1
|
Mohammad AR, Hassan ES, Majeed SA. PI3K/AKT and STAT3 pathways mediate the neuroprotective effect of dasatinib from acute cerebral injury in endotoxemic mice. Res Pharm Sci 2024; 19:64-72. [PMID: 39006974 PMCID: PMC11244703 DOI: 10.4103/1735-5362.394821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/13/2023] [Accepted: 12/31/2023] [Indexed: 07/16/2024] Open
Abstract
Background and purpose Sepsis induces brain dysfunction and there is still a requirement for an unemployed viable restorative approach. This study aimed to investigate the role of dasatinib in the modulation of proinflammatory mediators, attenuating neuroinflammatory response, and it's signaling pathway during endotoxemia. Experimental approach Twenty-four adult male Swiss-albino mice were randomized into four groups: sham (undergo laparotomy without cecal ligation and puncture, sepsis (laparotomy with cecal ligation and puncture), vehicle-dimethyl sulfoxide, dasatinib (20 mg/kg/day) intraperitoneally. Brain tissue used for assessment of interleukin (IL)-6, IL-1β, tumor necrosis factor-alpha (TNF-α), IL-10, Toll-like receptor 4 (TLR4), protein kinase B (AKT), phosphoinositide 3-kinases (PI3K), signal transducer and activator of transcription 3 (STAT3), and histopathological examination. Findings/Results Brain tissue levels of TNF-α, IL-6, and IL1 β were higher in the sepsis group than in the sham and vehicle groups. The dasatinib group had considerably lower tissue levels of these markers and significantly higher tissue values of IL-10 than the sepsis and vehicle groups. The sham group had much lower tissue values of TLR4, AKT, STAT3, and PI3k than in sepsis and vehicle groups. Furthermore, tissue levels of these markers in the dasatinib group were considerably lower than those in the sepsis and vehicle groups. Histopathology demonstrated that dasatinib might considerably reduce brain damage and the intensity of neuroinflammation when compared to sepsis and vehicle groups that showed extensive brain inflammation and damage. Conclusion and implication Dasatinib attenuated endotoxemia-induced acute brain damage in mice via modulating effects on TLR4, PI3K, AKT, and STAT3 downstream signaling pathways.
Collapse
Affiliation(s)
- Ammar Rasoul Mohammad
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Najaf, Iraq
| | - Ekhlas Sabah Hassan
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Najaf, Iraq
| | - Sahar Abdulrudha Majeed
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Najaf, Iraq
| |
Collapse
|
2
|
Jia W, Gong X, Ye Z, Li N, Zhan X. Nitroproteomics is instrumental for stratification and targeted treatments of astrocytoma patients: expert recommendations for advanced 3PM approach with improved individual outcomes. EPMA J 2023; 14:673-696. [PMID: 38094577 PMCID: PMC10713973 DOI: 10.1007/s13167-023-00348-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/11/2023] [Indexed: 12/05/2024]
Abstract
Protein tyrosine nitration is a selectively and reversible important post-translational modification, which is closely related to oxidative stress. Astrocytoma is the most common neuroepithelial tumor with heterogeneity and complexity. In the past, the diagnosis of astrocytoma was based on the histological and clinical features, and the treatment methods were nothing more than surgery-assisted radiotherapy and chemotherapy. Obviously, traditional methods short falls an effective treatment for astrocytoma. In late 2021, the World Health Organization (WHO) adopted molecular biomarkers in the comprehensive diagnosis of astrocytoma, such as IDH-mutant and DNA methylation, which enabled the risk stratification, classification, and clinical prognosis prediction of astrocytoma to be more correct. Protein tyrosine nitration is closely related to the pathogenesis of astrocytoma. We hypothesize that nitroproteome is significantly different in astrocytoma relative to controls, which leads to establishment of nitroprotein biomarkers for patient stratification, diagnostics, and prediction of disease stages and severity grade, targeted prevention in secondary care, treatment algorithms tailored to individualized patient profile in the framework of predictive, preventive, and personalized medicine (PPPM; 3P medicine). Nitroproteomics based on gel electrophoresis and tandem mass spectrometry is an effective tool to identify the nitroproteins and effective biomarkers in human astrocytomas, clarifying the biological roles of oxidative/nitrative stress in the pathophysiology of astrocytomas, functional characteristics of nitroproteins in astrocytomas, nitration-mediated signal pathway network, and early diagnosis and treatment of astrocytomas. The results finds that these nitroproteins are enriched in mitotic cell components, which are related to transcription regulation, signal transduction, controlling subcellular organelle events, cell perception, maintaining cell homeostasis, and immune activity. Eleven statistically significant signal pathways are identified in astrocytoma, including remodeling of epithelial adherens junctions, germ cell-sertoli cell junction signaling, 14-3-3-mediated signaling, phagosome maturation, gap junction signaling, axonal guidance signaling, assembly of RNA polymerase III complex, and TREM1 signaling. Furthermore, protein tyrosine nitration is closely associated with the therapeutic effects of protein drugs, and molecular mechanism and drug targets of cancer. It provides valuable data for studying the protein nitration biomarkers, molecular mechanisms, and therapeutic targets of astrocytoma towards PPPM (3P medicine) practice. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-023-00348-y.
