies in APECED and in its mouse experimental counterpart have revealed new insights on how immune system learns self-tolerance. Moreover, novel interesting findings have extended our understanding of AIRE's function and regulation thus improving our knowledge on the pathogenesis of APECED. In this review, we will summarize recent novelties on molecular mechanisms underlying the development of APECED and their clinical implications.
Collapse
Affiliation(s)
- Lucia De Martino
- Pediatric Section, Department of Translational Medical Sciences, Federico II University , Naples , Italy
| | | | - Nicola Improda
- Pediatric Section, Department of Translational Medical Sciences, Federico II University , Naples , Italy
| | - Paola Lorello
- Pediatric Section, Department of Translational Medical Sciences, Federico II University , Naples , Italy
| | - Carla Ungaro
- Department of Pediatrics, Federico II University , Naples , Italy
| | | | - Emilia Cirillo
- Pediatric Section, Department of Translational Medical Sciences, Federico II University , Naples , Italy
| | - Claudio Pignata
- Pediatric Section, Department of Translational Medical Sciences, Federico II University , Naples , Italy
| | - Mariacarolina Salerno
- Pediatric Section, Department of Translational Medical Sciences, Federico II University , Naples , Italy
| |
Collapse
|
6
|
Giardino G, Gallo V, Prencipe R, Gaudino G, Romano R, De Cataldis M, Lorello P, Palamaro L, Di Giacomo C, Capalbo D, Cirillo E, D'Assante R, Pignata C. Unbalanced Immune System: Immunodeficiencies and Autoimmunity. Front Pediatr 2016; 4:107. [PMID: 27766253 PMCID: PMC5052255 DOI: 10.3389/fped.2016.00107] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/20/2016] [Indexed: 01/19/2023] Open
Abstract
Increased risk of developing autoimmune manifestations has been identified in different primary immunodeficiencies (PIDs). In such conditions, autoimmunity and immune deficiency represent intertwined phenomena that reflect inadequate immune function. Autoimmunity in PIDs may be caused by different mechanisms, including defects of tolerance to self-antigens and persistent stimulation as a result of the inability to eradicate antigens. This general immune dysregulation leads to compensatory and exaggerated chronic inflammatory responses that lead to tissue damage and autoimmunity. Each PID may be characterized by distinct, peculiar autoimmune manifestations. Moreover, different pathogenetic mechanisms may underlie autoimmunity in PID. In this review, the main autoimmune manifestations observed in different PID, including humoral immunodeficiencies, combined immunodeficiencies, and syndromes with immunodeficiencies, are summarized. When possible, the pathogenetic mechanism underlying autoimmunity in a specific PID has been explained.
Collapse
Affiliation(s)
- Giuliana Giardino
- Department of Translational Medical Sciences, Federico II University of Naples , Naples , Italy
| | - Vera Gallo
- Department of Translational Medical Sciences, Federico II University of Naples , Naples , Italy
| | - Rosaria Prencipe
- Department of Translational Medical Sciences, Federico II University of Naples , Naples , Italy
| | - Giovanni Gaudino
- Department of Translational Medical Sciences, Federico II University of Naples , Naples , Italy
| | - Roberta Romano
- Department of Translational Medical Sciences, Federico II University of Naples , Naples , Italy
| | - Marco De Cataldis
- Department of Translational Medical Sciences, Federico II University of Naples , Naples , Italy
| | - Paola Lorello
- Department of Translational Medical Sciences, Federico II University of Naples , Naples , Italy
| | - Loredana Palamaro
- Department of Translational Medical Sciences, Federico II University of Naples , Naples , Italy
| | - Chiara Di Giacomo
- Department of Translational Medical Sciences, Federico II University of Naples , Naples , Italy
| | - Donatella Capalbo
- Department of Translational Medical Sciences, Federico II University of Naples , Naples , Italy
| | - Emilia Cirillo
- Department of Translational Medical Sciences, Federico II University of Naples , Naples , Italy
| | - Roberta D'Assante
- Department of Translational Medical Sciences, Federico II University of Naples , Naples , Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences, Federico II University of Naples , Naples , Italy
| |
Collapse
|
7
|
|
8
|
Improda N, Capalbo D, Cirillo E, Cerbone M, Esposito A, Pignata C, Salerno M. Cutaneous vasculitis in patients with autoimmune polyendocrine syndrome type 1: report of a case and brief review of the literature. BMC Pediatr 2014; 14:272. [PMID: 25361846 PMCID: PMC4286916 DOI: 10.1186/1471-2431-14-272] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 09/04/2014] [Indexed: 11/23/2022] Open
Abstract
