1
|
Mani AM, Lamin V, Peach RC, Friesen EH, Wong T, Singh MV, Dokun AO. miRNA-6236 Regulation of Postischemic Skeletal Muscle Angiogenesis. J Am Heart Assoc 2024:e035923. [PMID: 39604034 DOI: 10.1161/jaha.124.035923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Peripheral arterial disease affects >200 million people worldwide and is characterized by impaired blood flow to the lower extremities. There are no effective medical treatments available. Using the mouse hind-limb ischemia model and miRNA sequencing, we identified a novel miRNA, miR-6236, whose expression significantly elevated in ischemic mouse limbs compared with nonischemic limbs. The role of miR-6236 in general or in postischemic angiogenesis is not known. Here we describe its role using in vivo and in vitro models of peripheral arterial disease. METHODS AND RESULTS In primary mouse and human endothelial cells, we studied the effect of simulated ischemia on miR-6236 expression and assessed its role in cell viability, apoptosis, migration, and tube formation during ischemia. Furthermore, we developed miR-6236 null mice and tested its role in postischemic perfusion recovery using the hind-limb ischemia model. Lastly, using bioinformatics and gene expression analysis, we identified putative angiogenic miR-6236 targets. In vitro simulated ischemia-enhanced miR-6236 expression in mouse and human endothelial cells, whereas its inhibition improved viability, migration, tube formation, and reduced apoptosis. In vivo ischemic mouse skeletal muscle tissue showed higher miR-6236 expression compared with nonischemic muscles. Loss of miR-6236 improved impaired postischemic perfusion recovery and poor angiogenesis associated with streptozotocin-induced diabetes in mice. Six of the 8 miR-6236 predicted angiogenic target mRNAs showed expression consistent with regulation by miR-6236 in ischemic skeletal muscle. CONCLUSIONS Our results show for the first time that miR-6236 plays a key role in regulating postischemic perfusion recovery and angiogenesis.
Collapse
Affiliation(s)
- Arul M Mani
- Division of Endocrinology and Metabolism, Carver College of Medicine University of Iowa Iowa City IA USA
| | - Victor Lamin
- Division of Endocrinology and Metabolism, Carver College of Medicine University of Iowa Iowa City IA USA
| | - Ronan C Peach
- Division of Endocrinology and Metabolism, Carver College of Medicine University of Iowa Iowa City IA USA
| | - Eli H Friesen
- Division of Endocrinology and Metabolism, Carver College of Medicine University of Iowa Iowa City IA USA
| | - Thomas Wong
- Division of Endocrinology and Metabolism, Carver College of Medicine University of Iowa Iowa City IA USA
| | - Madhu V Singh
- Division of Endocrinology and Metabolism, Carver College of Medicine University of Iowa Iowa City IA USA
| | - Ayotunde O Dokun
- Division of Endocrinology and Metabolism, Carver College of Medicine University of Iowa Iowa City IA USA
- Fraternal Order of Eagles Diabetes Research Centre, Carver College of Medicine University of Iowa Iowa City IA USA
| |
Collapse
|
2
|
Vaynrub M, Or O, Drill E, Saulan M, Boland PJ. Postoperative extremity compartment syndrome in a cancer center: Incidence and risk factors. Surg Oncol 2021; 38:101563. [PMID: 33857839 DOI: 10.1016/j.suronc.2021.101563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/24/2020] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Postoperative compartment syndrome is a reported complication with known patient- and treatment-specific risk factors. Cancer patients carry unique risk factors associated with their underlying disease and long, complex procedures. While elevated serum lactate in traumatic and intensive care settings portends higher risk, no laboratory parameter has demonstrated utility in postoperative risk stratification. Postoperative extremity compartment syndrome in the study institution's cancer population was examined and whether intraoperative serum lactate correlates with postoperative compartment syndrome risk was investigated. METHODS A 1:2 case-control study was performed, which compared cancer patients with postoperative compartment syndrome to those who underwent similar surgical procedures without this complication. Twelve patients were matched to 24 controls by sex, age, surgical procedures, and duration of surgery. Patient and operative variables were analyzed for prognostic significance. RESULTS The compartment syndrome rate was 0.09% of all cases (n = 13,491); 0.12% of cases ≥ 3 h' duration (n = 9,979), and 0.25% of cases ≥ 5 h (n = 4,811). Compared with controls, the case group had higher median BMI (31.7 kg/m2 vs. 25.4 kg/m2, P = 0.001), and median intraoperative lactate level (4.05 mmol/L vs. 1.5 mmol/L, P = 0.047). CONCLUSION Our institutional incidence of postoperative compartment syndrome was similar to that of non-oncologic institutions. While many traditional risk factors did not prove to be influential in our patients, elevated median body mass index and intraoperative serum lactate were identified as risk factors for postoperative compartment syndrome in a cancer population.