Collapse
Affiliation(s)
- Wenshuang Jia
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xiaoxia Gong
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Zhen Ye
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Na Li
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|
3
|
FDA-Approved Kinase Inhibitors in Preclinical and Clinical Trials for Neurological Disorders. Pharmaceuticals (Basel) 2022; 15:ph15121546. [PMID: 36558997 PMCID: PMC9784968 DOI: 10.3390/ph15121546] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Cancers and neurological disorders are two major types of diseases. We previously developed a new concept termed "Aberrant Cell Cycle Diseases" (ACCD), revealing that these two diseases share a common mechanism of aberrant cell cycle re-entry. The aberrant cell cycle re-entry is manifested as kinase/oncogene activation and tumor suppressor inactivation, which are hallmarks of both tumor growth in cancers and neuronal death in neurological disorders. Therefore, some cancer therapies (e.g., kinase inhibition, tumor suppressor elevation) can be leveraged for neurological treatments. The United States Food and Drug Administration (US FDA) has so far approved 74 kinase inhibitors, with numerous other kinase inhibitors in clinical trials, mostly for the treatment of cancers. In contrast, there are dire unmet needs of FDA-approved drugs for neurological treatments, such as Alzheimer's disease (AD), intracerebral hemorrhage (ICH), ischemic stroke (IS), traumatic brain injury (TBI), and others. In this review, we list these 74 FDA-approved kinase-targeted drugs and identify those that have been reported in preclinical and/or clinical trials for neurological disorders, with a purpose of discussing the feasibility and applicability of leveraging these cancer drugs (FDA-approved kinase inhibitors) for neurological treatments.
Collapse
|
4
|
Therapeutic opportunities for targeting cellular senescence in progressive multiple sclerosis. Curr Opin Pharmacol 2022; 63:102184. [DOI: 10.1016/j.coph.2022.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 11/22/2022]
|
5
|
Buscarinu MC, Reniè R, Morena E, Romano C, Bellucci G, Marrone A, Bigi R, Salvetti M, Ristori G. Late-Onset MS: Disease Course and Safety-Efficacy of DMTS. Front Neurol 2022; 13:829331. [PMID: 35356454 PMCID: PMC8960027 DOI: 10.3389/fneur.2022.829331] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS), an inflammatory demyelinating and neurodegenerative disease of the central nervous system, usually begins between the ages of 20 and 49 years, though in rare cases it is diagnosed in childhood and adolescence before the age of 18 years, or at the age of 50 years and later. When the onset of the disease occurs at 50 years or older it is conventionally defined as late onset MS (LOMS). Compared to classical MS, the LOMS is characterized by progressive course, a greater delay in diagnosis and a higher prevalence of motor disability. The older the patients, the greater is the risk of comorbidities that can negatively influence the course of the disease and can limit therapeutic strategies. To date, there is no study focused on the efficacy of Disease Modifying Therapies (DMT) in older patients with MS. The only data available are retrievable from subgroup analysis from phase-3 trials of DMT efficacy. In this work, we discuss how the aging process influences the onset, the clinical course and the therapeutic approach in LOMS.
Collapse
Affiliation(s)
- Maria Chiara Buscarinu
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University, Rome, Italy
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Roberta Reniè
- Department of Clinical-Experimental Neuroscience and Psychiatry, Sapienza University, Rome, Italy
| | - Emanuele Morena
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University, Rome, Italy
| | - Carmela Romano
- Department of Clinical-Experimental Neuroscience and Psychiatry, Sapienza University, Rome, Italy
| | - Gianmarco Bellucci
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University, Rome, Italy
| | - Antonio Marrone
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University, Rome, Italy
| | - Rachele Bigi
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University, Rome, Italy
| | - Marco Salvetti
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University, Rome, Italy
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
- *Correspondence: Marco Salvetti
| | - Giovanni Ristori
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University, Rome, Italy
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
- Giovanni Ristori
| |
Collapse
|
6
|
Dema M, Eixarch H, Villar LM, Montalban X, Espejo C. Immunosenescence in multiple sclerosis: the identification of new therapeutic targets. Autoimmun Rev 2021; 20:102893. [PMID: 34237417 DOI: 10.1016/j.autrev.2021.102893] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/02/2021] [Indexed: 12/14/2022]
Abstract
The number of elderly multiple sclerosis (MS) patients is growing, mainly due to the increase in the life expectancy of the general population and the availability of effective disease-modifying treatments. However, current treatments reduce the frequency of relapses and slow the progression of the disease, but they cannot stop the disability accumulation associated with disease progression. One possible explanation is the impact of immunosenescence, which is associated with the accumulation of unusual immune cell subsets that are thought to have a role in the development of an early ageing process in autoimmunity. Here, we provide a recent overview of how senescence affects immune cell function and how it is involved in the pathogenesis of autoimmune diseases, particularly MS. Numerous studies have demonstrated age-related immune changes in experimental autoimmune encephalomyelitis models, and the premature onset of immunosenescence has been demonstrated in MS patients. Therefore, potential therapeutic strategies based on rejuvenating the immune system have been proposed. Senolytics and regenerative strategies using haematopoietic stem cells, therapies based on rejuvenating oligodendrocyte precursor cells, microglia and monocytes, thymus cells and senescent B and T cells are capable of reversing the process of immunosenescence and could have a beneficial impact on the progression of MS.