Background Autoimmune polyendocrine syndrome type 1, also known as autoimmune polyendocrinopathy-candidiasis-ectodermal-dystrophy, is a rare autosomal recessive disease due to pathogenic variants in the AIRE gene. Classic features of the syndrome are mucocutaneous candidiasis, chronic idiopathic hypoparathyroidism and Addison disease. However, other endocrine and non-endocrine components, may occur with a different prevalence. In addition to ectodermal features, which are quite common features of the disease, APS 1 patients may experience other types of skin alterations, such as vasculitic skin rash. An early diagnosis of APS 1 can be very challenging, due to the high clinical heterogeneity, and a considerable delay may occur between the appearance of symptoms and the diagnosis. Case presentation We report on a girl affected by APS 1 who presented with cutaneous vasculitis when she was seven-months old, some years before the onset of the common components of the disease. Conclusion Clinical picture of APS 1 may be characterized by isolated rare or atypical autoimmune or immune-mediated manifestations, even years before the onset of the classic components of the disease. Among these uncommon features, skin rashes of variable form and duration may occur, most of them being associated with histopathological features of vasculitis. Our case suggests that cutaneous vasculitis may represent a first sign of APS 1. The clinical significance of cutaneous vasculitis in the context of APS 1 is still debated. It may represent a rare, unusual, early component of the disease or a clinical manifestation secondarily related to the typical APS 1 components (i.e. autoimmune thyroid disease), which are frequently associated with rheumatologic-like signs and symptoms. Alternatively, it may be the expression of an independent disease co-occuring with APS 1. In conclusion, our case suggests that children presenting with unexplained vasculitic skin rash should be followed-up in order to early identify APS 1.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mariacarolina Salerno
- Unit of Pediatric Endocrinology, Department of Traslational Medical Sciences, "Federico II" University of Naples, Naples, Italy.
| |
Collapse
|
9
|
Steed AL, Stappenbeck TS. Role of viruses and bacteria-virus interactions in autoimmunity. Curr Opin Immunol 2014; 31:102-7. [PMID: 25459001 DOI: 10.1016/j.coi.2014.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 12/16/2022]
Abstract
A potential role for viral and bacterial-viral interactions in the pathogenesis of autoimmune disease has been long recognized. Recently, intensive investigation has begun to decipher interactions between specific microbes with the host that contribute toward autoimmunity. This work has primarily focused on known viral and bacterial pathogens. A major challenge is to determine the role of bacteria that are typically considered as commensals as well as chronic viruses. Furthermore, equally challenging is to prove causality given the potential complexity of microbe-microbe interactions. Important initial contributions to this field have shown that specific interactions of microbes with hosts that contain a background of genetic susceptibility can play a role in autoimmune pathogenesis. In this review, we describe principles of immune tolerance with a focus on its breakdown during pathogenic as well as commensal relationships between the host and the microbial world.
Collapse
Affiliation(s)
- Ashley L Steed
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thaddeus S Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
10
|
Thomé R, Bombeiro AL, Issayama LK, Rapôso C, Lopes SCP, da Costa TA, Di Gangi R, Ferreira IT, Longhini ALF, Oliveira ALR, da Cruz Höfling MA, Costa FTM, Verinaud L. Exacerbation of autoimmune neuro-inflammation in mice cured from blood-stage Plasmodium berghei infection. PLoS One 2014; 9:e110739. [PMID: 25329161 PMCID: PMC4201583 DOI: 10.1371/journal.pone.0110739] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 09/16/2014] [Indexed: 01/24/2023] Open
Abstract
The thymus plays an important role shaping the T cell repertoire in the periphery, partly, through the elimination of inflammatory auto-reactive cells. It has been shown that, during Plasmodium berghei infection, the thymus is rendered atrophic by the premature egress of CD4+CD8+ double-positive (DP) T cells to the periphery. To investigate whether autoimmune diseases are affected after Plasmodium berghei NK65 infection, we immunized C57BL/6 mice, which was previously infected with P. berghei NK65 and treated with chloroquine (CQ), with MOG35-55 peptide and the clinical course of Experimental Autoimmune Encephalomyelitis (EAE) was evaluated. Our results showed that NK65+CQ+EAE mice developed a more severe disease than control EAE mice. The same pattern of disease severity was observed in MOG35-55-immunized mice after adoptive transfer of P. berghei-elicited splenic DP-T cells. The higher frequency of IL-17+- and IFN-γ+-producing DP lymphocytes in the Central Nervous System of these mice suggests that immature lymphocytes contribute to disease worsening. To our knowledge, this is the first study to integrate the possible relationship between malaria and multiple sclerosis through the contribution of the thymus. Notwithstanding, further studies must be conducted to assert the relevance of malaria-induced thymic atrophy in the susceptibility and clinical course of other inflammatory autoimmune diseases.
