1
|
Nwako JG, McCauley HA. Enteroendocrine cells regulate intestinal homeostasis and epithelial function. Mol Cell Endocrinol 2024; 593:112339. [PMID: 39111616 PMCID: PMC11401774 DOI: 10.1016/j.mce.2024.112339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/11/2024]
Abstract
Enteroendocrine cells (EECs) are well-known for their systemic hormonal effects, especially in the regulation of appetite and glycemia. Much less is known about how the products made by EECs regulate their local environment within the intestine. Here, we focus on paracrine interactions between EECs and other intestinal cells as they regulate three essential aspects of intestinal homeostasis and physiology: 1) intestinal stem cell function and proliferation; 2) nutrient absorption; and 3) mucosal barrier function. We also discuss the ability of EECs to express multiple hormones, describe in vitro and in vivo models to study EECs, and consider how EECs are altered in GI disease.
Collapse
Affiliation(s)
- Jennifer G Nwako
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, 111 Mason Farm Road, Molecular Biology Research Building 5341C, Chapel Hill, NC 27599, USA
| | - Heather A McCauley
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, 111 Mason Farm Road, Molecular Biology Research Building 5341C, Chapel Hill, NC 27599, USA.
| |
Collapse
|
2
|
Boerth JA, Chinn AJ, Schimpl M, Bommakanti G, Chan C, Code EL, Giblin KA, Gohlke A, Hansel CS, Jin M, Kavanagh SL, Lamb ML, Lane JS, Larner CJB, Mfuh AM, Moore RK, Puri T, Quinn TR, Ye M, Robbins KJ, Gancedo-Rodrigo M, Tang H, Walsh J, Ware J, Wrigley GL, Reddy IK, Zhang Y, Grimster NP. Discovery of a Novel Benzodiazepine Series of Cbl-b Inhibitors for the Enhancement of Antitumor Immunity. ACS Med Chem Lett 2023; 14:1848-1856. [PMID: 38116444 PMCID: PMC10726479 DOI: 10.1021/acsmedchemlett.3c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023] Open
Abstract
Casitas B-lineage lymphoma proto-oncogene-b (Cbl-b) is a RING finger E3 ligase that is responsible for repressing T-cell, natural killer (NK) cell, and B-cell activation. The robust antitumor activity observed in Cbl-b deficient mice arising from elevated T-cell and NK-cell activity justified our discovery effort toward Cbl-b inhibitors that might show therapeutic promise in immuno-oncology, where activation of the immune system can drive the recognition and killing of cancer cells. We undertook a high-throughput screening campaign followed by structure-enabled optimization to develop a novel benzodiazepine series of potent Cbl-b inhibitors. This series displayed nanomolar levels of biochemical potency, as well as potent T-cell activation. The functional activity of this class of Cbl-b inhibitors was further corroborated with ubiquitin-based cellular assays.
Collapse
Affiliation(s)
- Jeffrey A. Boerth
- Medicinal
Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Alex J. Chinn
- Medicinal
Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Marianne Schimpl
- Discovery
Sciences, R&D, The Discovery Centre, AstraZeneca, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Gayathri Bommakanti
- Bioscience,
Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Christina Chan
- DMPK,
Research and Early Development, Oncology R&D, AstraZeneca, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Erin L. Code
- Discovery
Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Kathryn A. Giblin
- Medicinal
Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge
Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Andrea Gohlke
- Discovery
Sciences, R&D, The Discovery Centre, AstraZeneca, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Catherine S. Hansel
- Discovery
Sciences, R&D, The Discovery Centre, AstraZeneca, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Meizhong Jin
- Medicinal
Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Stefan L. Kavanagh
- Clinical
Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, United Kingdom
| | - Michelle L. Lamb
- Medicinal
Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Jordan S. Lane
- Discovery
Sciences, R&D, The Discovery Centre, AstraZeneca, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Carrie J. B. Larner
- Clinical
Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, United Kingdom
| | - Adelphe M. Mfuh
- Medicinal
Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Rachel K. Moore
- High
Throughput Screening, Hit Discovery, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Alderley Park, Macclesfield SK10 4TG, United Kingdom
| | - Taranee Puri
- Medicinal
Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Taylor R. Quinn
- Medicinal
Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Minwei Ye
- Bioscience,
Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Kevin J. Robbins
- Medicinal
Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Miguel Gancedo-Rodrigo
- Discovery
Sciences, R&D, The Discovery Centre, AstraZeneca, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Haoran Tang
- Discovery
Sciences, R&D, The Discovery Centre, AstraZeneca, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Jarrod Walsh
- High
Throughput Screening, Hit Discovery, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Alderley Park, Macclesfield SK10 4TG, United Kingdom
| | - Jamie Ware
- Discovery
Sciences, R&D, The Discovery Centre, AstraZeneca, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Gail L. Wrigley
- Medicinal
Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge
Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Iswarya Karapa Reddy
- Bioscience,
Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Yun Zhang
- Medicinal
Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Neil P. Grimster
- Medicinal
Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| |
Collapse
|
3
|
Zhang D, Jia M, Wang C, Li Y, Ma C, Zhu G, Ma R, Wen D, Jia X, Xu G, Zhang X, Cong B. CCK2-receptor deficiency impairs immune balance by influencing CD4 + T cells development by inhibiting cortical-thymic-epithelial-cells. Exp Biol Med (Maywood) 2023; 248:1718-1731. [PMID: 37787155 PMCID: PMC10792431 DOI: 10.1177/15353702231198083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/05/2023] [Indexed: 10/04/2023] Open
Abstract
Immune balance is crucial for an organism's survival and is inseparable from the regulation of the nervous system. Accumulating evidence indicates that cholecystokinin (CCK) plays an important role in mediating the immune response through the activation of cholecystokinin receptors (CCKRs). However, it remains unclear whether CCKRs deficiency may impair immune balance. Here, we showed that CCK2R-deficient adult mice were immunocompromised and had an increased risk of shock and even death in an endotoxemia (ETM)/endotoxin shock (ES) model. In addition, in both adult and juvenile mice, CCK2R deficiency not only influenced the development of CD4 single-positive (SP) thymocytes in thymic positive selection but also decreased the population of CD3+ CD4+ T cells in the spleen. More importantly, CCK2R deficiency inhibited the expression of major histocompatibility complex class II (MHC II) and CD83 on cortical thymic epithelial cells (cTECs) in juvenile and adult mice. Overall, our study suggests that CCK2R is essential for maintaining CD4+ T cell development in the thymus and reveals that CCK2R plays an important role in maintaining immune balance.