Collapse
Affiliation(s)
- María Dema
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, 08035, Barcelona, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| | - Herena Eixarch
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, 08035, Barcelona, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| | - Luisa M Villar
- Red Española de Esclerosis Múltiple (REEM), Spain; Servicio de Inmunología, Hospital Universitario Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain.
| | - Xavier Montalban
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, 08035, Barcelona, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| | - Carmen Espejo
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, 08035, Barcelona, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain; Red Española de Esclerosis Múltiple (REEM), Spain.
| |
Collapse
|
7
|
Ntari L, Nikolaou C, Kranidioti K, Papadopoulou D, Christodoulou-Vafeiadou E, Chouvardas P, Meier F, Geka C, Denis MC, Karagianni N, Kollias G. Combination of subtherapeutic anti-TNF dose with dasatinib restores clinical and molecular arthritogenic profiles better than standard anti-TNF treatment. J Transl Med 2021; 19:165. [PMID: 33892739 PMCID: PMC8063445 DOI: 10.1186/s12967-021-02764-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND New medications for Rheumatoid Arthritis (RA) have emerged in the last decades, including Disease Modifying Antirheumatic Drugs (DMARDs) and biologics. However, there is no known cure, since a significant proportion of patients remain or become non-responders to current therapies. The development of new mode-of-action treatment schemes involving combination therapies could prove successful for the treatment of a greater number of RA patients. METHODS We investigated the effect of the Tyrosine Kinase inhibitors (TKIs) dasatinib and bosutinib, on the human TNF-dependent Tg197 arthritis mouse model. The inhibitors were administered either as a monotherapy or in combination with a subtherapeutic dose of anti-hTNF biologics and their therapeutic effect was assessed clinically, histopathologically as well as via gene expression analysis and was compared to that of an efficient TNF monotherapy. RESULTS Dasatinib and, to a lesser extent, bosutinib inhibited the production of TNF and proinflammatory chemokines from arthritogenic synovial fibroblasts. Dasatinib, but not bosutinib, also ameliorated significantly and in a dose-dependent manner both the clinical and histopathological signs of Tg197 arthritis. Combination of dasatinib with a subtherapeutic dose of anti-hTNF biologic agents, resulted in a synergistic inhibitory effect abolishing all arthritis symptoms. Gene expression analysis of whole joint tissue of Tg197 mice revealed that the combination of dasatinib with a low subtherapeutic dose of Infliximab most efficiently restores the pathogenic gene expression profile to that of the healthy state compared to either treatment administered as a monotherapy. CONCLUSION Our findings show that dasatinib exhibits a therapeutic effect in TNF-driven arthritis and can act in synergy with a subtherapeutic anti-hTNF dose to effectively treat the clinical and histopathological signs of the pathology. The combination of dasatinib and anti-hTNF exhibits a distinct mode of action in restoring the arthritogenic gene signature to that of a healthy profile. Potential clinical applications of combination therapies with kinase inhibitors and anti-TNF agents may provide an interesting alternative to high-dose anti-hTNF monotherapy and increase the number of patients responding to treatment.
Collapse
Affiliation(s)
| | - Christoforos Nikolaou
- Institute for Bioinnovation, Biomedical Sciences Research Center (BSRC), Alexander Fleming, 34 Alexander Fleming Street, 16672, Vari, Greece
| | | | - Dimitra Papadopoulou
- Institute for Bioinnovation, Biomedical Sciences Research Center (BSRC), Alexander Fleming, 34 Alexander Fleming Street, 16672, Vari, Greece
| | | | - Panagiotis Chouvardas
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Florian Meier
- Division of Rheumatology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Frankfurt am Main, Germany
| | | | | | | | - George Kollias
- Institute for Bioinnovation, Biomedical Sciences Research Center (BSRC), Alexander Fleming, 34 Alexander Fleming Street, 16672, Vari, Greece.
- Department of Physiology and Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
8
|
Song JH, Yu DH, Hwang TS, Seung BJ, Sur JH, Kim YJ, Jung DI. Expression of platelet-derived growth factor receptor-α/ß, vascular endothelial growth factor receptor-2, c-Abl, and c-Kit in canine granulomatous meningoencephalitis and necrotizing encephalitis. Vet Med Sci 2020; 6:965-974. [PMID: 32585777 PMCID: PMC7738704 DOI: 10.1002/vms3.314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/11/2020] [Accepted: 05/27/2020] [Indexed: 01/21/2023] Open
Abstract
Background Given the active research on targeted therapy using tyrosine kinase (TK) inhibitors (TKIs) in the field of oncology, further studies have recently been conducted to evaluate their use in autoimmune disorders. Based on immunological investigations, previous studies have suggested that granulomatous meningoencephalomyelitis (GME) and necrotizing encephalomyelitis (NE) are similar to multiple sclerosis (MS), which is a human autoimmune demyelinating central nervous system disease. Objectives Considering this perspective, we hypothesized that canine GME and NE have significant expression of one or more TKs, which are associated with human MS pathogenesis. Methods To determine the possible use of conventional multi‐targeted TKIs as a treatment for canine GME and NE, we characterized the immunohistochemical expression of platelet‐derived growth factor receptor (PDGFR)‐α, PDGFR‐ß, vascular endothelial growth factor receptor (VEGFR)‐2, c‐Abl and c‐Kit in GME and NE samples. Results Histological samples from four dogs with GME and three with NE were retrieved. All samples stained positive for PDGFR‐ß (7/7 [100%]). PDGFR‐α and c‐Kit were expressed in 3/7 (42.8%) samples each. c‐Abl was identified in 2/7 (28.5%) samples; no sample showed VEGFR‐2 (0%) expression. Co‐expression of TKs was identified in 6/7 (85.7%) dogs. Conclusions All samples were positive for at least one or more of PDGFR‐α, PDGFR‐ß, c‐Kit and c‐Abl, which are known as the target TKs of conventional multi‐targeted TKIs. Their presence does suggest that these TKs may play a role in the pathogenesis of GME and NE. Therefore, multi‐targeted TKIs may provide benefits in the treatment of canine GME and NE by suppressing the activity of these TKs.
