1
|
Ghallab DS, Ibrahim RS, Mohyeldin MM, Shawky E. Marine algae: A treasure trove of bioactive anti-inflammatory compounds. MARINE POLLUTION BULLETIN 2024; 199:116023. [PMID: 38211540 DOI: 10.1016/j.marpolbul.2023.116023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/13/2024]
Abstract
This comprehensive review examines the diverse classes of pharmacologically active compounds found in marine algae and their promising anti-inflammatory effects. The review covers various classes of anti-inflammatory compounds sourced from marine algae, including phenolic compounds, flavonoids, terpenoids, caretenoids, alkaloids, phlorotannins, bromophenols, amino acids, peptides, proteins, polysaccharides, and fatty acids. The anti-inflammatory activities of marine algae-derived compounds have been extensively investigated using in vitro and in vivo models, demonstrating their ability to inhibit pro-inflammatory mediators, such as cytokines, chemokines, and enzymes involved in inflammation. Moreover, marine algae-derived compounds have exhibited immunomodulatory properties, regulating immune cell functions and attenuating inflammatory responses. Specific examples of compounds with notable anti-inflammatory activities are highlighted. This review provides valuable insights for researchers in the field of marine anti-inflammatory pharmacology and emphasizes the need for further research to harness the pharmacological benefits of marine algae-derived compounds for the development of effective and safe therapeutic agents.
Collapse
Affiliation(s)
- Dina S Ghallab
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Reham S Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Mohamed M Mohyeldin
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Eman Shawky
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt.
| |
Collapse
|
2
|
Cutolo EA, Caferri R, Campitiello R, Cutolo M. The Clinical Promise of Microalgae in Rheumatoid Arthritis: From Natural Compounds to Recombinant Therapeutics. Mar Drugs 2023; 21:630. [PMID: 38132951 PMCID: PMC10745133 DOI: 10.3390/md21120630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Rheumatoid arthritis (RA) is an invalidating chronic autoimmune disorder characterized by joint inflammation and progressive bone damage. Dietary intervention is an important component in the treatment of RA to mitigate oxidative stress, a major pathogenic driver of the disease. Alongside traditional sources of antioxidants, microalgae-a diverse group of photosynthetic prokaryotes and eukaryotes-are emerging as anti-inflammatory and immunomodulatory food supplements. Several species accumulate therapeutic metabolites-mainly lipids and pigments-which interfere in the pro-inflammatory pathways involved in RA and other chronic inflammatory conditions. The advancement of the clinical uses of microalgae requires the continuous exploration of phytoplankton biodiversity and chemodiversity, followed by the domestication of wild strains into reliable producers of said metabolites. In addition, the tractability of microalgal genomes offers unprecedented possibilities to establish photosynthetic microbes as light-driven biofactories of heterologous immunotherapeutics. Here, we review the evidence-based anti-inflammatory mechanisms of microalgal metabolites and provide a detailed coverage of the genetic engineering strategies to enhance the yields of endogenous compounds and to develop innovative bioproducts.
Collapse
Affiliation(s)
- Edoardo Andrea Cutolo
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy;
| | - Roberto Caferri
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy;
| | - Rosanna Campitiello
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, IRCCS San Martino Polyclinic Hospital, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (R.C.)
| | - Maurizio Cutolo
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, IRCCS San Martino Polyclinic Hospital, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (R.C.)
| |
Collapse
|
3
|
Singla RK, Wang X, Gundamaraju R, Joon S, Tsagkaris C, Behzad S, Khan J, Gautam R, Goyal R, Rakmai J, Dubey AK, Simal-Gandara J, Shen B. Natural products derived from medicinal plants and microbes might act as a game-changer in breast cancer: a comprehensive review of preclinical and clinical studies. Crit Rev Food Sci Nutr 2023; 63:11880-11924. [PMID: 35838143 DOI: 10.1080/10408398.2022.2097196] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Breast cancer (BC) is the most prevalent neoplasm among women. Genetic and environmental factors lead to BC development and on this basis, several preventive - screening and therapeutic interventions have been developed. Hormones, both in the form of endogenous hormonal signaling or hormonal contraceptives, play an important role in BC pathogenesis and progression. On top of these, breast microbiota includes both species with an immunomodulatory activity enhancing the host's response against cancer cells and species producing proinflammatory cytokines associated with BC development. Identification of novel multitargeted therapeutic agents with poly-pharmacological potential is a dire need to combat advanced and metastatic BC. A growing body of research has emphasized the potential of natural compounds derived from medicinal plants and microbial species as complementary BC treatment regimens, including dietary supplements and probiotics. In particular, extracts from plants such as Artemisia monosperma Delile, Origanum dayi Post, Urtica membranacea Poir. ex Savigny, Krameria lappacea (Dombey) Burdet & B.B. Simpson and metabolites extracted from microbes such as Deinococcus radiodurans and Streptomycetes strains as well as probiotics like Bacillus coagulans and Lactobacillus brevis MK05 have exhibited antitumor effects in the form of antiproliferative and cytotoxic activity, increase in tumors' chemosensitivity, antioxidant activity and modulation of BC - associated molecular pathways. Further, bioactive compounds like 3,3'-diindolylmethane, epigallocatechin gallate, genistein, rutin, resveratrol, lycopene, sulforaphane, silibinin, rosmarinic acid, and shikonin are of special interest for the researchers and clinicians because these natural agents have multimodal action and act via multiple ways in managing the BC and most of these agents are regularly available in our food and fruit diets. Evidence from clinical trials suggests that such products had major potential in enhancing the effectiveness of conventional antitumor agents and decreasing their side effects. We here provide a comprehensive review of the therapeutic effects and mechanistic underpinnings of medicinal plants and microbial metabolites in BC management. The future perspectives on the translation of these findings to the personalized treatment of BC are provided and discussed.
Collapse
Affiliation(s)
- Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Xiaoyan Wang
- Department of Pathology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Shikha Joon
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | | | - Sahar Behzad
- Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Majmaah, Saudi Arabia
| | - Rupesh Gautam
- Department of Pharmacology, MM School of Pharmacy, MM University, Sadopur, Haryana, India
| | - Rajat Goyal
- Department of Pharmacology, MM School of Pharmacy, MM University, Sadopur, Haryana, India
| | - Jaruporn Rakmai
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok, Thailand
| | | | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Sahoo A, Jena AK, Panda M. Experimental and clinical trial investigations of phyto-extracts, phyto-chemicals and phyto-formulations against oral lichen planus: A systematic review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115591. [PMID: 35963418 DOI: 10.1016/j.jep.2022.115591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bio-assay guided phytoextracts and derived phytoconstituents reported having multipotent biological activities and nearly 60-80% of the global population still using natural regimens as an alternative therapeutic source. This study focused on the ethnopharmacological and experimental evidence of natural remedies that are effective in treating oral lichen planus (OLP), a chronic T-cell mediated autoimmune disease that is associated with oral cancer transmission. AIM OF THE REVIEW A number of studies have shown that antioxidants and antiinflammatory phytoextracts and phyto-constituents are effective against OLP. In this systematic review, we summarize the details of experimentally assessed ancient Traditional Chinese Medicine (TCM), Indian Ayurveda or Ayurvedic Medicine, and Japanese Kampo Medicine (JKM) regimens (crude extracts, individual phytochemicals, and phyto-formulations) that reduce oral lesion, severity index and pain associated with OLP based on studies conducted in vivo, in vitro, and in randomized controlled trials (RCTs). MATERIALS AND METHODS Experimental, clinical and RCT investigation reports were gathered and presented according to PRISMA-2020 format. Briefly, the information was obtained from PubMed, ScienceDirect, Wiley journal library, Scopus, Google Scholar with ClinicalTrials.gov (a clinical trial registry database operated by the National Library of Medicine in the United States). Further, individual phytochemical structures were verified from PubChem and ChemSpider databases and visualized by ChemDraw 18.0 software. RESULTS We summarized 11 crude phytoextracts, 7 individual phytochemicals, 9 crude formulations, 8 specific TCM and JKM herbal cocktails, and 6 RCTs/patents corroborated by multiple in vitro, in vivo and enzyme assay methods. Briefly, plants and their family name, used plant parts, reported phytochemicals and their chemical structure, treatment doses, and duration of each experiment were presented more concisely and scientifically. CONCLUSION Documentation of evidence-based natural ethnomedicines or remedies could be useful for promoting them as potential, cost-effective and less toxic alternatives or as complementary to commonly prescribed steroids towards the control of OLP.
