1
|
Ibrahim SRM, Choudhry H, Asseri AH, Elfaky MA, Mohamed SGA, Mohamed GA. Stachybotrys chartarum-A Hidden Treasure: Secondary Metabolites, Bioactivities, and Biotechnological Relevance. J Fungi (Basel) 2022; 8:504. [PMID: 35628759 PMCID: PMC9144806 DOI: 10.3390/jof8050504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Fungi are renowned as a fountainhead of bio-metabolites that could be employed for producing novel therapeutic agents, as well as enzymes with wide biotechnological and industrial applications. Stachybotrys chartarum (black mold) (Stachybotriaceae) is a toxigenic fungus that is commonly found in damp environments. This fungus has the capacity to produce various classes of bio-metabolites with unrivaled structural features, including cyclosporins, cochlioquinones, atranones, trichothecenes, dolabellanes, phenylspirodrimanes, xanthones, and isoindoline and chromene derivatives. Moreover, it is a source of various enzymes that could have variable biotechnological and industrial relevance. The current review highlights the formerly published data on S. chartarum, including its metabolites and their bioactivities, as well as industrial and biotechnological relevance dated from 1973 to the beginning of 2022. In this work, 215 metabolites have been listed and 138 references have been cited.
Collapse
Affiliation(s)
- Sabrin R. M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Hani Choudhry
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.C.); (A.H.A.)
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Amer H. Asseri
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.C.); (A.H.A.)
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mahmoud A. Elfaky
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Shaimaa G. A. Mohamed
- Faculty of Dentistry, British University, El Sherouk City, Suez Desert Road, Cairo 11837, Egypt;
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
2
|
Codina R, Esch RE, Lockey RF. The Clinical Relevance of Pollen Versus Fungal Spores in Allergic Diseases. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:3615-3620. [PMID: 34146748 DOI: 10.1016/j.jaip.2021.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/10/2021] [Accepted: 06/08/2021] [Indexed: 11/17/2022]
Abstract
Pollen and fungal spores are associated with seasonal and perennial allergies. However, most scientific literature thus far suggests that pollen allergy is more clinically relevant than fungal allergy. Several environmental and biological factors and the difficulty in producing reliable fungal extracts account for this. Biodiversity, taxonomy, and meteorology are responsible for the types and levels of pollen and fungal spores, their fragments, and the presence of free airborne allergens. Therefore, it is difficult to accurately measure both pollen and fungal allergen exposure. In addition, understanding the enzymatic nature of fungal and some pollen allergens, the presence of allergenic and nonallergenic substances that may modulate the allergic immune response, and allergen cross-reactivity are all necessary to appropriately evaluate both sensitivity and exposure. The raw materials and manufacturing processes used to prepare pollen versus fungal extracts differ, further increasing the complexity to properly determine allergic sensitivity and degrees of exposure. The pollen extracts used for diagnosis and treatment are relatively consistent, and some have been standardized. However, obtaining clinically relevant fungal extracts is more difficult. Doing so will allow for the proper selection of such extracts to more appropriately diagnose and treat both pollen- and fungal-induced allergic diseases.
Collapse
Affiliation(s)
- Rosa Codina
- Allergen Science & Consulting, Lenoir, NC; Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of south Florida, Tampa, Fla.
| | - Robert E Esch
- School of Natural Sciences, Lenoir-Rhyne University, Hickory, NC
| | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of south Florida, Tampa, Fla
| |
Collapse
|
3
|
Initiation and Pathogenesis of Severe Asthma with Fungal Sensitization. Cells 2021; 10:cells10040913. [PMID: 33921169 PMCID: PMC8071493 DOI: 10.3390/cells10040913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 12/26/2022] Open
Abstract
Fungi represent one of the most diverse and abundant eukaryotes on earth, and their ubiquity and small proteolytically active products make them pervasive allergens that affect humans and other mammals. The immunologic parameters surrounding fungal allergies are still not fully elucidated despite their importance given that a large proportion of severe asthmatics are sensitized to fungal allergens. Herein, we explore fungal allergic asthma with emphasis on mouse models that recapitulate the characteristics of human disease, and the main leukocyte players in the pathogenesis of fungal allergies. The endogenous mycobiome may also contribute to fungal asthma, a phenomenon that we discuss only superficially, as much remains to be discovered.