Collapse
Affiliation(s)
- Max Vaynrub
- Department of Surgery, Orthopaedic Service, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Omer Or
- Department of Surgery, Orthopaedic Service, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Esther Drill
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - May Saulan
- Department of Nursing, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Patrick J Boland
- Department of Surgery, Orthopaedic Service, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
3
|
Li RW, Deng Y, Pham HN, Weiss S, Chen M, Smith PN. Riluzole protects against skeletal muscle ischaemia-reperfusion injury in a porcine model. Injury 2020; 51:178-184. [PMID: 31882236 DOI: 10.1016/j.injury.2019.12.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Skeletal muscle ischaemia-reperfusion injury (IRI) can be a life threatening condition. It is relevant to various aspects of the management of trauma and surgical patients. Currently there lacks a pharmacological agent that can be used to dampen the effects of IRI. Riluzole has been shown to reduce the effects of IRI on various organ systems, but there have yet to be any studies on the effects in IRI of skeletal muscle. Our aim was to investigate the effects of Riluzole on IRI in the skeletal muscle of pigs. METHODS Twenty-two pigs were randomly divided into groups. Riluzole was administered before ligation of the femoral artery to produce ischaemia in the tibialis anterior muscle in the experimental group but not the control group. The microscopic appearance of muscles were recorded, a TUNEL assay was used to identify DNA damage and glutathione levels were measured. RESULTS In the Riluzole group, muscle fibres appeared less wavy and less oedematous compared to the control group. The Riluzole group also had less evidence of DNA fragmentation on the TUNEL assay. The glutathione levels in the Riluzole group were also significantly greater than the control group. DISCUSSION Our findings suggest that Riluzole can potentially reduce the effects of IRI on skeletal muscle. This is potentially due to the ability of Riluzole to block sodium channels, decreasing action potentials and therefore glutamate release. It also acts to decrease intracellular calcium levels, which prevents apoptosis. Riluzole is a promising drug for the prevention of IRI in skeletal muscle, but further research is required.
Collapse
Affiliation(s)
- Rachel W Li
- The Medical School, the Australian National UNiversity, Canberra, ACT 2601, Australia; John Curtin School of Medical Research, The Australian National University, Garran Rd, Canberra, ACT 2601 Australia.
| | - Yi Deng
- The Medical School, the Australian National UNiversity, Canberra, ACT 2601, Australia; Canberra Hospital, Yamba Dr, Canberra, ACT 2605 Australia
| | - Hai Nam Pham
- The Medical School, the Australian National UNiversity, Canberra, ACT 2601, Australia
| | - Steven Weiss
- John Curtin School of Medical Research, The Australian National University, Garran Rd, Canberra, ACT 2601 Australia
| | - Mingming Chen
- The Medical School, the Australian National UNiversity, Canberra, ACT 2601, Australia
| | - Paul N Smith
- Canberra Hospital, Yamba Dr, Canberra, ACT 2605 Australia
| |
Collapse
|
4
|
Bihari A, Chung KA, Cepinskas G, Sanders D, Schemitsch E, Lawendy AR. Carbon monoxide-releasing molecule-3 (CORM-3) offers protection in an in vitro model of compartment syndrome. Microcirculation 2019; 26:e12577. [PMID: 31230399 DOI: 10.1111/micc.12577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/13/2019] [Accepted: 06/19/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Limb compartment syndrome (CS), a complication of trauma, results in muscle necrosis and cell death; ischemia and inflammation contribute to microvascular dysfunction and parenchymal injury. Carbon monoxide-releasing molecule-3 (CORM-3) has been shown to protect microvascular perfusion and reduce inflammation in animal models of CS. The purpose of the study was to test the effect of CORM-3 in human in vitro CS model, allowing exploration of the mechanism(s) of CO protection and potential development of pharmacologic treatment. METHODS Confluent human vascular endothelial cells (HUVECs) were stimulated for 6 h with serum isolated from patients with CS. Intracellular oxidative stress (production of reactive oxygen species (ROS)) apoptosis, transendothelial resistance (TEER), polymorphonuclear leukocyte (PMN) activation and transmigration across the monolayer in response to the CS stimulus were assessed. All experiments were performed in the presence of CORM-3 (100 μM) or its inactive form, iCORM-3. RESULTS CS serum induced a significant increase in ROS, apoptosis and endothelial monolayer breakdown; it also increased PMN superoxide production, leukocyte rolling and adhesion/transmigration. CORM-3 completely prevented CS-induced ROS production, apoptosis, PMN adhesion, rolling and transmigration, while improving monolayer integrity. CONCLUSION CORM-3 offers potent anti-oxidant and anti-inflammatory effects, and may have a potential application to patients at risk of developing CS.