Collapse
Affiliation(s)
- Alaka Sahoo
- Department of Skin & VD, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India.
| | - Ajaya K Jena
- Department of Skin & VD, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Maitreyee Panda
- Department of Skin & VD, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India.
| |
Collapse
|
5
|
Zhang D, Ning T, Wang H. Vitexin alleviates inflammation and enhances apoptosis through the regulation of the JAK/STAT/SOCS signaling pathway in the arthritis rat model. J Biochem Mol Toxicol 2022; 36:e23201. [PMID: 36029189 DOI: 10.1002/jbt.23201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 05/31/2022] [Accepted: 07/25/2022] [Indexed: 11/08/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory and autoimmune disorder. RA is progressive and needs long-term treatment. Vitexin is a naturally-occurring flavonoid that is identified in various plant sources. Vitexin is demonstrated to produce antioxidant effects with numerous pharmacological activities. This experimental in vivo study assessed the antiarthritic and apoptotic role of a natural plant extract, vitexin, on RA. Collagen-induced arthritis (CIA) rat model Sprague Dawley males were grouped into five sets with six rats each: control, CIA, CIA + vitexin (10 mg/kg bw), CIA + Methotrexate (1 mg/kg bw), and vitexin (10 mg/kg bw) alone. The body weight, organ weight, biochemical assay, inflammatory enzymes, apoptosis, and cytokines levels were evaluated and compared among groups. Janus kinase (JAK)/signal transducer and activator of transcription (STAT)/suppressors of cytokine signaling (SOCS) levels and histopathology of ankle joints were also studied and compared. Significance was considered at a p < 0.05. Vitexin (10 mg/kg bw) significantly reduced the inflammatory enzyme markers, interleukin (IL)-1β, IL-6, IL-17, IL-4, IL-10, tumor necrosis factor-α, interferon-γ, and iNOS levels in arthritis rats (p < 0.05). Vitexin significantly improved collagen-induced arthritic histological changes (p < 0.05). Vitexin also reduced JAK/STAT expressions associated with inflammation and significantly increased elevated SOCS levels (p < 0.05). Aberration in apoptosis, inflammatory mediators, C-reactive protein, and rheumatoid factor levels in the arthritic rats reverted to normal with vitexin. These results emphasize that vitexin possesses anti-inflammatory and apoptotic activity via the regulation of JAK/STAT/SOCS signaling in CIA in a rat model. Hence, vitexin is a promising auxiliary drug for RA treatment.
Collapse
Affiliation(s)
- Daojian Zhang
- Department of Orthopedics, Peking University First Hospital, Beijing, China
| | - Taiguo Ning
- Department of Orthopedics, Peking University First Hospital, Beijing, China
| | - Hongbin Wang
- Department of Orthopedics, Peking University First Hospital, Beijing, China
| |
Collapse
|
6
|
Naqvi SAR, Sherazi TA, Hassan SU, Shahzad SA, Faheem Z. Anti-inflammatory, anti-infectious and anti-cancer potential of marine algae and sponge: A review. EUR J INFLAMM 2022. [DOI: 10.1177/20587392221075514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Marine organisms are potentially a pretty good source of highly bioactive secondary metabolites that are best known for their anti-inflammation, anti-infection, and anti-cancer potential. The growing threat of bacterial resistance to synthetic antibiotics, is a potential source to screen terrestrial and marine natural organisms to discover promising anti-inflammatory and antimicrobial agents which can synergistically overcome the inflammatory and infectious disases. Algae and sponge have been studied enormously to evaluate their medicinal potential to fix variety of diseases, especially inflammation, infections, cancers, and diabetes. Cytarabine is the first isolated biomolecule from marine organism which was successfully practiced in clinical setup as chemotherapeutic agent against xylogenous leukemia both in acute and chronic conditions. This discovery opened the horizon for systematic evaluation of broad range of human disorders. This review is designed to look into the literature reported on anti-inflammatory, anti-infectious, and anti-cancerous potential of algae and sponge to refine the isolated compounds for value addition process.
Collapse
Affiliation(s)
- Syed Ali Raza Naqvi
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Tauqir A Sherazi
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Sadaf U Hassan
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore Campus, Pakistan
| | - Sohail A Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Zahra Faheem
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| |
Collapse
|
7
|
Manochkumar J, Doss CGP, Efferth T, Ramamoorthy S. Tumor preventive properties of selected marine pigments against colon and breast cancer. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Sirajunnisa AR, Surendhiran D, Kozani PS, Kozani PS, Hamidi M, Cabrera-Barjas G, Delattre C. An overview on the role of microalgal metabolites and pigments in apoptosis induction against copious diseases. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Polat H, Sagıt M, Gurgen SG, Yasar M, Ozcan I. Protective role of lycopene in experımental allergic rhinitis in rats. Int J Pediatr Otorhinolaryngol 2021; 150:110905. [PMID: 34479060 DOI: 10.1016/j.ijporl.2021.110905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 07/08/2021] [Accepted: 08/28/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVE We investigate whether lycopene has a protective effect in an experimental rat model of allergic rhinitis. METHODS Experimental animals (65 rats) were randomized to 7 groups (Sham-Control, Lycopene 10 mg/kg/day, Lycopene 20 mg/kg/day, Intranasal lycopene drops, Intranasal steroid, Corn oil, Allergic Rhinitis). Rats were sensitized by administering of ovalbumin intraperitoneally and intranasally. In addition to ovalbumin; lycopene, corn oil and steroids were given to the relevant groups. Nasal symptom scores of the rats were recorded throughout the study. At end of the study, after intracardiac blood sample collection, all rats were sacrificed, and nasal tissues were examined histopathologically. Serum total immunoglobulin E (IgE) and ovalbumin (OVA) specific IgE were studied from all rats before and after the study. RESULTS There was a statistically significant increase (p < 0.05) in OVA specific IgE values measured before and after the study in all groups except the sham group. In serum total IgE values; there was a statistically significant increase after treatment in allergic rhinitis, corn oil, lycopene 10 mg and intranasal lycopene drops group, but other groups did not show any significant change. Histopathological study with hematoxylin-eosin staining and cyclooxygenase-2 (COX-2), matrix metalloproteinase-9 (MMP-9), vasoactive intestinal peptide (VIP) expression found that lycopene suppresses inflammation with both nasal administration and increased dose. Nasal symptom scores were observed to decrease significantly in all lycopene and steroid groups compared to allergic rihinits and corn groups. CONCLUSION It was determined that lycopene were effective in the treatment of allergic rhinitis, and this effect was found to be stronger with increasing doses of lycopene.
