1
|
Shi X, Lingerak R, Herting CJ, Ge Y, Kim S, Toth P, Wang W, Brown BP, Meiler J, Sossey-Alaoui K, Buck M, Himanen J, Hambardzumyan D, Nikolov DB, Smith AW, Wang B. Time-resolved live-cell spectroscopy reveals EphA2 multimeric assembly. Science 2023; 382:1042-1050. [PMID: 37972196 PMCID: PMC11114627 DOI: 10.1126/science.adg5314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Ephrin type-A receptor 2 (EphA2) is a receptor tyrosine kinase that initiates both ligand-dependent tumor-suppressive and ligand-independent oncogenic signaling. We used time-resolved, live-cell fluorescence spectroscopy to show that the ligand-free EphA2 assembles into multimers driven by two types of intermolecular interactions in the ectodomain. The first type entails extended symmetric interactions required for ligand-induced receptor clustering and tumor-suppressive signaling that inhibits activity of the oncogenic extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) protein kinases and suppresses cell migration. The second type is an asymmetric interaction between the amino terminus and the membrane proximal domain of the neighboring receptors, which supports oncogenic signaling and promotes migration in vitro and tumor invasiveness in vivo. Our results identify the molecular interactions that drive the formation of the EphA2 multimeric signaling clusters and reveal the pivotal role of EphA2 assembly in dictating its opposing functions in oncogenesis.
Collapse
Affiliation(s)
- Xiaojun Shi
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Cleveland, OH 44109, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ryan Lingerak
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Cleveland, OH 44109, USA
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Cameron J. Herting
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA 30322, USA
| | - Yifan Ge
- Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Soyeon Kim
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Cleveland, OH 44109, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Paul Toth
- Department of Chemistry, University of Akron, Akron, OH 44325, USA
| | - Wei Wang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Cleveland, OH 44109, USA
| | - Benjamin P. Brown
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jens Meiler
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Khalid Sossey-Alaoui
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Cleveland, OH 44109, USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Juha Himanen
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dolores Hambardzumyan
- Departments Oncological Sciences and Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
| | - Dimitar B. Nikolov
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Adam W. Smith
- Department of Chemistry, University of Akron, Akron, OH 44325, USA
| | - Bingcheng Wang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Cleveland, OH 44109, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Hanover G, Vizeacoumar FS, Banerjee SL, Nair R, Dahiya R, Osornio-Hernandez AI, Morales AM, Freywald T, Himanen JP, Toosi BM, Bisson N, Vizeacoumar FJ, Freywald A. Integration of cancer-related genetic landscape of Eph receptors and ephrins with proteomics identifies a crosstalk between EPHB6 and EGFR. Cell Rep 2023; 42:112670. [PMID: 37392382 DOI: 10.1016/j.celrep.2023.112670] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/05/2023] [Accepted: 06/05/2023] [Indexed: 07/03/2023] Open
Abstract
Eph receptors and their ephrin ligands are viewed as promising targets for cancer treatment; however, targeting them is hindered by their context-dependent functionalities. To circumvent this, we explore molecular landscapes underlying their pro- and anti-malignant activities. Using unbiased bioinformatics approaches, we construct a cancer-related network of genetic interactions (GIs) of all Ephs and ephrins to assist in their therapeutic manipulation. We also apply genetic screening and BioID proteomics and integrate them with machine learning approaches to select the most relevant GIs of one Eph receptor, EPHB6. This identifies a crosstalk between EPHB6 and EGFR, and further experiments confirm the ability of EPHB6 to modulate EGFR signaling, enhancing the proliferation of cancer cells and tumor development. Taken together, our observations show EPHB6 involvement in EGFR action, suggesting its targeting might be beneficial in EGFR-dependent tumors, and confirm that the Eph family genetic interactome presented here can be effectively exploited in developing cancer treatment approaches.
Collapse
Affiliation(s)
- Glinton Hanover
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada; Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, GA20 Health Sciences, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Frederick S Vizeacoumar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada
| | - Sara L Banerjee
- Department of Molecular Biology, Medical Biochemistry and Pathology, PROTEO and Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, 9 Rue McMahon, Québec, QC G1R 3S3, Canada
| | - Raveena Nair
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada; Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, GA20 Health Sciences, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Renuka Dahiya
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada
| | - Ana I Osornio-Hernandez
- Department of Molecular Biology, Medical Biochemistry and Pathology, PROTEO and Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, 9 Rue McMahon, Québec, QC G1R 3S3, Canada
| | - Alain Morejon Morales
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada; Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, GA20 Health Sciences, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Tanya Freywald
- Cancer Research, Saskatchewan Cancer Agency and Division of Oncology, University of Saskatchewan, 4D30.2 Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Juha P Himanen
- Department of Biochemistry, University of Turku, 20500 Turku, Finland
| | - Behzad M Toosi
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada
| | - Nicolas Bisson
- Department of Molecular Biology, Medical Biochemistry and Pathology, PROTEO and Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, 9 Rue McMahon, Québec, QC G1R 3S3, Canada.