Collapse
Affiliation(s)
- Dong Zhang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050017, China
| | - Miaomiao Jia
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Chuan Wang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
| | - Yingmin Li
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Guiyun Zhu
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Rufei Ma
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Di Wen
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Xianxian Jia
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Guangming Xu
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiaojing Zhang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| |
Collapse
|
4
|
Hohman LS, Osborne LC. A gut-centric view of aging: Do intestinal epithelial cells contribute to age-associated microbiota changes, inflammaging, and immunosenescence? Aging Cell 2022; 21:e13700. [PMID: 36000805 PMCID: PMC9470900 DOI: 10.1111/acel.13700] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 01/25/2023] Open
Abstract
Intestinal epithelial cells (IECs) serve as both a physical and an antimicrobial barrier against the microbiota, as well as a conduit for signaling between the microbiota and systemic host immunity. As individuals age, the balance between these systems undergoes a myriad of changes due to age-associated changes to the microbiota, IECs themselves, immunosenescence, and inflammaging. In this review, we discuss emerging data related to age-associated loss of intestinal barrier integrity and posit that IEC dysfunction may play a central role in propagating age-associated alterations in microbiota composition and immune homeostasis.
Collapse
Affiliation(s)
- Leah S. Hohman
- Department of Microbiology & Immunology, Life Sciences InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Lisa C. Osborne
- Department of Microbiology & Immunology, Life Sciences InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
5
|
Morales-Magaña J, Arciniega-Martínez IM, Drago-Serrano ME, Reséndiz-Albor AA, Jarillo-Luna RA, Cruz-Baquero A, Gómez-López M, Guzmán-Mejía F, Pacheco-Yépez J. Cholecystokinin Outcome on Markers of Intestinal IgA Antibody Response. Curr Issues Mol Biol 2022; 44:2542-2553. [PMID: 35735614 PMCID: PMC9221551 DOI: 10.3390/cimb44060173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
Cholecystokinin 8 (CCK8) is an entero-octapeptide that participates in crosstalk with components of intestinal immunity via the CCK receptor (CCKR), but its role in modulation of the IgA response is not fully known under physiological conditions. Male eight-week-old BALB/c mice each were intraperitoneally injected once during 7 days with CCK8, devazapide (CCKR1 antagonist), L365,260 (CCKR2 antagonist) or vehicle (sham group). In intestinal lavages, total and secretory IgA (SIgA) were determined by ELISA; in lamina propria, IgA+ B lymphocytes and IgA+ plasma cells were analyzed by flow cytometry; mRNA levels of polymeric immunoglobulin receptor (pIgR) in epithelial cells and α chain, interleukins (ILs) in lamina propria cells were assessed by qRTPCR. Regarding the sham conditions, IgA+ plasma-cell percentage and IL-2, IL-5, IL-10 and transforming growth factor-β (TGF-β) mRNA levels were either increased by CCK8 or decreased by both CCKR antagonists. For IgA/SIgA responses, IL-4/IL-6 mRNA levels were decreased by all drugs and pIgR mRNA was increased by CCK8 and reduced by L365,260. IgA+ B cell percentage and α chain mRNA levels were elicited by CCK8 and L365,260. Data suggested a presumable differential role of CCK/CCKR on the IgA-response; outcome of L365,260 on the elicitation of IgA+ B cells and α chain mRNA needs further examination.
Collapse
Affiliation(s)
- Juan Morales-Magaña
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Mexico City 11340, Mexico; (J.M.-M.); (R.A.J.-L.); (M.G.-L.)
| | - Ivonne Maciel Arciniega-Martínez
- Laboratorio de Inmunidad de Mucosas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Mexico City 11340, Mexico; (I.M.A.-M.); (A.A.R.-A.)
| | - Maria Elisa Drago-Serrano
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Calzada del Hueso No. 1100, Mexico City 04960, Mexico; (M.E.D.-S.); (F.G.-M.)
| | - Aldo Arturo Reséndiz-Albor
- Laboratorio de Inmunidad de Mucosas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Mexico City 11340, Mexico; (I.M.A.-M.); (A.A.R.-A.)
| | - Rosa Adriana Jarillo-Luna
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Mexico City 11340, Mexico; (J.M.-M.); (R.A.J.-L.); (M.G.-L.)
