1
|
MacDonald CA, Qian H, Pundir P, Kulka M. Sodium butyrate supresses malignant human mast cell proliferation, downregulates expression of KIT and promotes differentiation. FRONTIERS IN ALLERGY 2023; 4:1109717. [PMID: 36970068 PMCID: PMC10036836 DOI: 10.3389/falgy.2023.1109717] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/06/2023] [Indexed: 03/12/2023] Open
Abstract
Sodium butyrate (NaBu) is a class I histone deacetylase inhibitor (HDACi) that can impede the proliferation of transformed cells. Although some HDACi downregulate the expression of the stem cell factor receptor (KIT/CD117), the effect of NaBu on KIT expression and human mast cell proliferation requires further elucidation. In this study, we examined the effects of NaBu on three transformed human mast cell lines, HMC-1.1, HMC-1.2 and LAD2. NaBu (100 µM) inhibited the proliferation and metabolic activity of all three cell lines without significantly affecting their viability, suggesting that although the cells had ceased to divide, they were not yet undergoing apoptosis. Cell cycle analysis using the cell-permeant dye, propidium iodide, indicated that NaBu significantly blocked the cell cycle progression of HMC-1.1 and HMC-1.2 from G1 to G2/M phases. Furthermore, NaBu downregulated the expression of C-KIT mRNA and KIT protein expression in all three cell lines, but this effect was most significant in the HMC-1.1 and HMC-1.2, both of which harbour activating mutations in KIT, which proliferate more rapidly than LAD2. These data support earlier observations showing that human mast cell lines are sensitive to histone deacetylase inhibition. However, our data presents the novel observation that inhibition of cell proliferation by NaBu was not associated with a loss in cell viability but rather an arrest of the cell cycle. Higher concentrations of NaBu led to modest increases in histamine content, tryptase expression, and granularity. In conclusion, NaBu treatment of human mast cell lines led to a modest enhancement of the hallmarks of mature mast cells.
Collapse
Affiliation(s)
- Clayton A. MacDonald
- Department of Laboratory Medicine and Genetics, Trillium Health Partners, Mississauga, ON, Canada
| | - Hui Qian
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB, Canada
| | - Priyanka Pundir
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Marianna Kulka
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Alberta, Edmonton, AB, Canada
- Correspondence: Marianna Kulka
| |
Collapse
|
2
|
Mirzaei R, Dehkhodaie E, Bouzari B, Rahimi M, Gholestani A, Hosseini-Fard SR, Keyvani H, Teimoori A, Karampoor S. Dual role of microbiota-derived short-chain fatty acids on host and pathogen. Biomed Pharmacother 2021; 145:112352. [PMID: 34840032 DOI: 10.1016/j.biopha.2021.112352] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
A growing body of documents shows microbiota produce metabolites such as short-chain fatty acids (SCFAs) as crucial executors of diet-based microbial influence the host and bacterial pathogens. The production of SCFAs depends on the metabolic activity of intestinal microflora and is also affected by dietary changes. SCFAs play important roles in maintaining colonic health as an energy source, as a regulator of gene expression and cell differentiation, and as an anti-inflammatory agent. Additionally, the regulated expression of virulence genes is critical for successful infection by an intestinal pathogen. Bacteria rely on sensing environmental signals to find preferable niches and reach the infectious state. This review will present data supporting the diverse functional roles of microbiota-derived butyrate, propionate, and acetate on host cellular activities such as immune modulation, energy metabolism, nervous system, inflammation, cellular differentiation, and anti-tumor effects, among others. On the other hand, we will discuss and summarize data about the role of these SCFAs on the virulence factor of bacterial pathogens. In this regard, receptors and signaling routes for SCFAs metabolites in host and pathogens will be introduced.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Elahe Dehkhodaie
- Department of Biology, Science and Research Branch, Islamic Azad University Tehran, Iran
| | - Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mandana Rahimi
- Department of Pathology, School of Medicine, Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Gholestani
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Ali Teimoori
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Yao Y, Cai X, Fei W, Ye Y, Zhao M, Zheng C. The role of short-chain fatty acids in immunity, inflammation and metabolism. Crit Rev Food Sci Nutr 2020; 62:1-12. [PMID: 33261516 DOI: 10.1080/10408398.2020.1854675] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Short-chain fatty acids (SCFAs) are carboxylic acids with carbon atom numbers less than 6, which are important metabolites of gut microbiome. Existing research shows that SCFAs play a vital role in the health and disease of the host. First, SCFAs are the key energy source for colon and ileum cells, and affect the intestinal epithelial barrier and defense functions by regulating related gene expression. Second, SCFAs regulate the function of innate immune cells to participate in the immune system, such as macrophages, neutrophils and dendritic cells. Third, SCFAs can also regulate the differentiation of T cells and B cells and the antigen-specific adaptive immunity mediated by them. Besides, SCFAs are raw materials for sugar and lipid synthesis, which provides a theoretical basis for studying the potential role of SCFAs in regulating energy homeostasis and metabolism. There are also studies showing that SCFAs inhibit tumor cell proliferation and promote apoptosis. In this article, we summarized in detail the role of SCFAs in immunity, inflammation and metabolism, and briefly introduced the role of SCFAs in tumor cell survival. It provides a systematic theoretical basis for the study of SCFAs as potential drugs to promote human health.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Xiaoyu Cai