Collapse
Affiliation(s)
- Aurelia Bihari
- Division of Orthopaedic Surgery, Department of Surgery, The University of Western Ontario, London, Ontario, Canada.,Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - Kyukwang Akira Chung
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | - Gediminas Cepinskas
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - David Sanders
- Division of Orthopaedic Surgery, Department of Surgery, The University of Western Ontario, London, Ontario, Canada.,Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | - Emil Schemitsch
- Division of Orthopaedic Surgery, Department of Surgery, The University of Western Ontario, London, Ontario, Canada
| | - Abdel-Rahman Lawendy
- Division of Orthopaedic Surgery, Department of Surgery, The University of Western Ontario, London, Ontario, Canada.,Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
5
|
Zhou Y, Lovell D, Bethea M, Yoseph B, Poteracki J, Soker S, Criswell T. * The Impact of Age on Skeletal Muscle Progenitor Cell Survival and Fate After Injury. Tissue Eng Part C Methods 2018; 23:1012-1021. [PMID: 29092672 DOI: 10.1089/ten.tec.2017.0216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Sarcopenia is defined as the loss of skeletal muscle mass and function due to age, and represents a major cause of disability in the elderly population. The contributing factors to the onset of sarcopenia are not well defined, but appear to involve age-dependent changes in both the tissue microenvironment and muscle progenitor cell (MPC) population. MPC transplantation has the potential to be a novel therapy for treatment of muscle dysfunction due to aging or injury, but has not shown significant clinical efficacy to date. The goal of this research was to use a rat model of skeletal muscle injury to examine the differential effects of age on MPC survival, differentiation, and tissue regeneration after transplantation. Fluorescently labeled MPCs, derived from young (YMPCs) and adult (AMPCs) donor rats, were transplanted in the injured tibialis anterior (TA) muscles of young, adult, and aged rats. Our results demonstrated that integration and maturation of YMPCs into mature myofibers were dependent on the age of the host microenvironment; whereas, the integration and maturation of AMPCs were less dependent on age and more dependent on intrinsic cellular changes. These data suggest that the age of both the host microenvironment and cells for transplantation must be considered when designing cell therapy regimens.
Collapse
Affiliation(s)
- Yu Zhou
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | - Daniel Lovell
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | - Maigen Bethea
- 2 Cell Molecular & Developmental Biology, University of Alabama , Birmingham, Alabama
| | - Benyam Yoseph
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | - James Poteracki
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | - Shay Soker
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | - Tracy Criswell
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| |
Collapse
|
6
|
Girn HRS, Ahilathirunayagam S, Mavor AID, Homer-Vanniasinkam S. Reperfusion Syndrome: Cellular Mechanisms of Microvascular Dysfunction and Potential Therapeutic Strategies. Vasc Endovascular Surg 2016; 41:277-93. [PMID: 17704330 DOI: 10.1177/1538574407304510] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Reperfusion injury is the paradoxical and complex phenomenon of exacerbation of cellular dysfunction and increase in cell death after the restoration of blood flow to previously ischemic tissues. It involves biochemical and cellular changes causing oxidant production and complement activation, which culminates in an inflammatory response, mediated by neutrophil and platelet cell interactions with the endothelium and among the cells themselves. The mounted inflammatory response has both local and systemic manifestations. Despite improvements in imaging, interventional techniques, and pharmacological agents, morbidity from reperfusion remains high. Extensive research has furthered the understanding of the various pathophysiological mechanisms involved and the development of potential therapeutic strategies. Preconditioning has emerged as a powerful method of ameliorating ischemia reperfusion injury to the myocardium and in transplant surgery. More recently, postconditioning has been shown to provide a therapeutic counter to vasoocclusive emergencies. More research and well-designed trials are needed to bridge the gap between experimental evidence and clinical implementation.
Collapse
|
7
|
Paradis S, Charles AL, Meyer A, Lejay A, Scholey JW, Chakfé N, Zoll J, Geny B. Chronology of mitochondrial and cellular events during skeletal muscle ischemia-reperfusion. Am J Physiol Cell Physiol 2016; 310:C968-82. [PMID: 27076618 DOI: 10.1152/ajpcell.00356.2015] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Peripheral artery disease (PAD) is a common circulatory disorder of the lower limb arteries that reduces functional capacity and quality of life of patients. Despite relatively effective available treatments, PAD is a serious public health issue associated with significant morbidity and mortality. Ischemia-reperfusion (I/R) cycles during PAD are responsible for insufficient oxygen supply, mitochondriopathy, free radical production, and inflammation and lead to events that contribute to myocyte death and remote organ failure. However, the chronology of mitochondrial and cellular events during the ischemic period and at the moment of reperfusion in skeletal muscle fibers has been poorly reviewed. Thus, after a review of the basal myocyte state and normal mitochondrial biology, we discuss the physiopathology of ischemia and reperfusion at the mitochondrial and cellular levels. First we describe the chronology of the deleterious biochemical and mitochondrial mechanisms activated by I/R. Then we discuss skeletal muscle I/R injury in the muscle environment, mitochondrial dynamics, and inflammation. A better understanding of the chronology of the events underlying I/R will allow us to identify key factors in the development of this pathology and point to suitable new therapies. Emerging data on mitochondrial dynamics should help identify new molecular and therapeutic targets and develop protective strategies against PAD.