- Departamento de Formación Básica Disciplinaria, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Mexico City 11340, Mexico
| | - Andrea Cruz-Baquero
- Bacteriología, Facultad de Ciencias de la Salud, Universidad Colegio Mayor de Cundinamarca, Bogotá 111311, Colombia;
| | - Modesto Gómez-López
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Mexico City 11340, Mexico; (J.M.-M.); (R.A.J.-L.); (M.G.-L.)
| | - Fabiola Guzmán-Mejía
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Calzada del Hueso No. 1100, Mexico City 04960, Mexico; (M.E.D.-S.); (F.G.-M.)
| | - Judith Pacheco-Yépez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Mexico City 11340, Mexico; (J.M.-M.); (R.A.J.-L.); (M.G.-L.)
- Correspondence: ; Tel.: +52-5557296000 (ext. 62817)
| |
Collapse
|
6
|
A Novel Pathway of Flavonoids Protecting against Inflammatory Bowel Disease: Modulating Enteroendocrine System. Metabolites 2022; 12:metabo12010031. [PMID: 35050153 PMCID: PMC8777795 DOI: 10.3390/metabo12010031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a comprehensive term for chronic or relapsing inflammatory diseases occurring in the intestinal tract, generally including Crohn's disease (CD) and ulcerative colitis (UC). Presently, the pathogenesis of IBD is unknown, yet multiple factors have been reported to be related with the development of IBD. Flavonoids are phytochemicals with biological activity, which are ubiquitously distributed in edible plants, such as fruits and vegetables. Recent studies have demonstrated impressively that flavonoids have anti-IBD effects through multiple mechanisms. These include anti-inflammatory and antioxidant actions; the preservation of the epithelial barrier integrity, the intestinal immunomodulatory property, and the shaping microbiota composition and function. In addition, a few studies have shown the impact of flavonoids on enterohormones release; nonetheless, there is hardly any work showing the link between flavonoids, enterohormones release and IBD. So far, the interaction between flavonoids, enterohormones and IBD is elucidated for the first time in this review. Furthermore, the inference can be drawn that flavonoids may protect against IBD through modulating enterohormones, such as glucagon-like peptide 1 (GLP-1), GLP-2, dipeptidyl peptidase-4 inhibitors (DPP-4 inhibitors), ghrelin and cholecystokinin (CCK). In conclusion, this manuscript explores a possible mechanism of flavonoids protecting against IBD.
Collapse
|
7
|
The Cholecystokinin Type 2 Receptor, a Pharmacological Target for Pain Management. Pharmaceuticals (Basel) 2021; 14:ph14111185. [PMID: 34832967 PMCID: PMC8618735 DOI: 10.3390/ph14111185] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 02/06/2023] Open
Abstract
Over the past decades, accumulating evidence has demonstrated a pivotal role of cholecystokinin type 2 receptor (CCK2R) in pain modulation. The established role of CCK2R activation in directly facilitating nociception has led to the development of several CCK2R antagonists, which have been shown to successfully alleviate pain in several rodent models of pain. However, the outcomes of clinical trials are more modest since they have not demonstrated the expected biological effect obtained in animals. Such discordances of results between preclinical and clinical studies suggest reconsidering our knowledge about the molecular basis of the pharmacology and functioning of CCK2R. This review focuses on the cellular localization of CCK2R specifically in the sensory nervous system and discusses in further detail the molecular mechanisms and signal transduction pathways involved in controlling pain perception. We then provide a comprehensive overview of the most successful compounds targeting CCK2R and report recent advances in pharmacological strategies used to achieve CCK2R modulation. We purposely distinguish between CCK2R benefits obtained in preclinical models and outcomes in clinical trials with different pain etiologies. Lastly, we emphasize the biological and clinical relevance of CCK2R as a promising target for the development of new treatments for pain management.
Collapse
|
8
|
Suslov AV, Chairkina E, Shepetovskaya MD, Suslova IS, Khotina VA, Kirichenko TV, Postnov AY. The Neuroimmune Role of Intestinal Microbiota in the Pathogenesis of Cardiovascular Disease. J Clin Med 2021; 10:1995. [PMID: 34066528 PMCID: PMC8124579 DOI: 10.3390/jcm10091995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/19/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
Currently, a bidirectional relationship between the gut microbiota and the nervous system, which is considered as microbiota-gut-brain axis, is being actively studied. This axis is believed to be a key mechanism in the formation of somatovisceral functions in the human body. The gut microbiota determines the level of activation of the hypothalamic-pituitary system. In particular, the intestinal microbiota is an important source of neuroimmune mediators in the pathogenesis of cardiovascular disease. This review reflects the current state of publications in PubMed and Scopus databases until December 2020 on the mechanisms of formation and participation of neuroimmune mediators associated with gut microbiota in the development of cardiovascular disease.
Collapse
Affiliation(s)
- Andrey V. Suslov
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, 8-2 Trubetskaya Str., 119992 Moscow, Russia; (A.V.S.); (E.C.); (M.D.S.)
| | - Elizaveta Chairkina
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, 8-2 Trubetskaya Str., 119992 Moscow, Russia; (A.V.S.); (E.C.); (M.D.S.)
| | - Maria D. Shepetovskaya
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, 8-2 Trubetskaya Str., 119992 Moscow, Russia; (A.V.S.); (E.C.); (M.D.S.)
| | - Irina S. Suslova
- Central State Medical Academy of the Administrative Department of the President of the Russian Federation, 19-1A Marshal Timoshenko Str., 121359 Moscow, Russia;
| | - Victoria A. Khotina
- Research Institute of Human Morphology, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (A.Y.P.)
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Str., 125315 Moscow, Russia
| | - Tatiana V. Kirichenko
- Research Institute of Human Morphology, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (A.Y.P.)