- Department of Pharmacy, Hangzhou First People's Hospital, Hangzhou, China
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Yiqing Ye
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Mengdan Zhao
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Duan Y, Ma X, Ma X, Zou W, Wang C, Bahbahan IS, Ahuja TP, Tolstikov V, Zern MA. Differentiation and characterization of metabolically functioning hepatocytes from human embryonic stem cells. Stem Cells 2010; 28:674-86. [PMID: 20135682 DOI: 10.1002/stem.315] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Human embryonic stem cells (hESCs) may provide a cell source for functional hepatocytes for clinical applications and drug development. Initially, the hESC population was enriched to be more than 85% definitive endoderm (DE) as assessed by the expression of CXCR4, SOX17, and FOXA2. We then successfully converted DE into hepatic progenitors with 93% of the cells being positive for alpha-feto protein within 9 days. The percentage of albumin positive cells gradually increased to 90% at days 20-22 after differentiation. Moreover, our hESC-derived hepatocytes (hEH) developed a complete biotransformation system including phase I and II metabolizing enyzmes and phase III transporters. Nuclear receptors, which are critical in regulating the expression of metabolizing enzymes, were also expressed by our hEH. Using ultraperformance liquid chromatography-tandem mass spectrometry technology, we identified seven metabolic pathways of the drug bufuralol including four newly-reported ones in our hEH, which are the same as those in freshly isolated human primary hepatocytes (hPH). In addition, the results of the metabolism of four drugs indicate that our hEH have the capacity to metabolize these drugs at levels that are comparable to hPH. In conclusion, we have generated a relatively homogenous population of hepatocytes from hESCs, which appear to have complete metabolic function that is comparable to primary liver cells. These results represent a significant step towards the efficient differentiation of mature hepatocytes for cell-based therapeutics as well as for pharmacology and toxicology studies.
Collapse
Affiliation(s)
- Yuyou Duan
- Transplant Research Program, University of California Davis Medical Center, Sacramento, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Santini V, Gozzini A, Scappini B, Grossi A, Rossi Ferrini P. Searching for the magic bullet against cancer: the butyrate saga. Leuk Lymphoma 2001; 42:275-89. [PMID: 11699392 DOI: 10.3109/10428190109064584] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
n-Butyric acid and its "polymorphic" derivatives have been largely but somehow "blindly" studied in oncology and in red cell diseases with consistent results through decades indicating a strong maturative effect determined by enhancement of gene transcription. Although these effects have been observed mainly in vitro, the relative absence of systemic toxicity of butyrates render these compounds appealing as specific therapeutic agents. More interestingly, their specific mechanism of action, i.e. inhibition of histone deacetylase and de-repression of transcription represents at present an unique tool for diseases such as acute leukemias which are characterised by a disregulation of co-repressors and co-activators of gene transcription. More insight into specificity and modalities of action of different butyrate derivatives may be a guarantee for excellent tailored antileukemic therapy in the future.
Collapse
Affiliation(s)
- V Santini
- Department of Hematology, University of Florence, Firenze, Italy.
| | | | | | | | | |
Collapse
|
6
|
Damiens E. Molecular events that regulate cell proliferation: an approach for the development of new anticancer drugs. PROGRESS IN CELL CYCLE RESEARCH 2000; 4:219-33. [PMID: 10740828 DOI: 10.1007/978-1-4615-4253-7_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer chemotherapy is the object of many fundamental and clinical researches. The development in molecular techniques and structural studies at the molecular level have led to the discovery of key proteins involved in the regulation of cell proliferation. This opened perspectives to characterize new anticancer drugs in order to reduce the limitations found with conventional drugs such as the lack of selectivity for cancer cells and resistance phenomena. This review presents the anticancer drugs in clinical investigations that target molecules involved in the signal transduction impairment, the cell cycle deregulation and the differentiation with comments on their mechanisms of action.