Collapse
|
4
|
Croston TL, Lemons AR, Barnes MA, Goldsmith WT, Orandle MS, Nayak AP, Germolec DR, Green BJ, Beezhold DH. Inhalation of Stachybotrys chartarum Fragments Induces Pulmonary Arterial Remodeling. Am J Respir Cell Mol Biol 2020; 62:563-576. [PMID: 31671270 DOI: 10.1165/rcmb.2019-0221oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Stachybotrys chartarum is a fungal contaminant within the built environment and a respiratory health concern in the United States. The objective of this study was to characterize the mechanisms influencing pulmonary immune responses to repeatedly inhaled S. chartarum. Groups of B6C3F1/N mice repeatedly inhaled viable trichothecene-producing S. chartarum conidia (strain A or strain B), heat-inactivated conidia, or high-efficiency particulate absolute-filtered air twice per week for 4 and 13 weeks. Strain A was found to produce higher amounts of respirable fragments than strain B. Lung tissue, serum, and BAL fluid were collected at 24 and 48 hours after final exposure and processed for histology, flow cytometry, and RNA and proteomic analyses. At 4 weeks after exposure, a T-helper cell type 2-mediated response was observed. After 13 weeks, a mixed T-cell response was observed after exposure to strain A compared with a T-helper cell type 2-mediated response after strain B exposure. After exposure, both strains induced pulmonary arterial remodeling at 13 weeks; however, strain A-exposed mice progressed more quickly than strain B-exposed mice. BAL fluid was composed primarily of eosinophils, neutrophils, and macrophages. Both the immune response and the observed pulmonary arterial remodeling were supported by specific cellular, molecular, and proteomic profiles. The immunopathological responses occurred earlier in mice exposed to high fragment-producing strain A. The rather striking induction of pulmonary remodeling by S. chartarum appears to be related to the presence of fungal fragments during exposure.
Collapse
Affiliation(s)
| | | | | | | | | | - Ajay P Nayak
- Allergy and Clinical Immunology Branch.,Department of Medicine, Center for Translational Medicine and Division of Pulmonary, Allergy and Critical Care Medicine, and Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Dori R Germolec
- Toxicology Branch, National Toxicology Program Division, National Institute of Environmental Health Sciences, Durham, North Carolina
| | | | - Donald H Beezhold
- Office of the Director, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| |
Collapse
|
5
|
Lemons AR, Croston TL, Goldsmith WT, Barnes MA, Jaderson MA, Park JH, McKinney W, Beezhold DH, Green BJ. Cultivation and aerosolization of Stachybotrys chartarum for modeling pulmonary inhalation exposure. Inhal Toxicol 2019; 31:446-456. [PMID: 31874574 DOI: 10.1080/08958378.2019.1705939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective: Stachybotrys chartarum is a hydrophilic fungal species commonly found as a contaminant in water-damaged building materials. Although several studies have suggested that S. chartarum exposure elicits a variety of adverse health effects, the ability to characterize the pulmonary immune responses to exposure is limited by delivery methods that do not replicate environmental exposure. This study aimed to develop a method of S. chartarum aerosolization to better model inhalation exposures. Materials and methods: An acoustical generator system (AGS) was previously developed and utilized to aerosolize and deliver fungal spores to mice housed in a multi-animal nose-only exposure chamber. In this study, methods for cultivating, heat-inactivating, and aerosolizing two macrocyclic trichothecene-producing strains of S. chartartum using the AGS are described. Results and discussion: In addition to conidia, acoustical generation of one strain of S. chartarum resulted in the aerosolization of fungal fragments (<2 µm aerodynamic diameter) derived from conidia, phialides, and hyphae that initially comprised 50% of the total fungal particle count but was reduced to less than 10% over the duration of aerosolization. Acoustical generation of heat-inactivated S. chartarum did not result in a similar level of fragmentation. Delivery of dry, unextracted S. chartarum using these aerosolization methods resulted in pulmonary inflammation and immune cell infiltration in mice inhaling viable, but not heat-inactivated S. chartarum. Conclusions: These methods of S. chartarum growth and aerosolization allow for the delivery of fungal bioaerosols to rodents that may better simulate natural exposure within water-damaged indoor environments.