| | - Franco J Vizeacoumar
- Cancer Research, Saskatchewan Cancer Agency and Division of Oncology, University of Saskatchewan, 4D30.2 Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada.
| |
Collapse
|
3
|
Enhancing radiosensitization in EphB4 receptor-expressing Head and Neck Squamous Cell Carcinomas. Sci Rep 2016; 6:38792. [PMID: 27941840 PMCID: PMC5150255 DOI: 10.1038/srep38792] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/11/2016] [Indexed: 12/14/2022] Open
Abstract
Members of the Eph family of receptor tyrosine kinases have been implicated in a wide array of human cancers. The EphB4 receptor is ubiquitously expressed in head and neck squamous cell carcinoma (HNSCC) and has been shown to impart tumorigenic and invasive characteristics to these cancers. In this study, we investigated whether EphB4 receptor targeting can enhance the radiosensitization of HNSCC. Our data show that EphB4 is expressed at high to moderate levels in HNSCC cell lines and patient-derived xenograft (PDX) tumors. We observed decreased survival fractions in HNSCC cells following EphB4 knockdown in clonogenic assays. An enhanced G2 cell cycle arrest with activation of DNA damage response pathway and increased apoptosis was evident in HNSCC cells following combined EphB4 downregulation and radiation compared to EphB4 knockdown and radiation alone. Data using HNSCC PDX models showed significant reduction in tumor volume and enhanced delay in tumor regrowth following sEphB4-HSA administration with radiation compared to single agent treatment. sEphB4-HSA is a protein known to block the interaction between the EphB4 receptor and its ephrin-B2 ligand. Overall, our findings emphasize the therapeutic relevance of EphB4 targeting as a radiosensitizer that can be exploited for the treatment of human head and neck carcinomas.
Collapse
|
4
|
Δ(5)-Cholenoyl-amino acids as selective and orally available antagonists of the Eph-ephrin system. Eur J Med Chem 2015; 103:312-24. [PMID: 26363867 DOI: 10.1016/j.ejmech.2015.08.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 01/22/2023]
Abstract
The Eph receptor-ephrin system is an emerging target for the development of novel anti-angiogenic therapies. Research programs aimed at developing small-molecule antagonists of the Eph receptors are still in their initial stage as available compounds suffer from pharmacological drawbacks, limiting their application in vitro and in vivo. In the present work, we report the design, synthesis and evaluation of structure-activity relationships of a class of Δ(5)-cholenoyl-amino acid conjugates as Eph-ephrin antagonists. As a major achievement of our exploration, we identified N-(3β-hydroxy-Δ(5)-cholen-24-oyl)-L-tryptophan (UniPR1331) as the first small molecule antagonist of the Eph-ephrin system effective as an anti-angiogenic agent in endothelial cells, bioavailable in mice by the oral route and devoid of biological activity on G protein-coupled and nuclear receptors targeted by bile acid derivatives.
Collapse
|
5
|
Dimasi N, Fleming R, Hay C, Woods R, Xu L, Wu H, Gao C. Development of a Trispecific Antibody Designed to Simultaneously and Efficiently Target Three Different Antigens on Tumor Cells. Mol Pharm 2015; 12:3490-501. [PMID: 26176328 DOI: 10.1021/acs.molpharmaceut.5b00268] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Targeting Eph (erythropoietin producing hepatoma) receptors with monoclonal antibodies is being explored as therapy for several types of cancer. To test whether simultaneous targeting of EphA2, EphA4, and EphB4 would be an effective approach to cancer therapy, we generated a recombinant trispecific antibody using the variable domain genes of anti-EphA2, anti-EphA4, and anti-EphB4 monoclonal antibodies. A multidisciplinary approach combining biochemical, biophysical, and cellular-based assays was used to characterize the trispecific antibody in vitro and in vivo. Here we demonstrate that the trispecific antibody is expressed at high levels by mammalian cells, monodispersed in solution, thermostable, capable of simultaneously binding the three receptors, and able to activate the three targets effectively as evidenced by receptor internalization and degradation both in vitro and in vivo. Furthermore, pharmacokinetic analysis using tumor-bearing nude mice showed that the trispecific antibody remains in the circulation similarly to its respective parental antibodies. These results indicate that simultaneous blockade of EphA2, EphA4, and EphB4 could be an attractive approach to cancer therapy.