Collapse
Affiliation(s)
- Joong-Hyun Song
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Do-Hyeon Yu
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Tae-Sung Hwang
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Byung-Joon Seung
- Department of Pathobiology, Small Animal Tumor Diagnostic Center, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jung-Hyang Sur
- Department of Pathobiology, Small Animal Tumor Diagnostic Center, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Young Joo Kim
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, 91766-1854, USA
| | - Dong-In Jung
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| |
Collapse
|
9
|
Chen J, He R, Sun W, Gao R, Peng Q, Zhu L, Du Y, Ma X, Guo X, Zhang H, Tan C, Wang J, Zhang W, Weng X, Man J, Bauer H, Wang QK, Martin BN, Zhang CJ, Li X, Wang C. TAGAP instructs Th17 differentiation by bridging Dectin activation to EPHB2 signaling in innate antifungal response. Nat Commun 2020; 11:1913. [PMID: 32312989 PMCID: PMC7171161 DOI: 10.1038/s41467-020-15564-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
The TAGAP gene locus has been linked to several infectious diseases or autoimmune diseases, including candidemia and multiple sclerosis. While previous studies have described a role of TAGAP in T cells, much less is known about its function in other cell types. Here we report that TAGAP is required for Dectin-induced anti-fungal signaling and proinflammatory cytokine production in myeloid cells. Following stimulation with Dectin ligands, TAGAP is phosphorylated by EPHB2 at tyrosine 310, which bridges proximal Dectin-induced EPHB2 activity to downstream CARD9-mediated signaling pathways. During Candida albicans infection, mice lacking TAGAP mount defective immune responses, impaired Th17 cell differentiation, and higher fungal burden. Similarly, in experimental autoimmune encephalomyelitis model of multiple sclerosis, TAGAP deficient mice develop significantly attenuated disease. In summary, we report that TAGAP plays an important role in linking Dectin-induced signaling to the promotion of effective T helper cell immune responses, during both anti-fungal host defense and autoimmunity. TAGAP gene variants are linked to human autoimmunity. Here the authors identify TAGAP as a Dectin-1 and EphB2-binding protein mediating antifungal innate immune signaling and cytokine production, and demonstrate TAGAP in non-T cells promotes Th17 response in mouse models of infection and autoimmunity.
Collapse
Affiliation(s)
- Jianwen Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ruirui He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wanwei Sun
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Ru Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qianwen Peng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liwen Zhu
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Yanyun Du
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaojian Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaoli Guo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huazhi Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chengcheng Tan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Junhan Wang
- University-Affiliated Hospital, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiufang Weng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jianghong Man
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Hermann Bauer
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195, Berlin, Germany
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.,Department of Molecular Medicine, Department of Genetics and Genome Science, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Bradley N Martin
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cun-Jin Zhang
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, China.
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, 44106, USA
| | - Chenhui Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Wuhan Institute of Biotechnology, Wuhan, Hubei, 430070, China.
| |
Collapse
|
10
|
Ryu KY, Lee HJ, Woo H, Kang RJ, Han KM, Park H, Lee SM, Lee JY, Jeong YJ, Nam HW, Nam Y, Hoe HS. Dasatinib regulates LPS-induced microglial and astrocytic neuroinflammatory responses by inhibiting AKT/STAT3 signaling. J Neuroinflammation 2019; 16:190. [PMID: 31655606 PMCID: PMC6815018 DOI: 10.1186/s12974-019-1561-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022] Open
Abstract
Background The FDA-approved small-molecule drug dasatinib is currently used as a treatment for chronic myeloid leukemia (CML). However, the effects of dasatinib on microglial and/or astrocytic neuroinflammatory responses and its mechanism of action have not been studied in detail. Methods BV2 microglial cells, primary astrocytes, or primary microglial cells were treated with dasatinib (100 or 250 nM) or vehicle (1% DMSO) for 30 min or 2 h followed by lipopolysaccharide (LPS; 200 ng/ml or 1 μg/ml) or PBS for 5.5 h. RT-PCR, real-time PCR; immunocytochemistry; subcellular fractionation; and immunohistochemistry were subsequently conducted to determine the effects of dasatinib on LPS-induced neuroinflammation. In addition, wild-type mice were injected with dasatinib (20 mg/kg, intraperitoneally (i.p.) daily for 4 days or 20 mg/kg, orally administered (p.o.) daily for 4 days or 2 weeks) or vehicle (4% DMSO + 30% polyethylene glycol (PEG) + 5% Tween 80), followed by injection with LPS (10 mg/kg, i.p.) or PBS. Then, immunohistochemistry was performed, and plasma IL-6, IL-1β, and TNF-α levels were analyzed by ELISA. Results Dasatinib regulates LPS-induced proinflammatory cytokine and anti-inflammatory cytokine levels in BV2 microglial cells, primary microglial cells, and primary astrocytes. In BV2 microglial cells, dasatinib regulates LPS-induced proinflammatory cytokine levels by regulating TLR4/AKT and/or TLR4/ERK signaling. In addition, intraperitoneal injection and oral administration of dasatinib suppress LPS-induced microglial/astrocyte activation, proinflammatory cytokine levels (including brain and plasma levels), and neutrophil rolling in the brains of wild-type mice. Conclusions Our results suggest that dasatinib modulates LPS-induced microglial and astrocytic activation, proinflammatory cytokine levels, and neutrophil rolling in the brain. Electronic supplementary material The online version of this article (10.1186/s12974-019-1561-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ka-Young Ryu
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| | - Hyun-Ju Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| | - Hanwoong Woo
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| | - Ri-Jin Kang
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| | - Kyung-Min Han
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea.,Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu, 42988, South Korea
| | - HyunHee Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| | - Sang Min Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| | - Ju-Young Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| | - Yoo Joo Jeong
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| | - Hyun-Wook Nam
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| | - Youngpyo Nam
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea.