Collapse
Affiliation(s)
- Angela R Lemons
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Tara L Croston
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - W Travis Goldsmith
- Engineering and Control Technology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Mark A Barnes
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Mukhtar A Jaderson
- Field Studies Branch, Respiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Ju-Hyeong Park
- Field Studies Branch, Respiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Walter McKinney
- Engineering and Control Technology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Donald H Beezhold
- Office of the Director, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Brett J Green
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| |
Collapse
|
6
|
Chen CH, Lee YL, Wu MH, Chen PJ, Wei TS, Chen PC, Tseng CI, Chen WJ. Sex-moderated interactions between IL4/IL13 pathway genes and prenatal environment on cord blood IgE levels. Clin Exp Allergy 2019; 49:1128-1138. [PMID: 31102481 DOI: 10.1111/cea.13419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 04/11/2019] [Accepted: 05/04/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Elevated cord blood IgE (cIgE), a predictor of atopic diseases, is influenced by genetic and environmental factors. However, gene-environment interactions on cIgE elevation and their difference by sex remain largely unexplored. OBJECTIVE This study aimed to determine whether there are sex-moderated interactions between genetic variants in the IL4/IL13 pathway and prenatal environments on cIgE elevation. METHODS Comprehensive information on environmental tobacco smoke (ETS), home dampness (indexed by combining mildewy odour, visible mould and water stamp on the wall) and other household environments was obtained using a structured questionnaire during the third trimester of pregnancy in 1107 full-term newborns. The cord blood was collected for measuring cIgE levels, with elevation defined as ≥0.5 IU/mL, and for genotyping of five single nucleotide polymorphisms of three candidate genes (IL-13 rs1800925, rs20541, rs848, IL-4 rs2243250 and STAT6 rs324011). RESULTS Gene-environment interactions on cIgE elevation were observed in male but not female newborns, including those between ETS and IL13 rs20541, between home dampness and STAT6 rs324011, and between composite environmental exposure (combined ETS and the three home dampness indices) and STAT6 rs324011 (P for interaction = 0.03, 0.006, and 0.001, respectively). Male newborns carrying STAT6 rs324011 CT or TT genotype manifested with a significant dose-response association of the composite environmental exposure with cIgE elevation. CONCLUSION AND CLINICAL RELEVANCE Sex moderates the gene-environment interactions involving IL4/IL13 pathway genes and prenatal household environments on cIgE elevation. The absence of prenatal exposure to ETS and home dampness in male neonates carrying the STAT6 rs324011 CT or TT genotype is least likely associated with cIgE elevation.
Collapse
Affiliation(s)
- Chien-Han Chen
- Department of Pediatrics, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan.,School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.,Department of Pediatrics, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Yungling Leo Lee
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ming-Hsun Wu
- Department of Laboratory Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Pao-Jen Chen
- Department of Obstetrics and Gynecology, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Tien-Shan Wei
- Department of Obstetrics and Gynecology, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Pau-Chung Chen
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.,Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University, Taipei, Taiwan
| | - Ching-Ing Tseng
- Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei J Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.,Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
7
|
Evaluating Antigen-Specific IgE Using the Rat Basophil Leukemia Cell (RBL) Assay. Methods Mol Biol 2019; 1803:371-381. [PMID: 29882150 DOI: 10.1007/978-1-4939-8549-4_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Allergic diseases (atopy) include asthma, allergic rhinitis, conjunctivitis, and allergic sinusitis. It is estimated that up to 90% of asthmatics are atopic and have an allergy trigger for asthmatic episodes. In order to assess the risk of allergy induction associated with inhalation exposure, animal models of protein allergy have been developed. These models have been used both to identify proteins as allergens and to assess their relative potency. Often these research situations include allergens that are not well characterized or are unknown. In these situations, specific allergens are not available to be evaluated by more well-known assays (such as ELISAs), and developing a specific assay to evaluate an extract or mixture for an unknown or potential allergen is very time consuming and generally requires purified antigen/allergen. Additionally, when the comparison of the relative potency of multiple extracts is of interest, a common/generic platform is necessary. A more generic method, the rat basophil leukemia cell assay (RBL assay), has been developed which provides insight into the allergenicity of extracts and mixtures as well as providing a common platform for relative potency comparison between/among these complex allergen sources.
Collapse
|
8
|
Segura-Medina P, Vargas MH, Aguilar-Romero JM, Arreola-Ramírez JL, Miguel-Reyes JL, Salas-Hernández J. Mold burden in house dust and its relationship with asthma control. Respir Med 2019; 150:74-80. [PMID: 30961954 DOI: 10.1016/j.rmed.2019.02.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Some evidences indicate that exposure to molds or their products can be relevant for the loss of asthma control. Thus, we measured the mold burden present inside houses of subjects with asthma, and evaluated its relationship with asthma control. METHODS Markers of asthma control in adult patients residing in Mexico City were evaluated through questionnaires and spirometry. Dust was collected from the patients' houses and its fungal content was determined by mold specific quantitative PCR (MSQPCR) for 36 fungal species. RESULTS Forty-two patients with asthma (12 males, 30 females) with a mean age of 45 years (18-76 years) were included in the study. The level of asthma control measured through the Asthma Control Test ranged from 9 to 25 (mean 20.9). The FEV1/FVC ratio fluctuated from 38 to 106 %predicted (mean, 87.4 %predicted). Associations between mold burden and asthma control differed between males and females. Thus, concentrations of some molds, particularly Aspergillus fumigatus, Aureobasidium pullulans, Stachybotrys chartarum, Alternaria alternata, Cladosporium cladosporioides 2, Cladosporium herbarum, and Epicoccum nigrum, were negatively associated with parameters of asthma control in male subjects, but not in female patients. CONCLUSION Our results showed that potential indoor exposure to some molds is associated with less asthma control in male subjects.