Collapse
Affiliation(s)
- Halil Polat
- Yozgat City Hospital, Department of ENT, Turkey.
| | - Mustafa Sagıt
- Kayseri Training and Research Hospital, Department of ENT, Turkey
| | - Seren Gulsen Gurgen
- Celal Bayar University School of Vocational Health Service, Department of Histology and Embryology, Turkey
| | - Mehmet Yasar
- Kayseri Training and Research Hospital, Department of ENT, Turkey
| | - Ibrahim Ozcan
- Kayseri Training and Research Hospital, Department of ENT, Turkey
| |
Collapse
|
10
|
Saadaoui I, Rasheed R, Aguilar A, Cherif M, Al Jabri H, Sayadi S, Manning SR. Microalgal-based feed: promising alternative feedstocks for livestock and poultry production. J Anim Sci Biotechnol 2021; 12:76. [PMID: 34134776 PMCID: PMC8359609 DOI: 10.1186/s40104-021-00593-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/06/2021] [Indexed: 11/18/2022] Open
Abstract
There is an immediate need to identify alternative sources of high-nutrient feedstocks for domestic livestock production and poultry, not only to support growing food demands but also to produce microalgae-source functional foods with multiple health benefits. Various species of microalgae and cyanobacteria are used to supplement existing feedstocks. In this review, microalgae have been defined as a potential feedstock for domestic animals due to their abundance of proteins, carbohydrates, lipids, minerals, vitamins, and other high-value products. Additionally, the positive physiological effects on products of animals fed with microalgal biomass have been compiled and recommendations are listed to enhance the assimilation of biomolecules in ruminant and nonruminant animals, which possess differing digestive systems. Furthermore, the role of microalgae as prebiotics is also discussed. With regards to large scale cultivation of microalgae for use as feed, many economic trade-offs must be considered such as the selection of strains with desired nutritional properties, cultivation systems, and steps for downstream processing. These factors are highlighted with further investigations needed to reduce the overall costs of cultivation. Finally, this review outlines the pros and cons of utilizing microalgae as a supplementary feedstock for poultry and cattle, existing cultivation strategies, and the economics of large-scale microalgal production.
Collapse
Affiliation(s)
- Imen Saadaoui
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O.Box.2713, Doha, Qatar.
| | - Rihab Rasheed
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O.Box.2713, Doha, Qatar
| | - Ana Aguilar
- Department of Molecular Biosciences, UTEX Culture Collection of Algae, University of Texas at Austin, Austin, TX, 78712, USA
| | - Maroua Cherif
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O.Box.2713, Doha, Qatar
| | - Hareb Al Jabri
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O.Box.2713, Doha, Qatar
| | - Sami Sayadi
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O.Box.2713, Doha, Qatar
| | - Schonna R Manning
- Department of Molecular Biosciences, UTEX Culture Collection of Algae, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
11
|
Noreen S, Pervaiz F, Ashames A, Buabeid M, Fahelelbom K, Shoukat H, Maqbool I, Murtaza G. Optimization of Novel Naproxen-Loaded Chitosan/Carrageenan Nanocarrier-Based Gel for Topical Delivery: Ex Vivo, Histopathological, and In Vivo Evaluation. Pharmaceuticals (Basel) 2021; 14:557. [PMID: 34207951 PMCID: PMC8230576 DOI: 10.3390/ph14060557] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Naproxen (NAP) is commonly used for pain, inflammation, and stiffness associated with arthritis. However, systemic administration is linked with several gastrointestinal tract (GIT) side effects. The present work aims to prepare and evaluate NAP nanoparticulate shells of chitosan (CS) and carrageenan (CRG) loaded into a Carbopol 940 (Ca-940) gel system with unique features of sustained drug delivery as well as improved permeation through a topical route. Moreover, this study aims to evaluate its ex vivo, histopathological, and in vivo anti-inflammatory activity in albino Wistar rats. The percentage of ex vivo drug permeation patterns in the optimized formulation (No) was higher (88.66%) than the control gel (36.195%). Oral toxicity studies of developed nanoparticles in albino rabbits showed that the NAP-loaded CS/CRG are non-toxic and, upon histopathological evaluation, no sign of incompatibility was observed compared to the control group. A In Vivo study showed that the optimized gel formulation (No) was more effective than the control gel (Nc) in treating arthritis-associated inflammation. The sustained permeation and the absence of skin irritation make this novel NAP nanoparticle-loaded gel based on CS/CRG a suitable drug delivery system for topical application and has the potential for improved patient compliance and reduced GIT-related side effects in arthritis.
Collapse
Affiliation(s)
- Sobia Noreen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (S.N.); (H.S.); (I.M.)
| | - Fahad Pervaiz
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (S.N.); (H.S.); (I.M.)
| | - Akram Ashames
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Medical and Bio-Allied Health Sciences Research Centre, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Manal Buabeid
- Medical and Bio-Allied Health Sciences Research Centre, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Khairi Fahelelbom
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates;
| | - Hina Shoukat
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (S.N.); (H.S.); (I.M.)
| | - Irsah Maqbool
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (S.N.); (H.S.); (I.M.)
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| |
Collapse
|
12
|
Bockuviene A, Zalneravicius R, Sereikaite J. Preparation, characterization and stability investigation of lycopene-chitooligosaccharides complexes. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Pradhan B, Nayak R, Patra S, Jit BP, Ragusa A, Jena M. Bioactive Metabolites from Marine Algae as Potent Pharmacophores against Oxidative Stress-Associated Human Diseases: A Comprehensive Review. Molecules 2020; 26:E37. [PMID: 33374738 PMCID: PMC7793479 DOI: 10.3390/molecules26010037] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
In addition to cancer and diabetes, inflammatory and ROS-related diseases represent one of the major health problems worldwide. Currently, several synthetic drugs are used to reduce oxidative stress; nevertheless, these approaches often have side effects. Therefore, to overcome these issues, the search for alternative therapies has gained importance in recent times. Natural bioactive compounds have represented, and they still do, an important source of drugs with high therapeutic efficacy. In the ''synthetic'' era, terrestrial and aquatic photosynthetic organisms have been shown to be an essential source of natural compounds, some of which might play a leading role in pharmaceutical drug development. Marine organisms constitute nearly half of the worldwide biodiversity. In the marine environment, algae, seaweeds, and seagrasses are the first reported sources of marine natural products for discovering novel pharmacophores. The algal bioactive compounds are a potential source of novel antioxidant and anticancer (through modulation of the cell cycle, metastasis, and apoptosis) compounds. Secondary metabolites in marine Algae, such as phenolic acids, flavonoids, and tannins, could have great therapeutic implications against several diseases. In this context, this review focuses on the diversity of functional compounds extracted from algae and their potential beneficial effects in fighting cancer, diabetes, and inflammatory diseases.
Collapse
Affiliation(s)
- Biswajita Pradhan
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Brahmapur 760007, India; (B.P.); (R.N.)
| | - Rabindra Nayak
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Brahmapur 760007, India; (B.P.); (R.N.)