Collapse
Affiliation(s)
- Stéphanie Paradis
- University of Strasbourg, Fédération de Médecine Translationelle, EA 3072, Strasbourg, France; Department of Physiology and Functional Explorations, Thoracic Pathology Unit, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France;
| | - Anne-Laure Charles
- University of Strasbourg, Fédération de Médecine Translationelle, EA 3072, Strasbourg, France; Department of Physiology and Functional Explorations, Thoracic Pathology Unit, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| | - Alain Meyer
- University of Strasbourg, Fédération de Médecine Translationelle, EA 3072, Strasbourg, France; Department of Physiology and Functional Explorations, Thoracic Pathology Unit, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| | - Anne Lejay
- University of Strasbourg, Fédération de Médecine Translationelle, EA 3072, Strasbourg, France; Department of Physiology and Functional Explorations, Thoracic Pathology Unit, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France; Department of Vascular Surgery and Kidney Transplantation, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France; and
| | - James W Scholey
- Department of Medicine and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Nabil Chakfé
- University of Strasbourg, Fédération de Médecine Translationelle, EA 3072, Strasbourg, France; Department of Vascular Surgery and Kidney Transplantation, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France; and
| | - Joffrey Zoll
- University of Strasbourg, Fédération de Médecine Translationelle, EA 3072, Strasbourg, France; Department of Physiology and Functional Explorations, Thoracic Pathology Unit, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| | - Bernard Geny
- University of Strasbourg, Fédération de Médecine Translationelle, EA 3072, Strasbourg, France; Department of Physiology and Functional Explorations, Thoracic Pathology Unit, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| |
Collapse
|
8
|
Lawendy AR, Bihari A, Sanders DW, McGarr G, Badhwar A, Cepinskas G. Contribution of inflammation to cellular injury in compartment syndrome in an experimental rodent model. Bone Joint J 2015; 97-B:539-43. [DOI: 10.1302/0301-620x.97b4.34965] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Compartment syndrome, a devastating consequence of limb trauma, is characterised by severe tissue injury and microvascular perfusion deficits. We hypothesised that leucopenia might provide significant protection against microvascular dysfunction and preserve tissue viability. Using our clinically relevant rat model of compartment syndrome, microvascular perfusion and tissue injury were directly visualised by intravital video microscopy in leucopenic animals. We found that while the tissue perfusion was similar in both groups (38.8% (standard error of the mean (sem) 7.1), 36.4% (sem 5.7), 32.0% (sem 1.7), and 30.5% (sem 5.35) continuously-perfused capillaries at 45, 90, 120 and 180 minutes compartment syndrome, respectively versus 39.2% (sem 8.6), 43.5% (sem 8.5), 36.6% (sem 1.4) and 50.8% (sem 4.8) at 45, 90, 120 and 180 minutes compartment syndrome, respectively in leucopenia), compartment syndrome-associated muscle injury was significantly decreased in leucopenic animals (7.0% (sem 2.0), 7.0%, (sem 1.0), 9.0% (sem 1.0) and 5.0% (sem 2.0) at 45, 90, 120 and 180 minutes of compartment syndrome, respectively in leucopenia group versus 18.0% (sem 4.0), 23.0% (sem 4.0), 32.0% (sem 7.0), and 20.0% (sem 5.0) at 45, 90, 120 and 180 minutes of compartment syndrome in control, p = 0.0005). This study demonstrates that the inflammatory process should be considered central to the understanding of the pathogenesis of cellular injury in compartment syndrome. Cite this article: Bone Joint J 2015;97-B:539–43
Collapse
Affiliation(s)
- A-R. Lawendy
- Victoria Hospital, London Health Sciences
Centre, Victoria Research Labs, Rm
A6-142, 800 Commissioners Rd East, London, N6A
4G5, Ontario, Canada
| | - A. Bihari
- Victoria Hospital, London Health Sciences
Centre, Victoria Research Labs, Rm
A6-152, 800 Commissioners Rd East, London, N6A
4G5, Ontario, Canada
| | - D. W. Sanders
- Victoria Hospital, London Health Sciences
Centre, Victoria Research Labs, Rm
E1-325, 800 Commissioners Rd East, London, N6A
4G5, Ontario, Canada
| | - G. McGarr
- Brock University, Faculty
of Applied Health Sciences, St. Catharines, Ontario, Canada
| | - A. Badhwar
- Davol, A Bard Company, Warwick, Rhode
Island, USA
| | - G. Cepinskas
- Victoria Hospital, London Health Sciences
Centre, Victoria Research Labs, Rm
A6-136, 800 Commissioners Rd East, London, N6A
4G5, Ontario, Canada
| |
Collapse
|
9
|
Selkow NM, Herman DC, Liu Z, Hertel J, Hart JM, Saliba SA. Blood flow after exercise-induced muscle damage. J Athl Train 2015; 50:400-6. [PMID: 25658816 DOI: 10.4085/1062-6050-49.6.01] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT The most common modality used to address acute inflammation is cryotherapy. Whereas pain decreases with cryotherapy, evidence that changes occur in perfusion of skeletal muscle is limited. We do not know whether ice attenuates the increases in perfusion associated with acute inflammation. OBJECTIVE To examine the effects of repeated applications of ice bags on perfusion of the gastrocnemius muscle after an eccentric exercise protocol. DESIGN Controlled laboratory study. SETTING Laboratory. PATIENTS OR OTHER PARTICIPANTS Eighteen healthy participants (3 men, 15 women; age = 22.2 ± 2.2 years, height = 166.0 ± 11.9 cm, mass = 69.4 ± 25.0 kg). INTERVENTION(S) To induce eccentric muscle damage, participants performed 100 unilateral heel-lowering exercises off a step to the beat of a metronome. A randomized intervention (cryotherapy, sham, control) was applied to the exercised lower