Collapse
Affiliation(s)
- Patricia Segura-Medina
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, CP 14080, Mexico City, Mexico
| | - Mario H Vargas
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, CP 14080, Mexico City, Mexico.
| | - José Manuel Aguilar-Romero
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, CP 14080, Mexico City, Mexico
| | - José Luis Arreola-Ramírez
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, CP 14080, Mexico City, Mexico
| | - José Luis Miguel-Reyes
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, CP 14080, Mexico City, Mexico
| | - Jorge Salas-Hernández
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, CP 14080, Mexico City, Mexico
| |
Collapse
|
9
|
Bartemes KR, Kita H. Innate and adaptive immune responses to fungi in the airway. J Allergy Clin Immunol 2018; 142:353-363. [PMID: 30080527 PMCID: PMC6083885 DOI: 10.1016/j.jaci.2018.06.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022]
Abstract
Fungi are ubiquitous outdoors and indoors. Exposure, sensitization, or both to fungi are strongly associated with development of asthma and allergic airway diseases. Furthermore, global climate change will likely increase the prevalence of fungi and enhance their antigenicity. Major progress has been made during the past several years regarding our understanding of antifungal immunity. Fungi contain cell-wall molecules, such as β-glucan and chitin, and secrete biologically active proteases and glycosidases. Airway epithelial cells and innate immune cells, such as dendritic cells, are equipped with cell-surface molecules that react to these fungal products, resulting in production of cytokines and proinflammatory mediators. As a result, the adaptive arm of antifungal immunity, including TH1-, TH2-, and TH17-type CD4+ T cells, is established, reinforcing protection against fungal infection and causing detrimental immunopathology in certain subjects. We are only in the beginning stages of understanding the complex biology of fungi and detailed mechanisms of how they activate the immune response that can protect against or drive diseases in human subjects. Here we describe our current understanding with an emphasis on airway allergic immune responses. The gaps in our knowledge and desirable future directions are also discussed.
Collapse
Affiliation(s)
- Kathleen R Bartemes
- Division of Allergic Diseases, Department of Internal Medicine, and the Department of Immunology, Mayo Clinic, Rochester, Minn
| | - Hirohito Kita
- Division of Allergic Diseases, Department of Internal Medicine, and the Department of Immunology, Mayo Clinic, Rochester, Minn.
| |
Collapse
|
10
|
Abstract
Immunotoxicology is the study of undesired modulation of the immune system by extrinsic factors. Toxicological assessments have demonstrated that the immune system is a target following exposure to a diverse group of xenobiotics including ultraviolet radiation, chemical pollutants, therapeutics, and recreational drugs. There is a well-established cause and effect relationship between suppression of the immune response and reduced resistance to infections and certain types of neoplasia. In humans, mild-to-moderate suppression of the immune response is linked to reduced resistance to common community-acquired infections, whereas opportunistic infections, which are very rare in the general population, are common in individuals with severe suppression. Xenobiotic exposure may also result in unintended stimulation of immune function. Although a cause and effect relationship between unintended stimulation of the immune response and adverse consequences has yet to be established, evidence does suggest that hypersensitivity, autoimmunity, and pathological inflammation may be exacerbated in susceptible populations exposed to certain xenobiotics. Xenobiotics can act as allergens and elicit hypersensitivity responses, or they can modulate hypersensitivity responses to other allergens such as pollen or dust mite by acting as adjuvants, enhancing the development or expression of hypersensitivity. Allergic contact dermatitis, allergic rhinitis, and asthma are the most commonly encountered types of hypersensitivity reactions resulting from chemical exposure. The immunologic effectors and mechanisms involved in autoimmune reactions are the same as those associated with responses to foreign antigens; however, the reactions are directed against the host's own cells. Thus, chemicals that induce immune suppression, nonspecific immunostimulation, or hypersensitivity may also impact autoimmunity. Risk assessment for immunotoxicity should be performed using the same approaches and principles for other noncancer effects. However, since xenobiotics may have effects on more than one aspect of immune function, immunotoxicity data should be evaluated separately for evidence of suppression, stimulation, hypersensitivity, and autoimmunity.