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769001, India;
| | - Bimal Prasad Jit
- Department of Biochemistry, All India Institute of Medical Science, Ansari Nagar, New Delhi 110023, India;
| | - Andrea Ragusa
- Department of Biological and Environmental Sciences and Technologies, Campus Ecotekne, University of Salento, via Monteroni, 73100 Lecce, Italy
- CNR-Nanotec, Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy
| | - Mrutyunjay Jena
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Brahmapur 760007, India; (B.P.); (R.N.)
| |
Collapse
|
14
|
Tabarzad M, Atabaki V, Hosseinabadi T. Anti-inflammatory Activity of Bioactive Compounds from Microalgae and Cyanobacteria by Focusing on the Mechanisms of Action. Mol Biol Rep 2020; 47:6193-6205. [PMID: 32557174 DOI: 10.1007/s11033-020-05562-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
Microalgae and cyanobacteria are the potentially valuable source of bioactive compounds applied in the various industries and human usage in different fields of pharmaceutical, nutraceutical, and cosmetic disciplines. One of the interesting aspects is their application as the anti-inflammatory agents for treatment of inflammation related mal-conditions. Natural compounds are of great importance in the treatment of inflammations to reduce the reaction of immune system against pathogens, toxic compounds and damaged cells. A wide range of different metabolites with various chemical structures, including small molecules and peptides and proteins, polysaccharides, fatty acids and their derivatives have been found in microalgae and cyanobacteria which have anti-inflammatory activity. In this review, we summarized different metabolites with anti-inflammatory activity that were extracted from these microorganisms and their mechanisms. The bioactive compounds from microalgae and cyanobacteria have exhibited anti-inflammatory activity through different mechanisms acting intra- or extra- cellularly. So, they could be considered as promising anti-inflammatory agents in treatment of related diseases.
Collapse
Affiliation(s)
- Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahideh Atabaki
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Hosseinabadi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Lauritano C, Helland K, Riccio G, Andersen JH, Ianora A, Hansen EH. Lysophosphatidylcholines and Chlorophyll-Derived Molecules from the Diatom Cylindrotheca closterium with Anti-Inflammatory Activity. Mar Drugs 2020; 18:md18030166. [PMID: 32192075 PMCID: PMC7143213 DOI: 10.3390/md18030166] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/20/2022] Open
Abstract
Microalgae have been shown to be excellent producers of lipids, pigments, carbohydrates, and a plethora of secondary metabolites with possible applications in the pharmacological, nutraceutical, and cosmeceutical sectors. Recently, various microalgal raw extracts have been found to have anti-inflammatory properties. In this study, we performed the fractionation of raw extracts of the diatom Cylindrotheca closterium, previously shown to have anti-inflammatory properties, obtaining five fractions. Fractions C and D were found to significantly inhibit tumor necrosis factor alpha (TNF-⍺) release in LPS-stimulated human monocyte THP-1 cells. A dereplication analysis of these two fractions allowed the identification of their main components. Our data suggest that lysophosphatidylcholines and a breakdown product of chlorophyll, pheophorbide a, were probably responsible for the observed anti-inflammatory activity. Pheophorbide a is known to have anti-inflammatory properties. We tested and confirmed the anti-inflammatory activity of 1-palmitoyl-sn-glycero-3-phosphocholine, the most abundant lysophosphatidylcholine found in fraction C. This study demonstrated the importance of proper dereplication of bioactive extracts and fractions before isolation of compounds is commenced.
Collapse
Affiliation(s)
- Chiara Lauritano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, CAP80121 Naples, Italy; (G.R.); (A.I.)
- Correspondence: ; Tel.: +39-081-5833-221
| | - Kirsti Helland
- Marbio, UiT—The Arctic University of Norway, Breivika N-9037 Tromsø, Norway; (K.H.); (J.H.A.); (E.H.H.)
| | - Gennaro Riccio
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, CAP80121 Naples, Italy; (G.R.); (A.I.)
| | - Jeanette H. Andersen
- Marbio, UiT—The Arctic University of Norway, Breivika N-9037 Tromsø, Norway; (K.H.); (J.H.A.); (E.H.H.)
| | - Adrianna Ianora
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, CAP80121 Naples, Italy; (G.R.); (A.I.)
| | - Espen H. Hansen
- Marbio, UiT—The Arctic University of Norway, Breivika N-9037 Tromsø, Norway; (K.H.); (J.H.A.); (E.H.H.)
| |
Collapse
|
16
|
Zhao Q, Yang F, Meng L, Chen D, Wang M, Lu X, Chen D, Jiang Y, Xing N. Lycopene attenuates chronic prostatitis/chronic pelvic pain syndrome by inhibiting oxidative stress and inflammation via the interaction of NF-κB, MAPKs, and Nrf2 signaling pathways in rats. Andrology 2020; 8:747-755. [PMID: 31880092 PMCID: PMC7317562 DOI: 10.1111/andr.12747] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/28/2019] [Accepted: 12/18/2019] [Indexed: 12/31/2022]
Abstract
Background Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is identified as a urinary andrological diseases that afflict men due to various discomforts. It is urgent and meaningful to develop the novel and effective treatments as a result of the unclear etiology and dismal therapeutic effect of CP/CPPS. Lycopene exerts a crucial role in numerous chronic inflammatory diseases owing to its potent antioxidant capacity. Objective This study aimed to observe the effect of lycopene on CP/CPPS and to explore the underlying mechanisms. Materials and Methods A CP/CPPS model with complete Freund's adjuvant was established in this study. Afterward, intragastric lycopene or corn oil was administered daily for 4 consecutive weeks. Finally, the cardiac blood and prostate tissue samples were collected from rats to carry out related evaluation and testing. Results It was found in this study that lycopene alleviated changes in prostate histopathology compared with those in the complete Freund's adjuvant‐induced CP/CPPS model rats without lycopene treatment. Furthermore, lycopene was suggested to reduce the levels of chemokines MCP1 and MIP‐1α, down‐regulate the expression levels of cytokines (such as TNFα, IL‐1β, IL‐2, and IL‐6), and up‐regulate those of CAT, GSH‐PX, and T‐SOD, decrease that of malondialdehyde. Moreover, it also inhibited the phosphorylation of MAPKs, NF‐κB, and enhanced phosphorylation of the Nrf2 in the CP/CPPS rat model. Discussion and Conclusions The findings in this study suggest that lycopene exerts potent anti‐ CP/CPPS Seffects through alleviating inflammatory response and oxidative stress, which is probably attributed to the interaction of NF‐κB, MAPKs, and Nrf2 signaling pathways in rats. As a natural antioxidant, lycopene may serve as a promising pharmaceutical preparation for treating CP/CPPS.
Collapse
Affiliation(s)
- Qinxin Zhao
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Feiya Yang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lingquan Meng
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China.,Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Dong Chen
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingshuai Wang
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Xinxing Lu
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Dexi Chen
- Beijing You'an Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Hepatology, Beijing, China
| | - Yongguang Jiang
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Cezare-Gomes EA, Mejia-da-Silva LDC, Pérez-Mora LS, Matsudo MC, Ferreira-Camargo LS, Singh AK, de Carvalho JCM. Potential of Microalgae Carotenoids for Industrial Application. Appl Biochem Biotechnol 2019; 188:602-634. [PMID: 30613862 DOI: 10.1007/s12010-018-02945-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/26/2018] [Indexed: 12/15/2022]
Abstract
Microalgae cultivation, when compared to the growth of higher plants, presents many advantages such as faster growth, higher biomass productivity, and smaller land area requirement for cultivation. For this reason, microalgae are an alternative platform for carotenoid production when compared to the traditional sources. Currently, commercial microalgae production is not well developed but, fortunately, there are several studies aiming to make the large-scale production feasible by, for example, employing different cultivation systems. This review focuses on the main carotenoids from microalgae, comparing them to the traditional sources, as well as a critical analysis about different microalgae cultivation regimes that are currently available and applicable for carotenoid accumulation. Throughout this review paper, we present relevant information about the main commercial microalgae carotenoid producers; the comparison between carotenoid content from food, vegetables, fruits, and microalgae; and the great importance and impact of these molecule applications, such as in food (nutraceuticals and functional foods), cosmetics and pharmaceutical industries, feed (colorants and additives), and healthcare area. Lastly, the different operating systems applied to these photosynthetic cultivations are critically discussed, and conclusions and perspectives are made concerning the best operating system for acquiring high cell densities and, consequently, high carotenoid accumulation.