extremity immediately after the protocol and again at 10, 24, and 34 hours after the protocol. MAIN OUTCOME MEASURE(S) Baseline perfusion measurements (blood volume, blood flow, and blood flow velocity) were taken using contrast-enhanced ultrasound of the exercised leg. Perfusion was reassessed after the first intervention and 48 hours after the protocol as percentage change scores. Pain was measured with a visual analog scale at baseline and at 10, 24, 34, and 48 hours after the protocol. Separate repeated-measures analyses of variance were used to assess each dependent variable. RESULTS We found no interactions among interventions for microvascular perfusion. Blood volume and blood flow, however, increased in all conditions at 48 hours after exercise (P < .001), and blood flow velocity decreased postintervention from baseline (P = .041). We found a time-by-intervention interaction for pain (P = .009). Visual analog scale scores were lower for the cryotherapy group than for the control group at 34 and 48 hours after exercise. CONCLUSIONS Whereas eccentric muscle damage resulted in increased blood flow, ice did not decrease muscle perfusion 48 hours after exercise. Therefore, ice does not seem to decrease muscle perfusion when blood flow is elevated, as it would be during inflammation.
Collapse
Affiliation(s)
- Noelle M Selkow
- School of Kinesiology and Recreation, Illinois State University, Normal
| | | | | | | | | | | |
Collapse
|
10
|
Lv F, Tang J, Luo Y, Ban Y, Wu R, Tian J, Yu T, Xie X, Li T. Contrast-enhanced ultrasound assessment of muscle blood perfusion of extremities that underwent crush injury: an animal experiment. J Trauma Acute Care Surg 2013; 74:214-9. [PMID: 23505667 DOI: 10.1097/ta.0b013e3182683498] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND This research aimed to study the assessment of local muscle microcirculation perfusion of extremities that underwent crush injuries by using contrast-enhanced ultrasonography (CEUS). METHODS A total of 28 New Zealand rabbits were anesthetized by using intramuscular pentobarbital sodium (30 mg/kg). A balloon cuff device was used to create crush injuries to the left hind leg of each rabbit with a force of 18.6 kPa. CEUS was performed at the 0.5th, 2nd, 6th,24th, and 72nd hour after the release of the crush pressure. Peak intensity (PI) of the crushed regions was compared with those of the uncrushed regions and before the creation of crush injury. Receiver operating characteristic analysis was used to determine the diagnostic value of PI for the crushed region. RESULTS During the 72nd hour after the release of the crush pressure, 5 of the 28 rabbits died, and thus, their statistics were eliminated from the experiment. At different time points after the release of the crush pressure, the crushed regions in all 23 survivals showed quick and high enhancement, and their intensities were higher than those of the un crushed region in the arterial phase. The time-intensity curves of the crushed regions all appeared as rapid lift-gradual drop. PIs were obviously higher in the crushed regions than in the uncrushed regions and than those before the creation of crush injury ( p G 0.001). Receiver operating characteristic curves showed that extremity crush injury was diagnosed by using PI value. CONCLUSION CEUS presents that the microcirculation perfusion of the crushed muscle increased obviously after the release of the crush pressure.PIs evaluated quantitatively the microcirculation perfusion changes. It may suggest a potential alternative for evaluating microcirculation abnormality of the muscle crush injury to the extremities.
Collapse
Affiliation(s)
- Faqin Lv
- Department of Ultrasound, Chinese People's Liberation Army General Hospital, 28 Fuxing Rd, Beijing 100853, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Selkow NM, Day C, Liu Z, Hart JM, Hertel J, Saliba SA. Microvascular perfusion and intramuscular temperature of the calf during cooling. Med Sci Sports Exerc 2012; 44:850-6. [PMID: 21988932 DOI: 10.1249/mss.0b013e31823bced9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The study's purpose was to examine how the microvascularity of the gastrocnemius changed after a cryotherapy intervention based on subcutaneous tissue thickness. A secondary purpose was to compare intramuscular temperature change to subcutaneous tissue thickness. METHODS This was a single-blinded crossover study; each subject received both conditions (cryotherapy or sham). Subjects had baseline measurements of blood flow, blood volume, and intramuscular temperature recorded at 1 cm into the muscle belly of the medial gastrocnemius. The randomized condition was applied for 10, 25, 40, or 60 min, depending on subcutaneous tissue thickness. Immediate posttreatment microvascular measures were taken. After a designated rewarming period, again based on subcutaneous tissue thickness, measurements were retaken. At least 48 h separated the two conditions. RESULTS There were significant condition × time interactions for blood flow (P = 0.01), blood volume (P = 0.022), and intramuscular temperature (P < 0.001). For blood flow and volume, the cryotherapy condition maintained baseline levels, whereas the sham condition increased immediately after treatment and rewarming. For intramuscular temperature, the cryotherapy condition caused a decrease in intramuscular temperature from baseline compared with no change in the sham condition from baseline. Intramuscular temperature change was significantly correlated to subcutaneous tissue thickness (r = 0.49, P = 0.05). CONCLUSIONS Cryotherapy did not decrease blood flow and blood volume from resting levels, although the intramuscular temperature decreased. An intramuscular change of 7°C-9°C may not be cold enough to cause local vasoconstriction.