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea. .,Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu, 42988, South Korea.
| |
Collapse
|
11
|
Goudarzvand M, Panahi Y, Yazdani R, Miladi H, Tahmasebi S, Sherafat A, Afraei S, Abouhamzeh K, Jamee M, Al-Hussieni KJMR, Mohammadi H, Mohebbi A, Hossein-Khannazer N, Zaki-Dizaji M, Di Fiore MM, D'Aniello A, Azizi G. The Effects of D-aspartate on Neurosteroids, Neurosteroid Receptors, and Inflammatory Mediators in Experimental Autoimmune Encephalomyelitis. Endocr Metab Immune Disord Drug Targets 2019; 19:316-325. [PMID: 30289086 DOI: 10.2174/1871530318666181005093459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/18/2018] [Accepted: 08/03/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Experimental autoimmune encephalomyelitis (EAE) is a widely used model for multiple sclerosis. The present study has been designed to compare the efficiencies of oral and intraperitoneal (IP) administration of D-aspartate (D-Asp) on the onset and severity of EAE, the production of neurosteroids, and the expression of neurosteroid receptors and inflammatory mediators in the brain of EAE mice. METHODS In this study, EAE was induced in C57BL/6 mice treated with D-Asp orally (D-Asp-Oral) or by IP injection (D-Asp-IP). On the 20th day, brains (cerebrums) and cerebellums of mice were evaluated by histological analyses. The brains of mice were analyzed for: 1) Neurosteroid (Progesterone, Testosterone, 17β-estradiol) concentrations; 2) gene expressions of cytokines and neurosteroid receptors by reverse transcription polymerase chain reaction, and 3) quantitative determination of D-Asp using liquid chromatography-tandem mass spectrometry. Further, some inflammatory cytokines and matrix metalloproteinase-2 (MMP-2) were identified in the mouse serum using enzyme-linked immunosorbent assay kits. RESULTS Our findings demonstrated that after D-Asp was administered, it was taken up and accumulated within the brain. Further, IP injection of D-Asp had more beneficial effects on EAE severity than oral gavage. The concentration of the testosterone and 17β-estradiol in D-Asp-IP group was significantly higher than that of the control group. There were no significant differences in the gene expression of cytokine and neurosteroid receptors between control, D-Asp-IP, and D-Asp-Oral groups. However, IP treatment with D-Asp significantly reduced C-C motif chemokine ligand 2 and MMP-2 serum levels compared to control mice. CONCLUSION IP injection of D-Asp had more beneficial effects on EAE severity, neurosteroid induction and reduction of inflammatory mediators than oral gavage.
Collapse
Affiliation(s)
- Mahdi Goudarzvand
- Department of Physiology and Pharmacology, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Yaser Panahi
- North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Yazdani
- Research Centre for Immunodeficiencies, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Hosein Miladi
- Department of Pathology, Imam Khomeini Hospital affiliated to Social Security Organization, Arak, Iran
| | - Saeed Tahmasebi
- Department of Biology, Arak Branch, Islamic Azad University, Arak, Iran
| | - Amin Sherafat
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, United States
| | - Sanaz Afraei
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Abouhamzeh
- Research Centre for Immunodeficiencies, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Jamee
- Student Research Committee, Alborz University of Medical Sciences, Alborz, Iran
| | | | - Hamed Mohammadi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohebbi
- Growth and Development Research Centre, Paediatrics Centre of Excellence, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Zaki-Dizaji
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maria Maddalena Di Fiore
- Universita della Campania "L. Vanvitelli" Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Via Vivaldi 43, 81100, Caserta, Italy
| | - Antimo D'Aniello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", via Vivaldi 43, 81100, Caserta, Italy
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
12
|
Szilveszter KP, Németh T, Mócsai A. Tyrosine Kinases in Autoimmune and Inflammatory Skin Diseases. Front Immunol 2019; 10:1862. [PMID: 31447854 PMCID: PMC6697022 DOI: 10.3389/fimmu.2019.01862] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/23/2019] [Indexed: 12/30/2022] Open
Abstract
Tyrosine kinases relay signals from diverse leukocyte antigen receptors, innate immune receptors, and cytokine receptors, and therefore mediate the recruitment and activation of various leukocyte populations. Non-receptor tyrosine kinases of the Jak, Src, Syk, and Btk families play major roles in various immune-mediated disorders, and small-molecule tyrosine kinase inhibitors are emerging novel therapeutics in a number of those diseases. Autoimmune and inflammatory skin diseases represent a broad spectrum of immune-mediated diseases. Genetic and pharmacological studies in humans and mice support the role of tyrosine kinases in several inflammatory skin diseases. Atopic dermatitis and psoriasis are characterized by an inflammatory microenvironment which activates cytokine receptors coupled to the Jak-Stat signaling pathway. Jak kinases are also implicated in alopecia areata and vitiligo, skin disorders mediated by cytotoxic T lymphocytes. Genetic studies indicate a critical role for Src-family kinases and Syk in animal models of autoantibody-mediated blistering skin diseases. Here, we review the various tyrosine kinase signaling pathways and their role in various autoimmune and inflammatory skin diseases. Special emphasis will be placed on identification of potential therapeutic targets, as well as on ongoing preclinical and clinical studies for the treatment of inflammatory skin diseases by small-molecule tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Kata P Szilveszter