- National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Str., 121552 Moscow, Russia
| | - Anton Y. Postnov
- Research Institute of Human Morphology, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (A.Y.P.)
- National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Str., 121552 Moscow, Russia
| |
Collapse
|
9
|
Walrath T, Dyamenahalli KU, Hulsebus HJ, McCullough RL, Idrovo JP, Boe DM, McMahan RH, Kovacs EJ. Age-related changes in intestinal immunity and the microbiome. J Leukoc Biol 2020; 109:1045-1061. [PMID: 33020981 DOI: 10.1002/jlb.3ri0620-405rr] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/19/2022] Open
Abstract
The gastrointestinal (GI) tract is a vitally important site for the adsorption of nutrients as well as the education of immune cells. Homeostasis of the gut is maintained by the interplay of the intestinal epithelium, immune cells, luminal Ags, and the intestinal microbiota. The well-being of the gut is intrinsically linked to the overall health of the host, and perturbations to this homeostasis can have severe impacts on local and systemic health. One factor that causes disruptions in gut homeostasis is age, and recent research has elucidated how critical systems within the gut are altered during the aging process. Intestinal stem cell proliferation, epithelial barrier function, the gut microbiota, and the composition of innate and adaptive immune responses are all altered in advanced age. The aging population continues to expand worldwide, a phenomenon referred to as the "Silver Tsunami," and every effort must be made to understand how best to prevent and treat age-related maladies. Here, recent research about changes observed in the intestinal epithelium, the intestinal immune system, the microbiota, and how the aging gut interacts with and influences other organs such as the liver, lung, and brain are reviewed. Better understanding of these age-related changes and their impact on multi-organ interactions will aid the development of therapies to increase the quality of life for all aged individuals.
Collapse
Affiliation(s)
- Travis Walrath
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Denver, Aurora, Colorado, USA
| | - Kiran U Dyamenahalli
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Denver, Aurora, Colorado, USA
| | - Holly J Hulsebus
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Denver, Aurora, Colorado, USA.,Immunology Graduate Program, University of Colorado Denver, Aurora, Colorado, USA
| | - Rebecca L McCullough
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado, USA.,GI and Liver Innate Immune Program, University of Colorado Denver, Aurora, Colorado, USA
| | - Juan-Pablo Idrovo
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Denver, Aurora, Colorado, USA
| | - Devin M Boe
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Denver, Aurora, Colorado, USA.,Immunology Graduate Program, University of Colorado Denver, Aurora, Colorado, USA.,Medical Scientist Training Program, University of Colorado Denver, Aurora, Colorado, USA
| | - Rachel H McMahan
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Denver, Aurora, Colorado, USA
| | - Elizabeth J Kovacs
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Denver, Aurora, Colorado, USA.,Immunology Graduate Program, University of Colorado Denver, Aurora, Colorado, USA.,Medical Scientist Training Program, University of Colorado Denver, Aurora, Colorado, USA.,GI and Liver Innate Immune Program, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
10
|
Gou H, Sun D, Hao L, An M, Xie B, Cong B, Ma C, Wen D. Cholecystokinin-8 attenuates methamphetamine-induced inflammatory activation of microglial cells through CCK2 receptor. Neurotoxicology 2020; 81:70-79. [PMID: 32916201 DOI: 10.1016/j.neuro.2020.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 11/25/2022]
Abstract
Methamphetamine (METH) exposure reportedly promotes microglial activation and pro-inflammatory cytokines secretion. Sustained inflammation in abusers of psychostimulant drugs further induces neural damage. Cholecystokinin-8 (CCK-8) is a gut-brain peptide which exerts a wide range of biological activities in the gastrointestinal tract and central nervous system. We previously found that pre-treatment with CCK-8 inhibited behavioural and histologic changes typically induced by repeated exposure to METH. Here, we aimed to estimate the effects of CCK-8 on METH-induced neuro-inflammation, which is markedly characterized by microglia activation and increased pro-inflammatory cytokines production in vivo and in vitro. Moreover, we assessed the subtypes of the CCK receptor mediating the regulatory effects of CCK-8, and the changes in the NF-κB signalling pathway. We found that CCK-8 inhibited METH-induced microglial activation and IL-6 and TNF-α generation in vivo and in vitro in a dose-dependent manner. Furthermore, co-treatment of CCK-8 with METH significantly attenuated the activation of the NF-κB signalling pathway by activating the CCK2 receptor subtype in N9 cells. In conclusion, our findings indicated the inhibitory effect of CCK-8 on METH-induced neuro-inflammation in vivo and in vitro, and suggested the underlying mechanism may involve the activation of the CCK2 receptor, which downregulated the NF-κB signalling pathway induced by METH stimulation.