Collapse
Affiliation(s)
- Noelle M Selkow
- School of Kinesiology and Recreation, Illinois State University, Normal, IL 61761, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Henderson PW, Jimenez N, Ruffino J, Sohn AM, Weinstein AL, Krijgh DD, Reiffel AJ, Spector JA. Therapeutic delivery of hydrogen sulfide for salvage of ischemic skeletal muscle after the onset of critical ischemia. J Vasc Surg 2011; 53:785-91. [DOI: 10.1016/j.jvs.2010.10.094] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 10/14/2010] [Accepted: 10/16/2010] [Indexed: 11/30/2022]
|
13
|
Therapeutic Metabolic Inhibition: Hydrogen Sulfide Significantly Mitigates Skeletal Muscle Ischemia Reperfusion Injury In Vitro and In Vivo. Plast Reconstr Surg 2010; 126:1890-1898. [DOI: 10.1097/prs.0b013e3181f446bc] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Gormus ZI, Ergene N, Toy H, Baltaci AK, Mogulkoc R. Preventive role of magnesium on skeletal muscle ischemia-reperfusion injury-an experimental study. Biol Trace Elem Res 2009; 127:183-9. [PMID: 18806932 DOI: 10.1007/s12011-008-8228-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 08/26/2008] [Indexed: 11/30/2022]
Abstract
The present study aims to explore whether Mg infusion has a preventive effect on ischemia-reperfusion injury in rats. A total of 20 Sprague-Dawley-type adult male rats were used. In group 1 (control), 0.9% isotonic solution was administered. In group 2 (experiment), magnesium sulfate (0.5 mg per 100 g) was administered. Ischemia was induced for 15 min for the two groups. Magnesium (Mg), interleukin 8 (IL-8), and malondialdehyde levels were analyzed in blood, while edema, neutrophil infiltration, eosinophilia, loss of striation, and nucleolization were evaluated in histopathological examination. Mg levels in the experiment group were higher than those in the control group after ischemia-reperfusion (p < 0.05). In the control group, postischemia and postreperfusion IL-8 values were higher than preoperative values (p < 0.05). As for eosinophilia and loss of striation values, these were higher in the experiment group after ischemia-reperfusion than the values in the control group (p < 0.05). Histopathologically, Mg infusion cannot prevent the tissue injury triggered in ischemia-reperfusion periods. Eosinophilia can be one of the major and earliest markers of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Zulfikare Isik Gormus
- Department of Physiology, Meram Medical School, Selcuk University, 42080, Konya, Turkey
| | | | | | | | | |
Collapse
|
15
|
Kauvar DS, Baer DG, Walters TJ. Influence of systemic hypotension on skeletal muscle ischemia-reperfusion injury after 4-hour tourniquet application. JOURNAL OF SURGICAL EDUCATION 2007; 64:273-277. [PMID: 17961884 DOI: 10.1016/j.jsurg.2007.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 05/15/2007] [Accepted: 06/26/2007] [Indexed: 05/25/2023]
Abstract
OBJECTIVE Tourniquet use for extremity hemorrhage control is common in military trauma. Tourniquet use may be accompanied by systemic hypotension, but this phenomenon has not been studied. We aimed to define the muscle effects of the combined insult of tourniquet-induced skeletal muscle ischemia-reperfusion injury (I-R) and hemorrhagic hypotension. DESIGN After a 33% carotid arterial hemorrhage, Sprague-Dawley rats underwent 240-min hindlimb ischemia induced by pneumatic tourniquet. Control animals were not hemorrhaged. No resuscitation was given. After tourniquet release, muscles were reperfused for 120 min and then dissected. Weights and mitochondrial viability assays (nitroblue tetrazolium method) were performed on the plantaris (PL), and soleus (SO). Histologic analysis was performed on the PL and SO. Muscle edema is expressed as the ratio of tourniquet limb to contralateral limb muscle weight. SETTING Animal laboratories of the United States Army Institute of Surgical Research. STUDY ANIMALS: Twelve Sprague-Dawley rats. RESULTS The mean arterial pressure of hemorrhaged animals was 38 +/- 3 mm Hg before tourniquet placement and 86 +/- 4 mm Hg before release, both significantly (p < 0.05) lower than controls at the same time points. Pre- tourniquet mortality was 38% with hemorrhage and 0% without. All muscles experienced edema, with weight ratios greater than 1. The PL experienced significantly (p < 0.05) less edema with hemorrhage. Viability was unaffected by hemorrhage in all muscles, as was tissue inflammation. No differences in inflammation were observed with hemorrhage. CONCLUSIONS Systemic hypotension modulates the impact of 4 hours of tourniquet ischemia by decreasing muscle edema but minimally altering measures of muscle viability. Compartment anatomy and muscle fiber type both influence muscle response to the combined insult of hypotension and I-R. In this model, hypotension did not worsen the skeletal muscle I-R observed after the use of a tourniquet for 4 hours.