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Tamás Németh
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| |
Collapse
|
13
|
Guo K, Bu X, Yang C, Cao X, Bian H, Zhu Q, Zhu J, Zhang D. Treatment Effects of the Second-Generation Tyrosine Kinase Inhibitor Dasatinib on Autoimmune Arthritis. Front Immunol 2019; 9:3133. [PMID: 30687331 PMCID: PMC6335562 DOI: 10.3389/fimmu.2018.03133] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/18/2018] [Indexed: 01/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is a multifactorial autoimmune disease that primarily manifests as persistent synovitis and progressive joint destruction. Imatinib exhibited a therapeutic effect in murine collagen-induced arthritis (CIA) via selective inhibition tyrosine kinases. The second-generation tyrosine kinase inhibitor dasatinib exhibits more durable hematological and cytogenetic effects and more potency compared to imatinib. However, the effect of dasatinib on CIA is poorly understood. The present study investigated the treatment effect of dasatinib on autoimmune arthritis. We demonstrated that dasatinib alleviated arthritis symptoms and histopathological destruction in CIA mice. Dasatinib treatment inhibited the production of proinflammatory cytokines including IL-1β, TNF-α, and IL-6, and promoted the production of the anti-inflammatory cytokine IL-10. Dasatinib treatment also suppressed the expression of anti-mouse CII antibodies including total IgG, IgG1, IgG2, and IgG2b, in CIA mice. We further demonstrated that dasatinib inhibited the migration and proliferation of fibroblast-like synoviocytes (FLS) from RA patients and promoted FLS apoptosis. The mRNA expression of MMP13, VEGF, FGF, and DKK1 was down-regulated in FLS treated with dasatinib. Our findings suggest that dasatinib exhibited treatment effects on CIA mice and that FLS are an important target cell of dasatinib treatment in autoimmune arthritis.
Collapse
Affiliation(s)
- Kai Guo
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Xin Bu
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Chongfei Yang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaorui Cao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Huan Bian
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Qingsheng Zhu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinyu Zhu
- Department of Orthopaedics, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Dawei Zhang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
14
|
Therapeutic effects of pegylated-interferon-α2a in a mouse model of multiple sclerosis. Cent Eur J Immunol 2018; 43:9-17. [PMID: 29731688 PMCID: PMC5927168 DOI: 10.5114/ceji.2018.74868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/16/2016] [Indexed: 12/04/2022] Open
Abstract
Introduction Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis (MS). EAE is mainly mediated by adaptive and innate immune responses that lead to an inflammatory demyelination and axonal damage. The aim of the present research was to examine the therapeutic efficacy of Peg interferon alpha 2a (Peg-IFN α-2a) as a serine protease inhibitor on EAE model. Material and methods EAE induction was performed in female C57BL/6 mice by myelin oligodendrocyte glycoprotein (35-55) (MOG35-55) in Complete Freund’s Adjuvant (CFA) emulsion, and Peg-IFN α-2a was used for the treatment of EAE. During the course of the study, clinical evaluation was assessed, and on day 21 post-immunisation blood samples were taken from the heart of mice for evaluation of IL-6, and enzymatic and non-enzymatic antioxidants. The mice were sacrificed and the brains and cerebellums were removed for histological analysis. Results Our findings indicated that Peg-IFN α-2a had beneficial effects on EAE by attenuation of the severity and a delay in the onset of disease. Histological analysis showed that treatment with Peg-IFN α-2a can reduce inflammation criteria. Moreover, in Peg-IFN α-2a-treated mice the serum level of IL-6 was significantly less than in controls, and total antioxidant capacity was significantly more than in the control animals. Conclusions These data indicate that Peg-IFN α-2a as an anti-serine protease with immunomodulatory properties may be useful for the treatment of MS.
Collapse
|
15
|
A Role for the Non-Receptor Tyrosine Kinase Abl2/Arg in Experimental Neuroinflammation. J Neuroimmune Pharmacol 2018; 13:265-276. [PMID: 29550892 PMCID: PMC5928183 DOI: 10.1007/s11481-018-9783-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/07/2018] [Indexed: 12/18/2022]
Abstract
Multiple sclerosis is a neuroinflammatory degenerative disease, caused by activated immune cells infiltrating the CNS. The disease etiology involves both genetic and environmental factors. The mouse genetic locus, Eae27, linked to disease development in the experimental autoimmune encephalomyelitis (EAE) model for multiple sclerosis, was studied in order to identify contributing disease susceptibility factors and potential drug targets for multiple sclerosis. Studies of an Eae27 congenic mouse strain, revealed that genetic variation within Eae27 influences EAE development. The Abl2 gene, encoding the non-receptor tyrosine kinase Arg, is located in the 4,1 megabase pair long Eae27 region. The Arg protein plays an important role in cellular regulation and is, in addition, involved in signaling through the B- and T-cell receptors, important for the autoimmune response. The presence of a single nucleotide polymorphism causing an amino acid change in a near actin-interacting domain of Arg, in addition to altered lymphocyte activation in the congenic mice upon immunization with myelin antigen, makes Abl2/Arg a candidate gene for EAE. Here we demonstrate that the non-synonymous SNP does not change Arg's binding affinity for F-actin but suggest a role for Abl kinases in CNS inflammation pathogenesis by showing that pharmacological inhibition of Abl kinases ameliorates EAE, but not experimental arthritis.