Collapse
Affiliation(s)
- Hongyan Gou
- Gastrointestinal cancer biology & therapeutics laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, PR China; Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China
| | - Donglei Sun
- Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Department of Gastroenterology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua District, Shijiazhuang 050035, PR China
| | - Lijing Hao
- Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Department of Anesthesiology, The third hospital of Hebei Medical University, Shi Jiazhuang, 050051, PR China
| | - Meiling An
- Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China
| | - Bing Xie
- Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Department of Anesthesiology, The third hospital of Hebei Medical University, Shi Jiazhuang, 050051, PR China
| | - Bin Cong
- Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China
| | - Chunling Ma
- Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China.
| | - Di Wen
- Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China.
| |
Collapse
|
11
|
Yu Y, Yang W, Li Y, Cong Y. Enteroendocrine Cells: Sensing Gut Microbiota and Regulating Inflammatory Bowel Diseases. Inflamm Bowel Dis 2020; 26:11-20. [PMID: 31560044 PMCID: PMC7539793 DOI: 10.1093/ibd/izz217] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 12/12/2022]
Abstract
Host sensing in the gut microbiota has been crucial in the regulation of intestinal homeostasis. Although inflammatory bowel diseases (IBDs), multifactorial chronic inflammatory conditions of the gastrointestinal tract, have been associated with intestinal dysbiosis, the detailed interactions between host and gut microbiota are still not completely understood. Enteroendocrine cells (EECs) represent 1% of the intestinal epithelium. Accumulating evidence indicates that EECs are key sensors of gut microbiota and/or microbial metabolites. They can secrete cytokines and peptide hormones in response to microbiota, either in traditional endocrine regulation or by paracrine impact on proximal tissues and/or cells or via afferent nerve fibers. Enteroendocrine cells also play crucial roles in mucosal immunity, gut barrier function, visceral hyperalgesia, and gastrointestinal (GI) motility, thereby regulating several GI diseases, including IBD. In this review, we will focus on EECs in sensing microbiota, correlating enteroendocrine perturbations with IBD, and the underlying mechanisms.
Collapse
Affiliation(s)
- Yanbo Yu
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, P.R. China,Department of Microbiology and Immunology and Branch, Galveston, Texas, USA
| | - Wenjing Yang
- Department of Microbiology and Immunology and Branch, Galveston, Texas, USA
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, P.R. China
| | - Yingzi Cong
- Department of Microbiology and Immunology and Branch, Galveston, Texas, USA,Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA,Address correspondence to: Yingzi Cong, PhD, Department of Microbiology and Immunology, University of Texas Medical Branch, 4.142C Medical Research Building, 301 University Blvd, Galveston, TX 77555-1019 ()
| |
Collapse
|
12
|
Smith JP, Wang S, Nadella S, Jablonski SA, Weiner LM. Cholecystokinin receptor antagonist alters pancreatic cancer microenvironment and increases efficacy of immune checkpoint antibody therapy in mice. Cancer Immunol Immunother 2018; 67:195-207. [PMID: 29043413 PMCID: PMC5801048 DOI: 10.1007/s00262-017-2077-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/06/2017] [Indexed: 12/28/2022]
Abstract
Advanced pancreatic ductal adenocarcinoma (PDAC) has typically been resistant to chemotherapy and immunotherapy; therefore, novel strategies are needed to enhance therapeutic response. Cholecystokinin (CCK) has been shown to stimulate growth of pancreatic cancer. CCK receptors (CCKRs) are present on pancreatic cancer cells, fibroblasts, and lymphocytes. We hypothesized that CCKR blockade would improve response to immune checkpoint antibodies by promoting influx of tumor-infiltrating lymphocytes (TILs) and reducing fibrosis. We examined the effects of CCKR antagonists or immune checkpoint blockade antibodies alone or in combination in murine models of PDAC. Monotherapy with CCKR blockade significantly decreased tumor size and metastases in SCID mice with orthotopic PDAC, and in C57BL/6 mice, it reduced fibrosis and induced the influx of TILs. Immune-competent mice bearing syngeneic pancreatic cancer (Panc02 and mT3-2D) that were treated with the combination of CCK receptor antagonists and immune checkpoint blockade antibodies survived significantly longer with smaller tumors. Tumor immunohistochemical staining and flow cytometry demonstrated that the tumors of mice treated with the combination regimen had a significant reduction in Foxp3+ T-regulatory cells and an increase in CD4+ and CD8+ lymphocytes. Masson's trichrome stain analysis revealed 50% less fibrosis in the tumors of mice treated with CCKR antagonist compared to controls and compared to checkpoint antibody therapy. CCKR antagonists given with immune checkpoint antibody therapy represent a novel approach for improving survival of PDAC. The mechanism by which this combination therapy improves the survival of PDAC may be related to the decreased fibrosis and immune cells of the tumor microenvironment.
Collapse
Affiliation(s)
- Jill P Smith
- Department of Medicine, Georgetown University, Building D, Room 338, 4000 Reservoir Rd, Washington DC, NW, 20007, USA.
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, USA.
| | - Shangzi Wang
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, USA
| | - Sandeep Nadella
- Department of Medicine, Georgetown University, Building D, Room 338, 4000 Reservoir Rd, Washington DC, NW, 20007, USA
| | - Sandra A Jablonski
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, USA
| | - Louis M Weiner
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, USA
| |
Collapse
|
13
|
Worthington JJ, Reimann F, Gribble FM. Enteroendocrine cells-sensory sentinels of the intestinal environment and orchestrators of mucosal immunity. Mucosal Immunol 2018; 11:3-20. [PMID: 28853441 DOI: 10.1038/mi.2017.73] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/14/2017] [Indexed: 02/06/2023]
Abstract
The intestinal epithelium must balance efficient absorption of nutrients with partitioning commensals and pathogens from the bodies' largest immune system. If this crucial barrier fails, inappropriate immune responses can result in inflammatory bowel disease or chronic infection. Enteroendocrine cells represent 1% of this epithelium and have classically been studied for their detection of nutrients and release of peptide hormones to mediate digestion. Intriguingly, enteroendocrine cells are the key sensors of microbial metabolites, can release cytokines in response to pathogen associated molecules and peptide hormone receptors are expressed on numerous intestinal immune cells; thus enteroendocrine cells are uniquely equipped to be crucial and novel orchestrators of intestinal inflammation. In this review, we introduce enteroendocrine chemosensory roles, summarize studies correlating enteroendocrine perturbations with intestinal inflammation and describe the mechanistic interactions by which enteroendocrine and mucosal immune cells interact during disease; highlighting this immunoendocrine axis as a key aspect of innate immunity.