Collapse
Affiliation(s)
- David S Kauvar
- United States Army Institute of Surgical Research, Fort Sam Houston, Texas 78234, USA
| | | | | |
Collapse
|
16
|
Conrad MF, Stone DH, Albadawi H, Hua HT, Entabi F, Stoner MC, Watkins MT. Local inflammatory and thrombotic responses differ in a murine model of partial and complete hindlimb ischemia/reperfusion. Surgery 2005; 138:375-81. [PMID: 16153450 DOI: 10.1016/j.surg.2005.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 06/01/2005] [Accepted: 06/06/2005] [Indexed: 01/09/2023]
Abstract
BACKGROUND These experiments were designed to quantitatively compare the patterns of tissue thrombosis, cytokine response, and tissue viability in a murine model of partial (PI) versus complete hindlimb ischemia (CI), alone or with reperfusion (RE). METHODS The control tension tourniquet was used to establish either PI or CI in the unilateral mouse hindlimb for 3 hours followed by 0, 4, and 24 hours of RE. Muscle viability, local neutrophil chemoattractant protein, interleukin 6, interleukin 1beta, D-dimer, thrombin-antithrombin III complex, plasminogen activator inhibitor 1, and tissue plasminogen activator levels were measured in protein extracts for each experimental interval. RESULTS Tissue viability after CI and 24 hours of RE was significantly less than tissue subjected to PI and 24 hours of RE (96% +/- 16 PI, 64% +/- 4 CI, P=.02). The local cytokine response was initially elevated in the PI group but dissipated by 24RE. In contrast, the local cytokine response to CI alone was small but greatly increased by 24RE. The thrombotic response to PI was increased throughout ischemia/reperfusion. While thrombosis during CI alone was negligible, reperfusion led to a significant thrombotic response. CONCLUSIONS Biochemical markers for tissue viability, thrombosis, and cytokine-mediated inflammation differ significantly in mice subjected to moderate and severe hindlimb ischemia/reperfusion. These biochemical markers may facilitate stratification of patients in clinical trials for treatment of ischemia/reperfusion injury and contribute to interpretation of their outcomes.
Collapse
Affiliation(s)
- Mark F Conrad
- Division of Vascular and Endovascular Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and the VA Boston Healthcare System, 02114, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Blaisdell FW. The Pathophysiology of Skeletal Muscle Ischemia and the Reperfusion Syndrome: A Review. CARDIOVASCULAR SURGERY 2002. [DOI: 10.1177/096721090201000620] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There are two components to the reperfusion syndrome, which follows extremity ischemia. The local response, which follows reperfusion. consists of limb swelling with its potential for aggravating tissue injury and the systemic response, which results in multiple organ failure and death. It is apparent that skeletal muscle is the predominant tissue in the limb but also the tissue that is most vulnerable to ischemia. Physiological and anatomical studies show that irreversible muscle cell damage starts after 3 h of ischemia and is nearly complete at 6 h. These muscle changes are paralleled by progressive microvascular damage. Microvascular changes appear to follow rather than precede skeletal muscle damage as the tolerance of capillaries to ischemia vary with the tissue being reperfused. The more severe the cellular damage the greater the microvascular changes and with death of tissue microvascular flow ceases within a few hours—the no reflow phenomenon. At this point tissue swelling ceases. The inflammatory responses following reperfusion varies greatly. When muscle tissue death is uniform, as would follow tourniquet ischemia or limb replantation, little inflammatory response results. In most instances of reperfusion, which follows thrombotic or embolic occlusion, there will be a variable degree of ischemic damage in the zone where collateral blood flow is possible. The extent of this region will determine the magnitude of the inflammatory response, whether local or systemic. Only in this region will therapy be of any benefit, whether fasciotomy to prevent pressure occlusion of the microcirculation, or anticoagulation to prevent further microvascular thrombosis. Since many of the inflammatory mediators are generated by the act of clotting, anticoagulation will have additional benefit by decreasing the inflammatory response. In instances in which the process involves the bulk of the lower extremity, amputation rather than attempts at revascularization may be the most prudent course to prevent the toxic product in the ischemic limb from entering the systemic circulation.