Collapse
|
16
|
Afraei S, D’Aniello A, Sedaghat R, Ekhtiari P, Azizi G, Tabrizian N, Magliozzi L, Aghazadeh Z, Mirshafiey A. Therapeutic effects of D-aspartate in a mouse model of multiple sclerosis. J Food Drug Anal 2017; 25:699-708. [PMID: 28911655 PMCID: PMC9328824 DOI: 10.1016/j.jfda.2016.10.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 10/21/2016] [Accepted: 10/30/2016] [Indexed: 11/30/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis. EAE is mainly mediated by adaptive and innate immune responses that leads to an inflammatory demyelization and axonal damage. The aim of the present research was to examine the therapeutic efficacy of D-aspartic acid (D-Asp) on a mouse EAE model. EAE induction was performed in female C57BL/6 mice by myelin 40 oligodendrocyte glycoprotein (35-55) in a complete Freund's adjuvant emulsion, and D-Asp was used to test its efficiency in the reduction of EAE. During the course of study, clinical evaluation was assessed, and on Day 21, post-immunization blood samples were taken from the heart of mice for the evaluation of interleukin 6 and other chemical molecules. The mice were sacrificed, and their brain and cerebellum were removed for histological analysis. Our findings indicated that D-Asp had beneficial effects on EAE by attenuation in the severity and delay in the onset of the disease. Histological analysis showed that treatment with D-Asp can reduce inflammation. Moreover, in D-Asp-treated mice, the serum level of interleukin 6 was significantly lower than that in control animals, whereas the total antioxidant capacity was significantly higher. The data indicates that D-Asp possess neuroprotective property to prevent the onset of the multiple sclerosis.
Collapse
Affiliation(s)
- Sanaz Afraei
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran,
Iran
| | - Antimo D’Aniello
- Laboratory of Neurobiology, Zoological Station of Naples “Anton Dohrn”, Villa Comunale, Napoli,
Italy
| | - Reza Sedaghat
- Departments of Anatomy and Pathology, Faculty of Medicine, Shahed University, Tehran,
Iran
| | - Parvin Ekhtiari
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran,
Iran
| | - Gholamreza Azizi
- Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj,
Iran
- Research Centre for Immunodeficiencies, Pediatrics Centre of Excellence, Children's Medical Centre, Tehran University of Medical Sciences, Tehran,
Iran
| | - Nakisa Tabrizian
- Department of Cellular and Molecular Biology, Kish International Campus, University of Tehran, Tehran,
Iran
| | - Laura Magliozzi
- Department of Biology, University of Naples, “Federico II” Via Cinthia, MSA Campus, bldg. 7, Naples,
Italy
| | - Zahra Aghazadeh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran,
Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran,
Iran
| |
Collapse
|
17
|
Lewandowski SA, Fredriksson L, Lawrence DA, Eriksson U. Pharmacological targeting of the PDGF-CC signaling pathway for blood-brain barrier restoration in neurological disorders. Pharmacol Ther 2016; 167:108-119. [PMID: 27524729 PMCID: PMC5341142 DOI: 10.1016/j.pharmthera.2016.07.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/25/2016] [Indexed: 12/12/2022]
Abstract
Neurological disorders account for a majority of non-malignant disability in humans and are often associated with dysfunction of the blood-brain barrier (BBB). Recent evidence shows that despite apparent variation in the origin of neural damage, the central nervous system has a common injury response mechanism involving platelet-derived growth factor (PDGF)-CC activation in the neurovascular unit and subsequent dysfunction of BBB integrity. Inhibition of PDGF-CC signaling with imatinib in mice has been shown to prevent BBB dysfunction and have neuroprotective effects in acute damage conditions, including traumatic brain injury, seizures or stroke, as well as in neurodegenerative diseases that develop over time, including multiple sclerosis and amyotrophic lateral sclerosis. Stroke and traumatic injuries are major risk factors for age-associated neurodegenerative disorders and we speculate that restoring BBB properties through PDGF-CC inhibition might provide a common therapeutic opportunity for treatment of both acute and progressive neuropathology in humans. In this review we will summarize what is known about the role of PDGF-CC in neurovascular signaling events and the variety of seemingly different neuropathologies it is involved in. We will also discuss the pharmacological means of therapeutic interventions for anti-PDGF-CC therapy and ongoing clinical trials. In summary: inhibition of PDGF-CC signaling can be protective for immediate injury and decrease the long-term neurodegenerative consequences.