Collapse
Affiliation(s)
- J J Worthington
- Lancaster University, Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster, Lancashire, UK
| | - F Reimann
- University of Cambridge, Metabolic Research Laboratories, Wellcome Trust/MRC Institute of Metabolic Science & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Cambridge, UK
| | - F M Gribble
- University of Cambridge, Metabolic Research Laboratories, Wellcome Trust/MRC Institute of Metabolic Science & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
14
|
Ye S, Shi K, Xu J, Wang M, Li CJ. Cholecystokinin octapeptide inhibits the inflammatory response and improves neurological outcome in a porcine model of cardiopulmonary resuscitation. Exp Ther Med 2017; 15:2583-2588. [PMID: 29467854 DOI: 10.3892/etm.2017.5680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/22/2017] [Indexed: 11/05/2022] Open
Abstract
Previous studies have demonstrated that cholecystokinin octapeptide (CCK8) induces hypothermia and inhibits the systemic inflammatory response in septic shock in rat and murine models. The present study aimed to ascertain whether CCK8 induced hypothermia and improved the neurological outcomes in a porcine model of cardiopulmonary resuscitation (CPR). Ventricular fibrillation was induced and left untreated for 10 min in 12 male Bama miniature pigs. Defibrillation was attempted after 5 min of CPR. At 5 min following resuscitation, the pigs were randomized and equally assigned into the CCK8 or the control group. CCK8 was continuously infused for 1 h at a dose of 44.4 µg/kg/h and a rate of 20 ml/h in the CCK8 group. Body temperature, hemodynamic measurements and post-resuscitation myocardial function were monitored in the first 4 h following CPR. Neuron specific enzyme (NSE), S100B protein, tumor necrosis factor (TNF)-α and interleukin (IL)-6 were measured at baseline and 4, 12 and 24 h following resuscitation. The neurological deficient score (NDS) was recorded and cerebral samples were collected for terminal deoxynucleotidyl-transferase-mediated dUTP nick end labelling assay and integrated optical density (IOD) analysis at 24 h following CPR. The results revealed that hypothermia was not induced by CCK8; however, post-resuscitation NSE, S100B, IL-6 and TNF-α were significantly decreased, and NDS and IOD were significantly improved in the CCK8 group compared with the control group (P<0.05). The present study revealed that in a porcine model of CPR, CCK8 does not induce hypothermia, but inhibits the inflammatory response and significantly improves neurological outcomes.
Collapse
Affiliation(s)
- Sen Ye
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.,Department of Emergency, People's Hospital of Yuyao, Yuyao, Zhejiang 315400, P.R. China
| | - Kejia Shi
- Department of Emergency, People's Hospital of Yuyao, Yuyao, Zhejiang 315400, P.R. China
| | - Jiefeng Xu
- Department of Emergency, People's Hospital of Yuyao, Yuyao, Zhejiang 315400, P.R. China
| | - Moli Wang
- Department of Emergency, People's Hospital of Yuyao, Yuyao, Zhejiang 315400, P.R. China
| | - Chun-Jian Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
15
|
Okumura R, Takeda K. Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Exp Mol Med 2017; 49:e338. [PMID: 28546564 PMCID: PMC5454438 DOI: 10.1038/emm.2017.20] [Citation(s) in RCA: 417] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/02/2017] [Indexed: 12/15/2022] Open
Abstract
The intestine is a unique organ inhabited by a tremendous number of microorganisms. Intestinal epithelial cells greatly contribute to the maintenance of the symbiotic relationship between gut microbiota and the host by constructing mucosal barriers, secreting various immunological mediators and delivering bacterial antigens. Mucosal barriers, including physical barriers and chemical barriers, spatially segregate gut microbiota and the host immune system to avoid unnecessary immune responses to gut microbes, leading to the intestinal inflammation. In addition, various immunological mediators, including cytokines and chemokines, secreted from intestinal epithelial cells stimulated by gut microbiota modulate host immune responses, maintaining a well-balanced relationship between gut microbes and the host immune system. Therefore, impairment of the innate immune functions of intestinal epithelial cells is associated with intestinal inflammation.