Collapse
Affiliation(s)
- Rodolfo Thomé
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - André Luis Bombeiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Luidy Kazuo Issayama
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Catarina Rapôso
- Department of Histology and Embryology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Stefanie Costa Pinto Lopes
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Thiago Alves da Costa
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Rosária Di Gangi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Isadora Tassinari Ferreira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | | | | | | | - Liana Verinaud
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
11
|
Capalbo D, Improda N, Esposito A, De Martino L, Barbieri F, Betterle C, Pignata C, Salerno M. Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy from the pediatric perspective. J Endocrinol Invest 2013; 36:903-12. [PMID: 23723078 DOI: 10.3275/8999] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a rare autosomal recessive disease caused by mutations of the AutoImmune REgulator gene. The clinical spectrum of the disease encompasses several autoimmune endocrine and non-endocrine manifestations, which may lead to acute metabolic alterations and eventually life-threatening events. The clinical diagnosis is defined by the presence of at least two components of the classic triad including chronic mucocoutaneous candidiasis (CMC), chronic hypoparathyroidism (CH), Addison's disease (AD). Other common features of the disease are hypergonadotropic hypogonadism, alopecia, vitiligo, autoimmune hepatitis, Type 1 diabetes, gastrointestinal dysfunction. APECED usually begins in childhood. CMC is the first manifestation to appear, usually before the age of 5 yr, followed by CH and then by AD. The clinical phenotype may evolve over several years and many components of the disease may not appear until the 4th or 5th decade of life. The phenotypical expression of the syndrome shows a wide variability even between siblings with the same genotype. In view of this heterogeneity, an early diagnosis of APECED can be very challenging often leading to a considerable diagnostic delay. Therefore, clinicians should be aware that the presence of even a minor component of APECED in children should prompt a careful investigation for other signs and symptoms of the disease, thus allowing an early diagnosis and prevention of severe and life-threatening events. Aim of this review is to focus on clinical presentation, diagnosis and management of the major components of APECED in children particularly focusing on endocrine features of the disease.
Collapse
Affiliation(s)
- D Capalbo
- Pediatric Endocrinology Unit, Department of Translational Medical Sciences, University "Federico II" of Naples, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
12
|
De Martino L, Capalbo D, Improda N, D'Elia F, Di Mase R, D'Assante R, D'Acunzo I, Pignata C, Salerno M. APECED: A Paradigm of Complex Interactions between Genetic Background and Susceptibility Factors. Front Immunol 2013; 4:331. [PMID: 24167503 PMCID: PMC3805967 DOI: 10.3389/fimmu.2013.00331] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/30/2013] [Indexed: 01/08/2023] Open
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a rare autosomal recessive disease, caused by mutations of a single gene named Autoimmune regulator gene (AIRE) which results in a failure of T-cell tolerance. Central tolerance takes place within the thymus and represents the mechanism by which potentially auto-reactive T-cells are eliminated through the negative selection process. The expression of tissue-specific antigens (TSAs) by medullary thymic epithelial cells (mTECs) in the thymus is a key process in the central tolerance and is driven by the protein encoded by AIRE gene, the transcription factor autoimmune regulator (AIRE). A failure in this process caused by AIRE mutations is thought to be responsible of the systemic autoimmune reactions of APECED. APECED is characterized by several autoimmune endocrine and non-endocrine manifestations and the phenotype is often complex. Although APECED is the paradigm of a monogenic autoimmune disorder, it is characterized by a wide variability of the clinical expression even between siblings with the same genotype, thus implying that additional mechanisms, other than the failure of Aire function, are involved in the pathogenesis of the disease. Unraveling open issues of the molecular basis of APECED, will help improve diagnosis, management, and therapeutical strategies of this complex disease.