Collapse
Affiliation(s)
- Nazzareno Dimasi
- Antibody Discovery and Protein Engineering and ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Ryan Fleming
- Antibody Discovery and Protein Engineering and ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Carl Hay
- Antibody Discovery and Protein Engineering and ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Rob Woods
- Antibody Discovery and Protein Engineering and ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Linda Xu
- Antibody Discovery and Protein Engineering and ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Herren Wu
- Antibody Discovery and Protein Engineering and ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Changshou Gao
- Antibody Discovery and Protein Engineering and ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| |
Collapse
|
6
|
Thiede-Stan NK, Schwab ME. Attractive and repulsive factors act through multi-subunit receptor complexes to regulate nerve fiber growth. J Cell Sci 2015; 128:2403-14. [PMID: 26116576 DOI: 10.1242/jcs.165555] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the nervous system, attractive and repulsive factors guide neuronal growth, pathfinding and target innervation during development, learning and regeneration after injury. Repulsive and growth-inhibitory factors, such as some ephrins, semaphorins, netrins and myelin-associated growth inhibitors, restrict nerve fiber growth, whereas neurotrophins, and other ephrins, semaphorins and netrins attract fibers and promote neurite growth. Several of these guidance molecules also play crucial roles in vasculogenesis, and regulate cell migration and tissue formation in different organs. Precise and highly specific signal transduction in space and time is required in all these cases, which primarily depends on the presence and function of specific receptors. Interestingly, many of these ligands act through multi-subunit receptor complexes. In this Commentary, we review the current knowledge of how complexes of the receptors for attractive and repulsive neurite growth regulatory factors are reorganized in a spatial and temporal manner, and reveal the implications that such dynamics have on the signaling events that coordinate neurite fiber growth.
Collapse
Affiliation(s)
- Nina K Thiede-Stan
- Brain Research Institute, University of Zurich, Department of Health Sciences & Technology, ETH Zurich, Zurich 8057, Switzerland
| | - Martin E Schwab
- Brain Research Institute, University of Zurich, Department of Health Sciences & Technology, ETH Zurich, Zurich 8057, Switzerland
| |
Collapse
|
7
|
Charmsaz S, Beckett K, Smith FM, Bruedigam C, Moore AS, Al-Ejeh F, Lane SW, Boyd AW. EphA2 Is a Therapy Target in EphA2-Positive Leukemias but Is Not Essential for Normal Hematopoiesis or Leukemia. PLoS One 2015; 10:e0130692. [PMID: 26083390 PMCID: PMC4470658 DOI: 10.1371/journal.pone.0130692] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/24/2015] [Indexed: 12/20/2022] Open
Abstract
Members of the Eph family of receptor tyrosine kinases and their membrane bound ephrin ligands have been shown to play critical roles in many developmental processes and more recently have been implicated in both normal and pathological processes in post-embryonic tissues. In particular, expression studies of Eph receptors and limited functional studies have demonstrated a role for the Eph/ephrin system in hematopoiesis and leukemogenesis. In particular, EphA2 was reported on hematopoietic stem cells and stromal cells. There are also reports of EphA2 expression in many different types of malignancies including leukemia, however there is a lack of knowledge in understanding the role of EphA2 in hematopoiesis and leukemogenesis. We explored the role of EphA2 in hematopoiesis by analyzing wild type and EphA2 knockout mice. Mature, differentiated cells, progenitors and hematopoietic stem cells derived from knockout and control mice were analyzed and no significant abnormality was detected. These studies showed that EphA2 does not have an obligatory role in normal hematopoiesis. Comparative studies using EphA2-negative MLL-AF9 leukemias derived from EphA2-knockout animals showed that there was no detectable functional role for EphA2 in the initiation or progression of the leukemic process. However, expression of EphA2 in leukemias initiated by MLL-AF9 suggested that this protein might be a possible therapy target in this type of leukemia. We showed that treatment with EphA2 monoclonal antibody IF7 alone had no effect on tumorigenicity and latency of the MLL-AF9 leukemias, while targeting of EphA2 using EphA2 monoclonal antibody with a radioactive payload significantly impaired the leukemic process. Altogether, these results identify EphA2 as a potential radio-therapeutic target in leukemias with MLL translocation.
Collapse
Affiliation(s)
- Sara Charmsaz
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- * E-mail:
| | | | - Fiona M. Smith
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Andrew S. Moore
- The University of Queensland, Brisbane, Australia
- Children’s Health Queensland Hospital and Health Service, Brisbane, Australia
| | - Fares Al-Ejeh
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Steven W. Lane
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| | - Andrew W. Boyd
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| |
Collapse
|