Collapse
Affiliation(s)
- Ryu Okumura
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
16
|
El-Kassas S, Odemuyiwa S, Hajishengallis G, Connell TD, Nashar TO. Expression and Regulation of Cholecystokinin Receptor in the Chicken's Immune Organs and Cells. ACTA ACUST UNITED AC 2017; 7. [PMID: 28149670 DOI: 10.4172/2155-9899.1000471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cholecystokinin (CCK) is a neuropeptide that affects growth rate in chickens by regulating appetite. CCK peptides exert their function by binding to two identified receptors, CCKAR and CCKBR in the GI tract and the brain, respectively, as well as in other organs. In mammals, CCK/CCKAR interactions affect a number of immunological parameters, including regulation of lymphocytes and functioning of monocytes. Thus, food intake and growth can potentially be altered by infection and the resulting inflammatory immune response. It is uncertain, however, whether chicken express CCKAR in immune organs and cells, and, if so, whether CCKAR expression is regulated by pathogen derived inflammatory stimuli. Herein, we identify expression of CCKAR protein in chicken peripheral blood mononuclear cells (PBMC) including monocytes, and expression of the CCKAR gene in PBMC, thymus, bursa, and spleen, in selected commercial and pure chicken breeds. Further, stimulation with various types of E. coli heat-labile enterotoxins or lipopolysaccharide significantly regulated expression of CCKAR on monocytes in the different breeds. Ligation of CCKAR with antibodies in PBMC induced mobilization of Ca2+, indicating that CCKAR is signal competent. Injection with polyinosinic: polycytidylic acid (poly I:C), a synthetic analogue of double stranded viral RNA that binds Toll-Like Receptor-3 (TLR3), also regulated gene expressions of CCKAR and proinflammatory cytokines, in the different breeds. Interestingly, variations in the expression levels of proinflammatory cytokines in the different breeds were highly correlated with CCKAR expression levels. Taken together, these findings indicate that the physiological function of CCKAR in the chicken is tightly regulated in immune organs and cells by external inflammatory stimuli, which in turn regulate growth. This is the first report CCKAR expression in immune organs and cells, in any species, and the initial observation that CCKAR is regulated by inflammatory stimuli associated with bacterial and viral infection.
Collapse
Affiliation(s)
- Seham El-Kassas
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA; College of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Solomon Odemuyiwa
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | - George Hajishengallis
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Terry D Connell
- The Department of Microbiology & Immunology and The Witebsky Center for Microbial Pathogenesis and Immunology, The Jacobs School of Medicine and Biomedical Research, University at Buffalo, NY 14214, USA
| | - Toufic O Nashar
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| |
Collapse
|
17
|
The intestinal immunoendocrine axis: novel cross-talk between enteroendocrine cells and the immune system during infection and inflammatory disease. Biochem Soc Trans 2015; 43:727-33. [PMID: 26551720 PMCID: PMC4613519 DOI: 10.1042/bst20150090] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Indexed: 12/17/2022]
Abstract
The intestinal epithelium plays a crucial role in maintaining barrier function and immune homeostasis, a failure of which results in disease. This review focuses on the epithelial enteroendocrine cells and the crosstalk that exists with immune cells during inflammation. The intestinal epithelium represents one of our most important interfaces with the external environment. It must remain tightly balanced to allow nutrient absorption, but maintain barrier function and immune homoeostasis, a failure of which results in chronic infection or debilitating inflammatory bowel disease (IBD). The intestinal epithelium mainly consists of absorptive enterocytes and secretory goblet and Paneth cells and has recently come to light as being an essential modulator of immunity as opposed to a simple passive barrier. Each epithelial sub-type can produce specific immune modulating factors, driving innate immunity to pathogens as well as preventing autoimmunity. The enteroendocrine cells comprise just 1% of this epithelium, but collectively form the bodies’ largest endocrine system. The mechanisms of enteroendocrine cell peptide secretion during feeding, metabolism and nutrient absorption are well studied; but their potential interactions with the enriched numbers of surrounding immune cells remain largely unexplored. This review focuses on alterations in enteroendocrine cell number and peptide secretion during inflammation and disease, highlighting the few in depth studies which have attempted to dissect the immune driven mechanisms that drive these phenomena. Moreover, the emerging potential of enteroendocrine cells acting as innate sensors of intestinal perturbation and secreting peptides to directly orchestrate immune cell function will be proposed. In summary, the data generated from these studies have begun to unravel a complex cross-talk between immune and enteroendocrine cells, highlighting the emerging immunoendocrine axis as a potential target for therapeutic strategies for infections and inflammatory disorders of the intestine.
Collapse
|
18
|
Gou H, Wen D, Ma C, Li M, Li Y, Zhang W, Liu L, Cong B. Protective effects of cholecystokinin-8 on methamphetamine-induced behavioral changes and dopaminergic neurodegeneration in mice. Behav Brain Res 2015; 283:87-96. [PMID: 25629941 DOI: 10.1016/j.bbr.2015.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 01/15/2023]
Abstract
We investigated whether pretreatment with the neuropeptide cholecystokinin-8 affected methamphetamine (METH)-induced behavioral changes and dopaminergic neurodegeneration in male C57/BL6 mice. CCK-8 pretreatment alone had no effect on locomotion and stereotypic behavior and could not induce behavioral sensitization; however, it attenuated, in a dose-dependent manner, hyperlocomotion and behavioral sensitization induced by a low dose of METH (1mg/kg). CCK-8 attenuated METH-induced stereotypic behavior at a dose of 3mg/kg but not at 10mg/kg. CCK-8 pretreatment attenuated METH (10mg/kg)-induced hyperthermia, the decrease of tyrosine hydroxylase (TH) and dopamine transporter (DAT) in the striatum, and TH in the substantia nigra. CCK-8 alone had no effect on rectal temperature, TH and DAT expression in the nigrostriatal region. In conclusion, our study demonstrated that pretreatment with CCK-8 inhibited changes typically induced by repeated exposure to METH, such as hyperlocomotion, behavioral sensitization, stereotypic behavior, and dopaminergic neurotoxicity. These findings make CCK-8 a potential therapeutic agent for the treatment of multiple symptoms associated with METH abuse.