Collapse
Affiliation(s)
- Eleane A Cezare-Gomes
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Avenida Prof. Lineu Prestes 580, Bl. 16, São Paulo, SP, 05508-900, Brazil
| | - Lauris Del Carmen Mejia-da-Silva
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Avenida Prof. Lineu Prestes 580, Bl. 16, São Paulo, SP, 05508-900, Brazil
| | - Lina S Pérez-Mora
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Avenida Prof. Lineu Prestes 580, Bl. 16, São Paulo, SP, 05508-900, Brazil
| | - Marcelo C Matsudo
- Institute of Natural Resources, Federal University of Itajubá, Av. Benedito Pereira dos Santos, 1303, Itajubá, MG, 37500-903, Brazil
| | - Lívia S Ferreira-Camargo
- Center of Natural and Human Sciences, Federal University of ABC, R. Abolição, s/n° - Vila São Pedro, Santo André, SP, 09210-180, Brazil
| | - Anil Kumar Singh
- Department of Pharmacy, University of São Paulo, Avenida Prof. Lineu Prestes 580, Bl. 16, São Paulo, SP, 05508-900, Brazil
| | - João Carlos Monteiro de Carvalho
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Avenida Prof. Lineu Prestes 580, Bl. 16, São Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
18
|
Chu WL, Phang SM. Bioactive Compounds from Microalgae and Their Potential Applications as Pharmaceuticals and Nutraceuticals. GRAND CHALLENGES IN ALGAE BIOTECHNOLOGY 2019. [DOI: 10.1007/978-3-030-25233-5_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Ripol A, Cardoso C, Afonso C, Varela J, Quental-Ferreira H, Pousão-Ferreira P, Bandarra NM. Composition, Anti-inflammatory Activity, and Bioaccessibility of Green Seaweeds from Fish Pond Aquaculture. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The nutritional composition was studied of green seaweeds ( Chaetomorpha linum, Rhizoclonium riparium, Ulva intestinalis, U. lactuca, U. prolifera) grown in fish pond aquaculture systems. Moreover, anti-inflammatory activities were measured. The effects of bioaccessibility on this property were assessed. There were qualitative differences in the lipid composition, since fatty acid profiles varied among seaweed species. Whereas U. lactuca and U. intestinalis fatty acid profiles were very similar, all other profiles differed significantly. U. prolifera was very rich in ω6 PUFA, while R. riparium was richer in ω3 PUFA. Concerning the ω3/ω6 ratio, the highest value was found for C. linum. The anti-inflammatory activity was higher for U. prolifera and C. linum with high cyclooxygenase-2 activity inhibition (ranging between 18 and 27 %) upon incubation of 100 μg/mL of these green seaweed extracts. Though the compounds causing this effect were not bioaccessible, U. prolifera seems to be a potential source of bioactive compounds.
Collapse
Affiliation(s)
- Andrea Ripol
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal
| | - Carlos Cardoso
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - Cláudia Afonso
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - João Varela
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Hugo Quental-Ferreira
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal
- Aquaculture Research Station, Olhão (EPPO), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Avenida 5 de Outubro, 8700-305 Olhão, Portugal
| | - Pedro Pousão-Ferreira
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal
- Aquaculture Research Station, Olhão (EPPO), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Avenida 5 de Outubro, 8700-305 Olhão, Portugal
| | - Narcisa M. Bandarra
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| |
Collapse
|
20
|
Kunte M, Desai K. The Protein Extract of Chlorella minutissima Inhibits The Expression of MMP-1, MMP-2 and MMP-9 in Cancer Cells through Upregulation of TIMP-3 and Down Regulation of c-Jun. CELL JOURNAL 2018; 20:211-219. [PMID: 29633599 PMCID: PMC5893293 DOI: 10.22074/cellj.2018.5277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/16/2017] [Indexed: 02/01/2023]
Abstract
Objective Considering the bioactivities exhibited by microalgae, the effect of protein extract of Chlorella minutissimma (CP
extract) was investigated on the expression of human matrix metalloproteinases-1 (MMP-1) in the breast cancer cell line
MDA-MB231, and that of MMP-2 and -9 in hepatocellular cancer cell line HepG2 at different expression levels. The study
aimed identification and analysis of inhibitory activity of microalgal components extracted from Chlorella minutissima against
human MMPs.
Materials and Methods In this experimental study, we analysed the effect of Chlorella extracts on MMP-1, -2, and -9
expression at various levels. Gelatin zymography was performed to study the inhibitory effect of Chlorella exracts on human
gelatinases at the activity level, followed by western blotting to analyse the expression of all three MMPs at the protein level.
The similar effect at the mRNA level along with the probable mechanism underlying inhibition of MMPs was assessed using
real-time polymerase chain reaction (PCR).
Results The results reveal that the treatment with CP extract decreased the mRNA expression of MMP-1,
MMP-2, and MMP-9 by 0.26-, 0.29-, and 0.40-fold, respectively, at 20 μg/ml concentration as well as inhibited
the activity of MMP-2 and MMP-9 by 37.56 and 42.64%, respectively, at 15 μg/ml concentration. Additionally,
upregulated mRNA expression of tissue inhibitor of metalloproteinases-3 (TIMP-3) by 1.68-fold was seen in
HepG2 cells at 20 μg/ml concentration treatment group. However, CP extract did not induce any change in the
mRNA expression of the TIMP-1, -2 and -4 in HepG2 and TIMP-1, -2, -3 and -4 in MDA-MB231 cells. Activator
protein-1 (AP-1)-dependent c-Jun-mediated transcriptional regulation of MMP-1, -2, and -9 was also studied to
elucidate the appropriate mechanism involved in the inhibition of MMPs.
Conclusion The CP extract successfully inhibited MMP-1, -2, and -9 at different expression levels through TIMP-3
upregulation and c-Jun downregulation.
Collapse
Affiliation(s)
- Mugdha Kunte
- Department of Biological Sciences, NMIMS University, Vile Parle (W), Mumbai, India
| | - Krutika Desai
- Department of Microbiology, Mithibai College, Vile Parle (W), Mumbai, India.
| |
Collapse
|
21
|
|
22
|
Baunthiyal M, Singh V, Dwivedi S. Insights of Antioxidants as Molecules for Drug Discovery. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.874.889] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Lycopene rich extract from red guava ( Psidium guajava L.) displays anti-inflammatory and antioxidant profile by reducing suggestive hallmarks of acute inflammatory response in mice. Food Res Int 2017; 99:959-968. [DOI: 10.1016/j.foodres.2017.01.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/04/2017] [Accepted: 01/20/2017] [Indexed: 12/18/2022]
|
24
|
Fernando IPS, Nah JW, Jeon YJ. Potential anti-inflammatory natural products from marine algae. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 48:22-30. [PMID: 27716532 DOI: 10.1016/j.etap.2016.09.023] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 09/06/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
Inflammatory diseases have become one of the leading causes of health issue throughout the world, having a considerable influence on healthcare costs. With the emerging developments in natural product, synthetic and combinatorial chemistry, a notable success has been achieved in discovering natural products and their synthetic structural analogs with anti-inflammatory activity. However, many of these therapeutics have indicated detrimental side effects upon prolonged usage. Marine algae have been identified as an underexplored reservoir of unique anti-inflammatory compounds. These include polyphenols, sulfated polysaccharides, terpenes, fatty acids, proteins and several other bioactives. Consumption of these marine algae could provide defense against the pathophysiology of many chronic inflammatory diseases. With further investigation, algal anti-inflammatory phytochemicals have the potential to be used as therapeutics or in the synthesis of structural analogs with profound anti-inflammatory activity with reduced side effects. The current review summarizes the latest knowledge about the potential anti-inflammatory compounds discovered from marine algae.