Collapse
Affiliation(s)
- Sebastian A Lewandowski
- Tissue Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheeles v. 2, 17177, Stockholm, Sweden.
| | - Linda Fredriksson
- Vascular Biology Groups, Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheeles v. 2, 17177, Stockholm, Sweden; Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 Medical Science Research Building III, 1150 West Medical Center Drive, Ann Arbor, MI 48109-0644, USA
| | - Daniel A Lawrence
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 Medical Science Research Building III, 1150 West Medical Center Drive, Ann Arbor, MI 48109-0644, USA
| | - Ulf Eriksson
- Tissue Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheeles v. 2, 17177, Stockholm, Sweden.
| |
Collapse
|
18
|
Artemov A, Aliper A, Korzinkin M, Lezhnina K, Jellen L, Zhukov N, Roumiantsev S, Gaifullin N, Zhavoronkov A, Borisov N, Buzdin A. A method for predicting target drug efficiency in cancer based on the analysis of signaling pathway activation. Oncotarget 2016; 6:29347-56. [PMID: 26320181 PMCID: PMC4745731 DOI: 10.18632/oncotarget.5119] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 07/24/2015] [Indexed: 02/07/2023] Open
Abstract
A new generation of anticancer therapeutics called target drugs has quickly developed in the 21st century. These drugs are tailored to inhibit cancer cell growth, proliferation, and viability by specific interactions with one or a few target proteins. However, despite formally known molecular targets for every "target" drug, patient response to treatment remains largely individual and unpredictable. Choosing the most effective personalized treatment remains a major challenge in oncology and is still largely trial and error. Here we present a novel approach for predicting target drug efficacy based on the gene expression signature of the individual tumor sample(s). The enclosed bioinformatic algorithm detects activation of intracellular regulatory pathways in the tumor in comparison to the corresponding normal tissues. According to the nature of the molecular targets of a drug, it predicts whether the drug can prevent cancer growth and survival in each individual case by blocking the abnormally activated tumor-promoting pathways or by reinforcing internal tumor suppressor cascades. To validate the method, we compared the distribution of predicted drug efficacy scores for five drugs (Sorafenib, Bevacizumab, Cetuximab, Sorafenib, Imatinib, Sunitinib) and seven cancer types (Clear Cell Renal Cell Carcinoma, Colon cancer, Lung adenocarcinoma, non-Hodgkin Lymphoma, Thyroid cancer and Sarcoma) with the available clinical trials data for the respective cancer types and drugs. The percent of responders to a drug treatment correlated significantly (Pearson's correlation 0.77 p = 0.023) with the percent of tumors showing high drug scores calculated with the current algorithm.
Collapse
Affiliation(s)
- Artem Artemov
- Pathway Pharmaceuticals, Wan Chai, Hong Kong, Hong Kong SAR.,D. Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Alexander Aliper
- D. Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.,First Oncology Research and Advisory Center, Moscow, Russia
| | | | | | - Leslie Jellen
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nikolay Zhukov
- D. Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.,First Oncology Research and Advisory Center, Moscow, Russia.,Pirogov Russian National Research Medical University, Department of Oncology, Hematology and Radiotherapy, Moscow, Russia
| | - Sergey Roumiantsev
- D. Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.,Pirogov Russian National Research Medical University, Department of Oncology, Hematology and Radiotherapy, Moscow, Russia
| | - Nurshat Gaifullin
- Moscow State University, Faculty of Fundamental Medicine, Moscow, Russia
| | - Alex Zhavoronkov
- Insilico Medicine, Inc., ETC, Johns Hopkins University, Baltimore, MD, USA
| | | | - Anton Buzdin
- Pathway Pharmaceuticals, Wan Chai, Hong Kong, Hong Kong SAR.,D. Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.,Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
19
|
Goudarzvand M, Afraei S, Yaslianifard S, Ghiasy S, Sadri G, Kalvandi M, Alinia T, Mohebbi A, Yazdani R, Azarian SK, Mirshafiey A, Azizi G. Hydroxycitric acid ameliorates inflammation and oxidative stress in mouse models of multiple sclerosis. Neural Regen Res 2016; 11:1610-1616. [PMID: 27904492 PMCID: PMC5116840 DOI: 10.4103/1673-5374.193240] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hydroxycitric acid (HCA) is derived primarily from the Garcinia plant and is widely used for its anti-inflammatory effects. Multiple sclerosis can cause an inflammatory demyelination and axonal damage. In this study, to validate the hypothesis that HCA exhibits therapeutic effects on multiple sclerosis, we established female C57BL/6 mouse models of multiple sclerosis, i.e., experimental autoimmune encephalomyelitis, using Complete Freund's Adjuvant (CFA) emulsion containing myelin oligodendrocyte glycoprotein (35-55). Treatment with HCA at 2 g/kg/d for 3 weeks obviously improved the symptoms of nerve injury of experimental autoimmune encephalomyelitis mice, decreased serum interleulin-6, tumor necrosis factor alpha, nitric oxide, and malondialdehyde levels, and increased superoxide dismutase and glutathione reductase activities. These findings suggest that HCA exhibits neuroprotective effects on multiple sclerosis-caused nerve injury through ameliorating inflammation and oxidative stress.
Collapse
Affiliation(s)
- Mahdi Goudarzvand
- Department of Physiology and Pharmacology, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Sanaz Afraei
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somaye Yaslianifard
- Department of Microbiology and Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Saleh Ghiasy
- Research Centre for Immunodeficiencies, Pediatrics Centre of Excellence, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazal Sadri
- Research Centre for Immunodeficiencies, Pediatrics Centre of Excellence, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Mustafa Kalvandi
- Department of Physiology and Pharmacology, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Tina Alinia
- Research Centre for Immunodeficiencies, Pediatrics Centre of Excellence, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Mohebbi
- Growth and Development Research Centre, Paediatrics Centre of Excellence, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahin Khadem Azarian
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran; Research Centre for Immunodeficiencies, Pediatrics Centre of Excellence, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|