Collapse
Affiliation(s)
- Lucia De Martino
- Pediatric Section, Department of Translational Medical Sciences, "Federico II" University , Naples , Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sindromes endocrinos autoinmunes: cuándo sospechar y estudiar un sindrome poliglandular (SPG). REVISTA MÉDICA CLÍNICA LAS CONDES 2013. [DOI: 10.1016/s0716-8640(13)70224-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Thomé R, Moraes AS, Bombeiro AL, Farias ADS, Francelin C, da Costa TA, Di Gangi R, dos Santos LMB, de Oliveira ALR, Verinaud L. Chloroquine treatment enhances regulatory T cells and reduces the severity of experimental autoimmune encephalomyelitis. PLoS One 2013; 8:e65913. [PMID: 23799062 PMCID: PMC3683039 DOI: 10.1371/journal.pone.0065913] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/30/2013] [Indexed: 12/13/2022] Open
Abstract
Background The modulation of inflammatory processes is a necessary step, mostly orchestrated by regulatory T (Treg) cells and suppressive Dendritic Cells (DCs), to prevent the development of deleterious responses and autoimmune diseases. Therapies that focused on adoptive transfer of Treg cells or their expansion in vivo achieved great success in controlling inflammation in several experimental models. Chloroquine (CQ), an anti-malarial drug, was shown to reduce inflammation, although the mechanisms are still obscure. In this context, we aimed to access whether chloroquine treatment alters the frequency of Treg cells and DCs in normal mice. In addition, the effects of the prophylactic and therapeutic treatment with CQ on Experimental Autoimmune Encephalomyelitis (EAE), an experimental model for human Multiple Sclerosis, was investigated as well. Methodology/Principal Findings EAE was induced in C57BL/6 mice by immunization with myelin oligodendrocyte glycoprotein (MOG35–55) peptide. C57BL/6 mice were intraperitoneally treated with chloroquine. Results show that the CQ treatment provoked an increase in Treg cells frequency as well as a decrease in DCs. We next evaluated whether prophylactic CQ administration is capable of reducing the clinical and histopathological signs of EAE. Our results demonstrated that CQ-treated mice developed mild EAE compared to controls that was associated with lower infiltration of inflammatory cells in the central nervous system CNS) and increased frequency of Treg cells. Also, proliferation of MOG35–55-reactive T cells was significantly inhibited by chloroquine treatment. Similar results were observed when chloroquine was administrated after disease onset. Conclusion We show for the first time that CQ treatment promotes the expansion of Treg cells, corroborating previous reports indicating that chloroquine has immunomodulatory properties. Our results also show that CQ treatment suppress the inflammation in the CNS of EAE-inflicted mice, both in prophylactic and therapeutic approaches. We hypothesized that the increased number of regulatory T cells induced by the CQ treatment is involved in the reduction of the clinical signs of EAE.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Cells, Cultured
- Central Nervous System/drug effects
- Central Nervous System/immunology
- Central Nervous System/pathology
- Chloroquine/pharmacology
- Chloroquine/therapeutic use
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Humans
- Immunologic Factors/pharmacology
- Immunologic Factors/therapeutic use
- Interferon-gamma/metabolism
- Interleukin-17/metabolism
- Mice
- Mice, Inbred C57BL
- Multiple Sclerosis/drug therapy
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/transplantation
Collapse
Affiliation(s)
- Rodolfo Thomé
- Department of Structural and Functional Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Adriel S. Moraes
- Department of Genetics, Evolution and Bioagents, University of Campinas, Campinas, São Paulo, Brazil
| | - André Luis Bombeiro
- Department of Structural and Functional Biology, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Carolina Francelin
- Department of Structural and Functional Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Thiago Alves da Costa
- Department of Structural and Functional Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Rosária Di Gangi
- Department of Structural and Functional Biology, University of Campinas, Campinas, São Paulo, Brazil
| | | | | | - Liana Verinaud
- Department of Structural and Functional Biology, University of Campinas, Campinas, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
15
|
Capalbo D, Scala MG, Melis D, Minopoli G, Improda N, Palamaro L, Pignata C, Salerno M. Clinical Heterogeneity in two patients with Noonan-like Syndrome associated with the same SHOC2 mutation. Ital J Pediatr 2012; 38:48. [PMID: 22995099 PMCID: PMC4231415 DOI: 10.1186/1824-7288-38-48] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 09/18/2012] [Indexed: 02/04/2023] Open
Abstract
Noonan-like syndrome with loose anagen hair (NS/LAH; OMIM #607721) has been recently related to the invariant c.4A > G missense change in SHOC2. It is characterized by features reminiscent of Noonan syndrome. Ectodermal involvement, short stature associated to growth hormone (GH) deficiency (GHD), and cognitive deficits are common features. We compare in two patients with molecularly confirmed NS/LAH diagnosis, the clinical phenotype and pathogenetic mechanism underlying short stature. In particular, while both the patients exhibited a severe short stature, GH/IGFI axis functional evaluation revealed a different pathogenetic alteration, suggesting in one patient an upstream alteration (typical GHD) and in the other one a peripheral GH insensitivity. Since only a few cases of NS/LAH associated to SHOC2 mutations have been so far described, the complex phenotype of the syndrome and the exact mechanism impairing GH/IGFI axis still remain to be elucidated and studies on larger cohort of subjects are needed to better delineate this syndrome.
Collapse
Affiliation(s)
- Donatella Capalbo
- Department of Pediatrics, Federico II University of Naples, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|