Collapse
Affiliation(s)
- I P Shanura Fernando
- Department of Marine Life Science, Jeju National University, Jeju, 690-756, Republic of Korea
| | - Jae-Woon Nah
- Department of High Polymer Engineering, Sunchon National University, Jungang-ro, 13, Suncheon, Jeollanam-do, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju, 690-756, Republic of Korea.
| |
Collapse
|
25
|
Antibacterial and anti-inflammatory finishing of cotton by microencapsulation using three marine organisms. Int J Biol Macromol 2016; 86:59-64. [PMID: 26776873 DOI: 10.1016/j.ijbiomac.2016.01.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 12/22/2022]
|
26
|
Sibi G, Rabina S. Inhibition of Pro-inflammatory Mediators and Cytokines by Chlorella Vulgaris Extracts. Pharmacognosy Res 2016; 8:118-22. [PMID: 27034602 PMCID: PMC4780137 DOI: 10.4103/0974-8490.172660] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Objective: The aim of this study was to determine the in vitro anti-inflammatory activities of solvent fractions from Chlorella vulgaris by inhibiting the production of pro-inflammatory mediators and cytokines. Methods: Methanolic extracts (80%) of C. vulgaris were prepared and partitioned with solvents of increasing polarity viz., n-hexane, chloroform, ethanol, and water. Various concentrations of the fractions were tested for cytotoxicity in RAW 264.7 cells using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, and the concentrations inducing cell growth inhibition by about 50% (IC50) were chosen for further studies. Lipopolysaccharide (LPS) stimulated RAW 264.7 cells were treated with varying concentrations of C. vulgaris fractions and examined for its effects on nitric oxide (NO) production by Griess assay. The release of prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6) were quantified using enzyme-linked immunosorbent assay using Celecoxib and polymyxin B as positive controls. Results: MTT assay revealed all the solvent fractions that inhibited cell growth in a dose-dependent manner. Of all the extracts, 80% methanolic extract exhibited the strongest anti-inflammatory activity by inhibiting NO production (P < 0.01), PGE2 (P < 0.05), TNF-α, and IL-6 (P < 0.001) release in LPS induced RAW 264.7 cells. Both hexane and chloroform fractions recorded a significant (P < 0.05) and dose-dependent inhibition of LPS induced inflammatory mediators and cytokines in vitro. The anti-inflammatory effect of ethanol and aqueous extracts was not significant in the study. Conclusion: The significant inhibition of inflammatory mediators and cytokines by fractions from C. vulgaris suggests that this microalga would be a potential source of developing anti-inflammatory agents and a good alternate for conventional steroidal and nonsteroidal anti-inflammatory drugs. SUMMARY C. vulgaris extracts have potential anti-inflammatory activity Solvent extraction using methanol, hexane, and chloroform has exhibited significant effect in LPS activated RAW 264.7 cells C. vulgaris extracts reduce the production of NO, PGE2, TNF-α, and IL-6 in LPS activated RAW 264.7 cells.
Abbreviations Used: COX-2: Cyclooxygenase-2, DMSO: Dimethyl sulfoxide, FBS: Fetal bovine serum, IL-6: Interleukin 6, iNOS: Inducible nitric oxide synthase, L-NMMA: NG-methyl-L-arginine acetate salt, LPS: Lipopolysaccharide, MTT: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, NO: Nitric oxide, PBS: Phosphate buffered saline, PGE2: Prostaglandin E2, TNF-α: Tumor necrosis factor-α
Collapse
Affiliation(s)
- G Sibi
- Department of Biotechnology, Indian Academy Degree College, Centre for Research and Post Graduate Studies, Bengaluru, Karnataka, India
| | - Santa Rabina
- Department of Genetics, Indian Academy Degree College, Centre for Research and Post Graduate Studies, Bengaluru, Karnataka, India
| |
Collapse
|
27
|
Lü S, Wang Q, Li G, Sun S, Guo Y, Kuang H. The treatment of rheumatoid arthritis using Chinese medicinal plants: From pharmacology to potential molecular mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2015; 176:177-206. [PMID: 26471289 DOI: 10.1016/j.jep.2015.10.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 10/02/2015] [Accepted: 10/03/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rheumatoid arthritis (RA) is a common worldwide public health problem. Traditional Chinese Medicine (TCM) achieved some results to some extent in the treatment of rheumatoid arthritis (RA). Especially in China, TCM formulas are used in the clinic because of their advantages. Some of these TCM formulas have been used for thousands of years in ancient China, they pays much attention to strengthening healthy qi, cleaning heat, and wet, activating blood, etc. So TCM in anti-RA drug is considered as a simple and effective method. In addition, TCM are also traditionally used as extracts and many Chinese herbs which are considered to be effective for RA. With the advancement of technologies and research methods, researchers have devoted themselves to exploring new therapeutic materials from troves of TCM. The components of TCM are identified and purified, which include alkaloids, coumarins, flavonoids, saponins and so on. However, little or no review works are found in the research literature on the anti-RA drugs from TCM. The present review aims to provide systematically reorganized information on the ethnopharmacology, phytochemistry and pharmacology of TCM used traditionally against RA. The information recorded in this review will provide new directions for researchers in the future. MATERIALS AND METHODS Relevant scientific literatures were collected from Chinese traditional books and Chinese Pharmacopoeia. Several important pharmacology data, clinical observations, animal experiments on effects of anti-RA drugs from TCM and their mechanisms were extracted from a library and electric search (Pubmed, PubChem Compound, Science Direct, Spring Link, Elsevier, Web of Science, CNKI, Wan Fang, Bai du, The Plant List, etc.). We collected information published between 2002 and 2015 on Chinese medicine in the treatment of RA. Information was also acquired from local classic herbal literature, conference papers, government reports, and PhD and MSc dissertations. RESULTS This review mainly introduces the current research on anti-RA TCM formulas, extracts and compounds from TCM, pharmacological data and potential mechanisms (inhibit osteoclast proliferation, suppress fibroblast-like synoviocytes (FLSs) growth, decrease the expression of inflammatory cytokines, blocking signal pathways, etc.). CONCLUSIONS TCM, as a multi-component and multi-target approach, which is a perfect match with the holistic concept of systems biology, is applicable in the treatment of RA. The synergistic connections of Chinese herbs and mechanisms of related active compounds on RA increase the trust for TCM. TCM as alternative remedies for RA not only has an important position in the world market, but also has an irreplaceable role in the treatment of RA in future.
Collapse
Affiliation(s)
- Shaowa Lü
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Qiushi Wang
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Guoyu Li
- College of Pharmacy, Harbin Medical University, Harbin 150040, China
| | - Shuang Sun
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yuyan Guo
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Haixue Kuang
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
28
|
de Morais MG, Vaz BDS, de Morais EG, Costa JAV. Biologically Active Metabolites Synthesized by Microalgae. BIOMED RESEARCH INTERNATIONAL 2015; 2015:835761. [PMID: 26339647 PMCID: PMC4538420 DOI: 10.1155/2015/835761] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/26/2014] [Accepted: 01/11/2015] [Indexed: 11/18/2022]
Abstract
Microalgae are microorganisms that have different morphological, physiological, and genetic traits that confer the ability to produce different biologically active metabolites. Microalgal biotechnology has become a subject of study for various fields, due to the varied bioproducts that can be obtained from these microorganisms. When microalgal cultivation processes are better understood, microalgae can become an environmentally friendly and economically viable source of compounds of interest, because production can be optimized in a controlled culture. The bioactive compounds derived from microalgae have anti-inflammatory, antimicrobial, and antioxidant activities, among others. Furthermore, these microorganisms have the ability to promote health and reduce the risk of the development of degenerative diseases. In this context, the aim of this review is to discuss bioactive metabolites produced by microalgae for possible applications in the life sciences.