Collapse
|
11
|
Ward MDW, Copeland LB, Lehmann J, Doerfler DL, Vesper SJ. Assessing the allergenic potential of molds found in water-damaged homes in a mouse model. Inhal Toxicol 2015; 26:474-84. [PMID: 24987979 DOI: 10.3109/08958378.2014.919043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Damp/moldy indoor environments, which have resulted from flooding events and may increase as a result of climate change, have been associated with asthma exacerbation. Certain molds found in significantly higher or lower concentrations in asthmatics' homes compared to control homes have been categorized as Group 1 (G1) and Group 2 (G2) molds, respectively. We have compared the allergic potential of selected G1/G2 molds to house dust mite (HDM) in a mouse model. BALB/c mice were exposed to mold (0-80 µg) or HDM (20 µg) extract by intratracheal aspiration either 4X over 4 weeks (allergenicity) or 1X (non-specific responses). Airflow limitation (methacholine challenge) was measured (Day 1) and serum and bronchoalveolar lavage fluid were collected (Day 2) after the final exposure. The G1 molds induced low-to-moderate responses and required higher doses to achieve antigen-specific IgE results similar to those induced by HDM. Compared to HDM responses, the G2 mold in this study required lower doses to induce a similar response. Acute exposure responses suggest some molds may exacerbate asthmatic responses. These studies demonstrate the differing capacities of molds to induce responses associated with allergic asthma, including differences in the threshold dose for allergy induction. Therefore, molds must be evaluated individually for allergic/asthmatic potential. These studies along with our previous studies with G1 (Stachybotrys chartarum)/G2 (Penicillium chrysogenum) molds suggest that the G1/G2 categorization is not indicative of allergic potential but they do not preclude this categorization's utility in determining unhealthy building dampness.
Collapse
Affiliation(s)
- Marsha D W Ward
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency , Research Triangle Park, NC , USA and
| | | | | | | | | |
Collapse
|
12
|
Wang Y, Hyde KD, McKenzie EHC, Jiang YL, Li DW, Zhao DG. Overview of Stachybotrys (Memnoniella) and current species status. FUNGAL DIVERS 2015. [DOI: 10.1007/s13225-014-0319-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Ward MDW, Chung YJ, Copeland LB, Doerfler DL. Allergic Responses Induced by a Fungal Biopesticide Metarhizium anisopliae and House Dust Mite Are Compared in a Mouse Model. J Toxicol 2011; 2011:360805. [PMID: 21785589 PMCID: PMC3135125 DOI: 10.1155/2011/360805] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 03/08/2011] [Accepted: 04/06/2011] [Indexed: 12/16/2022] Open
Abstract
Biopesticides can be effective in controlling their target pest. However, research regarding allergenicity and asthma development is limited. We compared the ability of fungal biopesticide Metarhizium anisopliae (MACA) and house dust mite (HDM) extracts to induce allergic responses in BALB/c mice. The extracts were administered by intratracheal aspiration at doubling doses (2.5-80 μg protein) 4X over a four-week period. Three days after the last exposure, serum and bronchoalveolar lavage fluid (BALF) were collected. The extracts' relative allergenicity was evaluated based on response robustness (lowest significant dose response compared to control (0 μg)). MACA induced a more robust serum total IgE response than HDM. However, in the antigen-specific IgE assay, a similar dose of both MACA and HDM was required to achieve the same response level. Our data suggest a threshold dose of MACA for allergy induction and that M. anisopliae may be similar to HDM in allergy induction potential.
Collapse
Affiliation(s)
- Marsha D. W. Ward
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, 109 T. W. Alexander Drive, MD B105-02, Research Triangle Park, NC 27711, USA
| | - Yong Joo Chung
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, 109 T. W. Alexander Drive, MD B105-02, Research Triangle Park, NC 27711, USA
| | - Lisa B. Copeland
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, 109 T. W. Alexander Drive, MD B105-02, Research Triangle Park, NC 27711, USA
| | - Donald L. Doerfler
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, 109 T. W. Alexander Drive, MD B105-02, Research Triangle Park, NC 27711, USA
| |
Collapse
|
14
|
Yike I, Dearborn D. Guest editorial--novel insights into the pathology of Stachybotrys chartarum. Mycopathologia 2011; 172:1-3. [PMID: 21505872 DOI: 10.1007/s11046-011-9426-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 03/28/2011] [Indexed: 10/18/2022]
|