Collapse
Affiliation(s)
- Hongyan Gou
- Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China
| | - Di Wen
- Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China
| | - Chunling Ma
- Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China.
| | - Ming Li
- Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China
| | - Yingmin Li
- Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China
| | - Wenfang Zhang
- The 8th Brigade of General Division of Criminal Investigation, Beijing Municipal Public Security Bureau, Beijing 100006, China
| | - Li Liu
- The 8th Brigade of General Division of Criminal Investigation, Beijing Municipal Public Security Bureau, Beijing 100006, China
| | - Bin Cong
- Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China.
| |
Collapse
|
19
|
Cholecystokinin octapeptide regulates the differentiation and effector cytokine production of CD4(+) T cells in vitro. Int Immunopharmacol 2014; 20:307-15. [PMID: 24704498 DOI: 10.1016/j.intimp.2014.03.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/19/2014] [Accepted: 03/19/2014] [Indexed: 12/14/2022]
Abstract
Cholecystokinin octapeptide (CCK-8), an immunomodulatory peptide, can promote or suppress the development or function of specific CD4(+) T cell subsets by regulating antigen-presenting cell functions. In the current study, we investigated whether CCK-8 exerts a direct effect on T cells through influencing differentiation and cytokine production of distinct CD4(+) T cell subsets in vitro. Our results showed that CCK-8 differentially affects the development and function of CD4(+) T cell populations, with a negative influence on Th1 and Th17 cells and positive regulatory effect on inducible T regulatory cells (iTreg). Notably, CCK-8 suppressed Th1 while slightly enhancing Th2 development and cytokine production. Similarly, CCK-8 inhibited the differentiation of Th17 cells and promoted Foxp3 expression. L-364,718 and LY-288,513, selective antagonists of CCK1R and CCK2R, respectively, suppressed the effects of CCK-8 on CD4(+) T cell subset-specific transcription factors. Our findings strongly indicate that CCK-8 exerts a direct effect on T cells, which is dependent on CCKRs, particularly CCK2R. The collective results aid in further clarifying the mechanism underlying the anti-inflammatory and immunoregulatory effects of CCK-8.
Collapse
|
20
|
Jia X, Cong B, Zhang J, Li H, Liu W, Chang H, Dong M, Ma C. CCK8 negatively regulates the TLR9-induced activation of human peripheral blood pDCs by targeting TRAF6 signaling. Eur J Immunol 2013; 44:489-99. [PMID: 24301797 DOI: 10.1002/eji.201343725] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 10/07/2013] [Accepted: 10/29/2013] [Indexed: 11/11/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are specialized in rapid and massive secretion of type I interferon in response to foreign nuclei acids. Combined with their antigen presentation capacity, this powerful functionality enables pDCs to orchestrate innate and adaptive immune responses. Cholecystokinin octapeptide (CCK8) is a potent immunomodulator, whose role in pDCs function is unknown. In this study, we found that two different cholecystokinin receptors, CCK1R and CCK2R, are expressed on human peripheral blood pDCs. Exogenous CCK8 was able to modulate the TLR-induced activation of pDCs, including phenotypic maturation, IFN-α synthesis and secretion, and could also regulate the potential of pDCs to induce adaptive immune responses in vitro. CCK8 inhibited TLR9-induced activation of tumor-necrosis factor receptor-associated factor 6, which is an important adapter protein in activation of interferon-regulatory factor (IRF)5 and IRF7, possibly through CCK2R, by evoking the activity of protein kinase (PK)A and reducing the activity of PKC. All these results indicate that CCK8 can inhibit the TLR9-induced phenotypic maturation and activation of pDCs, acting through CCK2R by modulating the tumor-necrosis factor receptor-associated factor 6 signaling pathways.
Collapse
Affiliation(s)
- Xianxian Jia
- Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhang JG, Cong B, Jia XX, Li H, Li QX, Ma CL, Feng Y. Cholecystokinin octapeptide inhibits immunoglobulin G1 production of lipopolysaccharide-activated B cells. Int Immunopharmacol 2011; 11:1685-90. [DOI: 10.1016/j.intimp.2011.05.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 05/27/2011] [Accepted: 05/29/2011] [Indexed: 11/26/2022]
|
22
|
Li Q, Han D, Cong B, Shan B, Zhang J, Chen H, Ma C, Liyanage SS. Cholecystokinin octapeptide significantly suppresses collagen-induced arthritis in mice by inhibiting Th17 polarization primed by dendritic cells. Cell Immunol 2011; 272:53-60. [PMID: 22004797 DOI: 10.1016/j.cellimm.2011.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 09/18/2011] [Accepted: 09/19/2011] [Indexed: 12/14/2022]
Abstract
Cholecystokinin octapeptide (CCK-8) is a neuropeptide, and is shown to be a potent immunomodulator with predominant anti-inflammatory effects. Although the regulatory effect of CCK-8 on macrophages and B cells has been defined, the effect of CCK-8 on dendritic cells (DCs) and T cells is not well understood. In this study, we showed that CCK-8 reduced the expression of CD80, CD86, and MHCII on DCs. Moreover, CCK-8 promoted Th1 and inhibited Th17 polarization by increasing the production of IL-12 and decreasing the production of IL-6 and IL-23 on DCs in vitro and in vivo. In addition, intraperitoneal administration of CCK-8 to mice with collagen-induced arthritis (CIA) was found to effectively reduce the incidence of arthritis, delay its onset and prevent the occurrence of joint damage. Collectively, these results suggest that CCK-8 significantly suppresses the incidence and severity of CIA in mice, through the inhibition of DC mediated Th17 polarization.
Collapse
Affiliation(s)
- Qiaoxia Li
- Institute of Basic Medicine, Hebei Medical University, Zhongshan East Road 361, Shijiazhuang, Hebei Province, P R China
| | | | | | | | | | | | | | | |
Collapse
|