Collapse
Affiliation(s)
- Michele Greque de Morais
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, P.O. Box 474, 96203-900 Rio Grande, RS, Brazil
| | - Bruna da Silva Vaz
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, P.O. Box 474, 96203-900 Rio Grande, RS, Brazil
| | - Etiele Greque de Morais
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, P.O. Box 474, 96203-900 Rio Grande, RS, Brazil
| | - Jorge Alberto Vieira Costa
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, P.O. Box 474, 96203-900 Rio Grande, RS, Brazil
| |
Collapse
|
29
|
Besednova NN, Zaporozhets TS, Somova LM, Kuznetsova TA. Review: prospects for the use of extracts and polysaccharides from marine algae to prevent and treat the diseases caused by Helicobacter pylori. Helicobacter 2015; 20:89-97. [PMID: 25660579 DOI: 10.1111/hel.12177] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Helicobacter pylori possesses a broad spectrum of pathogenic factors that allow it to survive and colonize the gastric mucosa, and thus, the pathogenetic targets, which have the same diversity, require search for and the development of alternative, effective, and innocuous means for the eradication of H. pylori. In recent years, fucoidans have been extensively studied due to the numerous interesting biological activities, including the anti-adhesive, anti-oxidative, antitoxic, immunomodulatory, anticoagulant, and anti-infection effects. This review summarizes the data on the effects of extracts and sulfated polysaccharides of marine algae, mainly fucoidans, on pathogenic targets in Helicobacter infection. The pathogenetic targets for therapeutic agents after H. pylori infection, such as flagellas, urease, and other enzymes, including adhesins, cytotoxin A (VacA), phospholipase, and L-8, are characterized here. The main target for the sulfated polysaccharides of seaweed is cell receptors of the gastric mucosa. This review presents the published data about the pleiotropic anti-inflammatory effects of polysaccharides on the gastric mucosa. It is known that fucoidan and other sulfated polysaccharides from algae have anti-ulcer effects, prevent the adhesion of H. pylori to, and reduce the formation of biofilm. The authors speculate that the effect of sulfated polysaccharides on the infectious process caused by H. pylori is related to their action on innate and adaptive immunity cells, and also anti-oxidant and antitoxic potential. Presented in the review are materials indicated for the study of extracts and sulfated polysaccharides from seaweed during H. pylori infection, as these compounds are characterized by multimodality actions. Based on the analysis of literary materials in recent years, the authors concluded that fucoidan can be attributed to the generation of new candidates to create drugs intended for the inclusion in the scheme of eradication therapy of H. pylori infection.
Collapse
Affiliation(s)
- Natalya N Besednova
- G.P. Somov Research Institute of Epidemiology and Microbiology, Siberian Branch of the Russian Academy of Medical Sciences, Vladivostok, Russia
| | | | | | | |
Collapse
|
30
|
HE QIN, ZHOU WEI, XIONG CAIJIN, TAN GANG, CHEN MANHUA. Lycopene attenuates inflammation and apoptosis in post-myocardial infarction remodeling by inhibiting the nuclear factor-κB signaling pathway. Mol Med Rep 2014; 11:374-8. [DOI: 10.3892/mmr.2014.2676] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 06/17/2014] [Indexed: 11/06/2022] Open
|
31
|
Jiang H, Zhang Y, Yin X, Hu H, Hu X, Fei Y, Tu Y, Zhang Y. Construction and evaluation of rats' tolerogenic dendritic cells (DC) induced by NF-κB Decoy method. Afr Health Sci 2014; 14:626-33. [PMID: 25352881 DOI: 10.4314/ahs.v14i3.18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AIMS To construct and evaluate rats' tolerogenic dendritic cells (DC) through induction by NF-κB Decoy method. METHODS GM-CSF and IL-4 were used to transform rats's monocytes into DC, and DC were stimulated with LPS, NF-κB Decoy ODN, and loaded with Bovine Type II Collagen. The following methods were employed to phenotype DC: 1) Observation of cell morphology; 2) Evaluation of cell viability using trypan blue staining; 3) Purity determination of DC through detection of specific markers OX-62; 4) Evaluation of mature state of DC via the determination of the expression of CD80 and CD86; 5) Determination of stimulation capability towards the proliferation of lymphocyte and the secretion of INF-r and IL-10. RESULTS The activity of DC was more than 92%, and the expression of OX-62 was more than 70%. Most of DC exhibited the phenotype of CD80(+)/CD86(-). Compared with control group and LPS-stimulation group, the less mature adhered cells and hairlike DC were observed in NF-κB decoy group. Significant reduction (p < 0.05) was observed for the positive expression and extension of CD80 and CD86 in cell surface. After loaded with calf type II collagen, the low expression of CD80 and CD86 remains to be existed. The stimulation capability of DC towards lymphocyte in NF-κB decoy group was lower than that in control group (p<0.05) and LPS stimulation group (p < 0.05). CONCLUSION NF-κB Decoy ODN method can be successfully applied for construct rats' tolerogenic dendritic cells (DC) with stable morphology and phenotype. The tolerogenic DC exhibited immature immune phenotype, and low capability to stimulate lymphocytes.
Collapse
Affiliation(s)
- HongMei Jiang
- Department of Microbiology and Immunology, Affiliated Hospital of Guiyang Medical College, Guiyang Medical College, Guiyang, Guizhou, 550004, China
| | - YaLi Zhang
- Department of Clinical Laboratory Hematology, Affiliated Hospital of Guiyang Medical College, Guiyang Medical College, Guiyang, Guizhou, 550004, China
| | - XiangFei Yin
- Department of Clinical Laboratory, Xiamen Second People's Hospital, Xiamen, Fujian, 361021, China
| | - HengGui Hu
- Department of Clinical Laboratory, The Third Hospital Subsidiary of Bengbu Medical College, Suzhou, Anhui, 34000, China
| | - XiaoLei Hu
- Department of Clinical Laboratory, the Central Hospital of Lishui, Zhejiang 323000, China
| | - Ying Fei
- Department of Microbiology and Immunology, Affiliated Hospital of Guiyang Medical College, Guiyang Medical College, Guiyang, Guizhou, 550004, China
| | - Yanyang Tu
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038 China
| | - Yongsheng Zhang
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038 China
| |
Collapse
|
32
|
Renju GL, Muraleedhara Kurup G, Bandugula VR. Effect of lycopene isolated from Chlorella marina on proliferation and apoptosis in human prostate cancer cell line PC-3. Tumour Biol 2014; 35:10747-58. [PMID: 25073513 DOI: 10.1007/s13277-014-2339-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/09/2014] [Indexed: 11/28/2022] Open
Abstract
Even though the role of lycopene from tomato (trans form) in controlling prostate cancer was reported, lycopene (cis and trans 60:40) isolated from green algae Chlorella marina was not reported so far. The present study aimed to assess the anti-proliferative and apoptotic effect of lycopene from a new source and to compare the activity with available trans lycopene by using androgen-independent human prostate cancer cell lines. Exposure of PC-3 and DU-145 cell lines to algal lycopene (AL) at a dose of 20 and 50 μM significantly inhibited the growth and colony formation, and the percentage of inhibition was higher than tomatal lycopene (TL)-treated groups. The stability of AL in cell culture medium was high, when compared to TL under standard cell culture conditions. The level of lycopene was not detected in PC-3 cell lines cultured in medium lacking lycopene. Staining cells with acridine orange and ethidium bromide, the PC-3 control cells showed largely non-fragmented intact nucleoid. Stronger apoptosis signal was induced with higher concentrations (50 μM) of algal lycopene. Increased DNA damage was observed in AL- and TL-treated cells which appear as comet during single-cell gel electrophoresis. Flow cytometry results revealed that AL caused PC-3 cells to accumulate in the G0/G1 phase and to undergo apoptosis. The effect was higher in AL groups than TL-treated groups. Algal lycopene showed very significant anti-proliferative and apoptotic effect in human prostate cancer cell lines. Therefore, algal lycopene from C.marina would be recommended for the treatment of prostate cancer.