Collapse
Affiliation(s)
- F. William Blaisdell
- Department of Surgery, University of California, Davis, Medical Center, 2221 Stockton Ave., Sacramento. CA 95817-2214, USA
| |
Collapse
|
19
|
Tupling R, Green H, Senisterra G, Lepock J, McKee N. Effects of 4-h ischemia and 1-h reperfusion on rat muscle sarcoplasmic reticulum function. Am J Physiol Endocrinol Metab 2001; 281:E867-77. [PMID: 11551865 DOI: 10.1152/ajpendo.2001.281.4.e867] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the hypothesis that ischemia and reperfusion would impair sarcoplasmic reticulum (SR) Ca(2+) regulation in skeletal muscle, Sprague-Dawley rats (n = 20) weighing 290 +/- 3.5 g were randomly assigned to either a control control (CC) group, in which only the effects of anesthetization were studied, or to a group in which the muscles in one hindlimb were made ischemic for 4 h and allowed to recover for 1 h (I). The nonischemic, contralateral muscles served as control (C). Measurements of Ca(2+)-ATPase properties in homogenates and SR vesicles, in mixed gastrocnemius and tibialis anterior muscles, indicated no differences between groups on maximal activity, the Hill coefficient, and Ca(50), defined as the Ca(2+) concentration needed to elicit 50% of maximal activity. In homogenates, Ca(2+) uptake was lower (P < 0.05) by 20-25%, measured at 0.5 and 1.0 microM of free Ca(2+) ([Ca(2+)](f)) in C compared with CC. In SR vesicles, Ca(2+) uptake was lower (P < 0.05) by 30-38% in I compared with CC at [Ca(2+)](f) between 0.5 and 1.5 microM. Silver nitrate induced Ca(2+) release, assessed during both the initial, early rapid (phase 1), and slower, prolonged late (phase 2) phases, in homogenates and SR vesicles, indicated a higher (P < 0.05) release only in phase 1 in SR vesicles in I compared with CC. These results indicate that the alterations in SR Ca(2+) regulation, previously observed after prolonged ischemia by our group, are reversed within 1 h of reperfusion. However, the lower Ca(2+) uptake observed in long-term, nonischemic homogenates suggests that altered regulation may occur in the absence of ischemia.
Collapse
Affiliation(s)
- R Tupling
- Department of Kinesiology, University of Waterloo, Waterloo N2L 3G1, Canada
| | | | | | | | | |
Collapse
|
20
|
Lovett JE, Fink BF, Bernard A, Ochoa J. Analysis of nitric oxide activity in prevention of reperfusion injury. Ann Plast Surg 2001; 46:269-73; discussion 273-4. [PMID: 11293519 DOI: 10.1097/00000637-200103000-00012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This project was designed to determine the role of nitric oxide (NO) in the prevention of ischemia-reperfusion injury. Inferiorly based rectus abdominis muscle flaps were elevated in pigs and subjected to 6 hours of ischemia followed by 4 hours of reperfusion. Group I animals received a bolus of L-arginine before reperfusion, and a continuous infusion once flow was restored. Group II animals served as controls and received an equal volume of saline as a bolus and subsequent continuous infusion. Microdialysis was used to measure tissue NO levels, and these were correlated with muscle survival determined by vital staining with nitroblue tetrazolium. The results demonstrated a significant increase in tissue NO levels in L-arginine-supplemented animals (p < 0.05), which in turn correlated with a significant increase in muscle survival (p = 0.0051). These results suggest that administration of supplemental L-arginine to ischemic skeletal muscle during reperfusion results in increased NO production and decreased tissue damage.
Collapse
Affiliation(s)
- J E Lovett
- Chandler Medical Center, University of Kentucky, Department of Surgery, Lexington, USA
| | | | | | | |
Collapse
|
21
|
Knutson GA. The role of the gamma-motor system in increasing muscle tone and muscle pain syndromes: a review of the Johansson/Sojka hypothesis. J Manipulative Physiol Ther 2000; 23:564-72. [PMID: 11050614 DOI: 10.1067/mmt.2000.109674] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVES To review literature that pertained to the Johansson/Sojka hypothesis that positive feedback loops in the gamma-motor system are responsible for chronic muscle pain and increases in muscle tone. DATA SOURCES Articles were selected from MEDLINE searches and from manual library searches. RESULTS Normal, static, and ischemic muscle contractions and/or chemical mediators of inflammation excite intramuscular groups III and IV chemonociceptors. In groups III and IV, afferent firing stimulates gamma-motorneurons, which causes the firing of Ia and II muscle spindle afferents and increased extrafusal resistance to stretch (muscle tone). Some criticism of the involvement of the gamma-motor system in muscle tone was found to be dated or based on data from noncomparable research. Most of these studies (pro and con) were performed on prepared test animals, and the results may or may not translate to human subjects. CONCLUSIONS There exists a sizable body of research that establishes a link between the activation of intramuscular chemonociceptors, increased gamma-motor activity, and increased Ia and II spindle output, as proposed by the hypothesis of Johansson and Sojka. However, because of the lack of sufficient data on human subjects, their hypothesis should not be considered proved. Further research into the effects of metabolites of muscle contraction and their effects on muscle tone is recommended. Research into subluxation/joint dysfunction in light of the Johansson/Sojka hypothesis is recommended.
Collapse
Affiliation(s)
- G A Knutson
- Private Practice of Chiropractic, Bloomington, IN 48404, USA.
| |
Collapse
|