Collapse
Affiliation(s)
- G L Renju
- Department of Biochemistry, University of Kerala, Trivandrum, India
| | | | | |
Collapse
|
33
|
Bauerova K, Acquaviva A, Ponist S, Gardi C, Vecchio D, Drafi F, Arezzini B, Bezakova L, Kuncirova V, Mihalova D, Nosal R. Markers of inflammation and oxidative stress studied in adjuvant-induced arthritis in the rat on systemic and local level affected by pinosylvin and methotrexate and their combination. Autoimmunity 2014; 48:46-56. [PMID: 25046647 DOI: 10.3109/08916934.2014.939268] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oxidative stress (OS) is important in the pathogenesis of autoimmune diseases such as rheumatoid arthritis (RA) and its experimental model--adjuvant arthritis (AA). Antioxidants are scarcely studied in autoimmunity, and future analyses are needed to assess its effects in ameliorating these diseases. Although there are studies about antioxidants effects on the course of RA, their role in combination therapy has not yet been studied in detail, especially on extra-articular manifestations of AA. During the 28-d administration of pinosylvin (PIN) in monotherapy and in combination with methotrexate (MTX) to AA rats, we evaluated the impact of the treatment on selected parameters. The experiment included: healthy controls, untreated AA, AA administered 50 mg/kg b.w. of PIN daily p.o., AA administered 0.4 mg/kg b.w. of MTX twice weekly p.o. and AA treated with a combination of PIN+MTX. AA was monitored using: hind paw volume, C-reactive protein, monocyte chemotactic protein-1 (MCP-1), thiobarbituric acid reactive substances (TBARS) and F2-isoprostanes in plasma, γ-glutamyltransferase activity in spleen, activity of lipoxygenase (LOX) in lung, heme oxygenase-1 (HO-1) and nuclear factor kappa B (NF-κB) in liver and lung. PIN monotherapy significantly improved the activation of NF-κB in liver and lung, HO-1 expression and activity of LOX in the lung, MCP-1 levels in plasma (on 14th d) and plasmatic levels of F2-isoprostanes. An important contribution of PIN to MTX effect was the reduction of OS (an increase of HO-1 expression in lung and reduction of plasmatic TBARS) and decrease of LOX activity in the lung.
Collapse
Affiliation(s)
- Katarina Bauerova
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences , Bratislava , Slovak Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Takehara M, Nishimura M, Kuwa T, Inoue Y, Kitamura C, Kumagai T, Honda M. Characterization and thermal isomerization of (all-E)-lycopene. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:264-269. [PMID: 24354592 DOI: 10.1021/jf404497k] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A large amount of (all-E)-lycopene was successfully purified from tomato paste using an improved method that included a procedure to wash crystalline powder with acetone. The total yield of the pure (all-E) form was at least 30%. The melting point of (all-E)-lycopene was determined to be 176.35 °C by differential scanning calorimetry (DSC) measurements. Bathochromic shifts were observed in the absorption maxima of all solvents tested (at most a 36 nm shift for λ2 in carbon disulfide, as was observed in hexane) and were accompanied by absorbance decreases, namely, a hypochromic effect, showing a higher correlation between the position and the intensity of the main absorption bands. This bathochromic shift was dependent upon the polarizability of the solvent rather than its polarity. The structure of (all-E)-lycopene in CDCl3 and C6D6 was identified on the basis of one- and two-dimensional nuclear magnetic resonance (NMR) spectra, including (1)H and (13)C NMR, homonuclear correlation spectroscopy ((1)H-(1)H COSY), heteronuclear multiple-quantum coherence (HMQC), and heteronuclear multiple-bond connectivity (HMBC). The rate constants of the decrease in (all-E)-lycopene with hexane and benzene were calculated to be 3.19 × 10(-5) and 3.55 × 10(-5) s(-1), respectively. The equilibrium constants between (all-E) and (13Z) isomers were estimated to be 0.29 in hexane and 0.31 in benzene, respectively, from the point at which the amount of (13Z)-lycopene reached its maximum.
Collapse
Affiliation(s)
- Munenori Takehara
- Department of Materials Science, The University of Shiga Prefecture , Hassaka, Hikone 522-8533, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Effect of lycopene from Chlorella marina on high cholesterol-induced oxidative damage and inflammation in rats. Inflammopharmacology 2013; 22:45-54. [PMID: 23887896 DOI: 10.1007/s10787-013-0178-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/06/2013] [Indexed: 01/15/2023]
Abstract
Even though the role of all-trans lycopene from tomato in controlling atherosclerosis was reported, but no report is available on the cis-isomer of lycopene obtained from an easily available source green algae Chlorella marina. So in this study, Sprague Dawley rats fed with high-cholesterol diet were given standard drug lovastatin; algal lycopene (AL) (cis/all-trans 40:60) and tomato all-trans lycopene (TL) and the following parameters were studied. Total cholesterol, low-density lipoprotein, triglycerides were decreased significantly and the high-density lipoprotein levels were increased on treatment with AL. The activities of antioxidant enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase were found to be increased, whereas thiobarbituric acid reactive substances levels were decreased in AL when compared to the drug and TL-treated rats. The activities of inflammatory marker enzymes like cyclooxygenase, 15-lipoxygenase in monocytes and myeloperoxidase, C-reactive protein and ceruloplasmin levels in serum were found to be decreased on treatment with AL. Histopathological studies revealed that lycopene from this alga could reduce fatty liver and aortic plaque when compared to the drug and TL. Algal lycopene showed very significant antioxidant and anti-inflammatory effect in high-cholesterol fed rats. Therefore, AL from C. marina would be recommended for the treatment of hyperlipidemia.
Collapse
|
36
|
Lee JC, Hou MF, Huang HW, Chang FR, Yeh CC, Tang JY, Chang HW. Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties. Cancer Cell Int 2013; 13:55. [PMID: 23724847 PMCID: PMC3674937 DOI: 10.1186/1475-2867-13-55] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 05/27/2013] [Indexed: 02/07/2023] Open
Abstract
For their various bioactivities, biomaterials derived from marine algae are important ingredients in many products, such as cosmetics and drugs for treating cancer and other diseases. This mini-review comprehensively compares the bioactivities and biological functions of biomaterials from red, green, brown, and blue-green algae. The anti-oxidative effects and bioactivities of several different crude extracts of algae have been evaluated both in vitro and in vivo. Natural products derived from marine algae protect cells by modulating the effects of oxidative stress. Because oxidative stress plays important roles in inflammatory reactions and in carcinogenesis, marine algal natural products have potential for use in anti-cancer and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Jin-Ching Lee
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | | | | | | | | | | | | |
Collapse
|