Collapse
Affiliation(s)
- E Damiens
- Laboratoire de Chimie Biologique, UMR n(o)111 du CNRS, Villeneuve d'Ascq, France
| |
Collapse
|
7
|
Koutsovelkidis I, Neopikhanov V, Söderman C, Lorenz A, Uribe A. Butyrate inhibits and Escherichia coli-derived mitogen(s) stimulate DNA synthesis in human hepatocytes in vitro. Prep Biochem Biotechnol 1999; 29:121-38. [PMID: 10231892 DOI: 10.1080/10826069908544885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Bacterial constituents and products of the bacterial metabolism pass from the gut lumen to the portal vein and may influence the homeostasis of the liver. Our aim is to examine whether DNA synthesis of human hepatocyte cell lines is affected by constituents of Escherichia coli species as well as by intracolonic products of bacterial fermentation that reach the liver via the portal vein. Supernatant solutions and bacterial cell fractions (containing either whole dead bacteria, cell walls, cytosol or non-soluble intracellular components) of E. coli K12 and of E. coli species from rat fecal flora were separated by multi-step centrifugation, French press, and microfiltration. The supernatant solution and the cell fractions were incubated with a human hepatoma cell line (Hep-G2) and with a cell line derived from non-malignant human liver cells (Chang cells) for 24 h. The cells were labeled with tritiated thymidine before processing to autoradiography. DNA synthesis was estimated by the labeling index (LI%). DNA synthesis was also estimated following incubation of Hep-G2 cells with short chain fatty acids (acetic, propionic, butyric and succinic acid), acetaldehyde, and ammonium chloride. Epidermal growth factor and a water extract of Helicobacter pylori were used as references. The fractions of E. coli from rat fecal flora containing cytosol and non-soluble intracellular components significantly increased the labeling index in both Hep-G2 and Chang cells (p < 0.05). In addition, the supernatant solution significantly increased the LI in Chang cells (p < 0.05). Epidermal growth factor increased the LI of Hep-G2 cells dose-dependently (p < 0.05). Butyric acid reduced DNA synthesis at 10(-4) M (p < 0.05). The highest doses of acetaldehyde were cytotoxic and reduced the LI. Escherichia coli species contain mitogenic factors to human hepatocytes. The mitogen(s) are present in the supernatant solution, in the cytosol and in non-soluble intracellular components. Butyrate, which is a product of bacterial fermentation of colonic substrates inhibit DNA synthesis in the hepatocyte cell lines. Our findings suggest that soluble mitogen(s) that diffuse from the microorganism to the outer environment, intracellular bacterial constituents, and products of the bacterial metabolism that reach the liver via the portal vein may influence the cell kinetic steady-state of hepatic cells.
Collapse
Affiliation(s)
- I Koutsovelkidis
- Department of Medicine, Karolinska Institute, Danderyd Hospital, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
8
|
Cuisset L, Tichonicky L, Delpech M. Quantitative analysis of histone H1 degrees protein synthesis in HTC cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:593-9. [PMID: 10215874 DOI: 10.1046/j.1432-1327.1999.00331.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
H1 degrees, a member of histone H1 family associated with cell growth arrest and differentiation, is barely expressed in most mammalian cells in culture. Depending on the cell type, serum deprivation or drugs, such as sodium butyrate, significantly increase H1 degrees mRNA level and H1 degrees protein accumulates. However, probably because of a lack of a simple quantitative procedure, little is known about the relationship between H1 degrees mRNA content and its effective translation rate. Using a rat hepatoma cell line and sodium butyrate as a model system, we attempted to evaluate this in different cellular conditions by measuring H1 degrees synthesis with a rapid quantitative procedure we described previously. We found that although the amount of H1 degrees mRNA rapidly increased and then stabilized under sodium butyrate treatment, its transcription was delayed and H1 degrees protein was synthesized in a progressive wave. Butyrate removal from cell culture confirmed that mRNA level and protein synthesis were independently regulated, and provided evidence that sodium butyrate would not directly target the translation apparatus. In contrast, during the S phase of the cell cycle, H1 degrees gene transcription and protein synthesis were concomitantly activated. Taken together these data provide evidence that H1 degrees accumulation results from an increase of its synthesis and that, depending on conditions, a cell exhibits a H1 degrees translation efficiency which may or may not reflect the mRNA level.
Collapse
Affiliation(s)
- L Cuisset
- Laboratoire de Biologie Moléculaire des Cellules Eucaryotes, ICGM-EA 1501, Université Paris V, Port-Royal, France
| | | | | |
Collapse
|
9
|
Seternes OM, Sørensen R, Johansen B, Moens U. Activation of protein kinase A by dibutyryl cAMP treatment of NIH 3T3 cells inhibits proliferation but fails to induce Ser-133 phosphorylation and transcriptional activation of CREB. Cell Signal 1999; 11:211-9. [PMID: 10353696 DOI: 10.1016/s0898-6568(98)00069-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cAMP analogue dibutyryl cAMP (dbcAMP) is often used to activate the protein kinase A pathway and to study the expression of cAMP-responsive genes. Here we show that in NIH 3T3 cells dbcAMP is able to activate PKA, but fails to stimulate expression of the cAMP-inducible c-fos gene. Co-expression of A-kinase anchoring protein 75, previously shown to amplify cAMP signalling and to stimulate c-fos expression, could not restore cAMP responsiveness of the c-fos promoter. DbcAMP-induced activation of PKA may result in poor translocation of the catalytic sub-units of PKA to the nucleus, indicated by the lack of both Ser-133 phosphorylation of the cAMP-response element binding factor CREB and stimulation of the transcriptional activity of this factor. DbcAMP treatment, however, inhibited cell proliferation. These results suggest that cAMP-mediated inhibition of proliferation may be independent of translocation of the catalytic sub-units into the nucleus.
Collapse
Affiliation(s)
- O M Seternes
- Department of Gene Biology, Institute of Medical Biology, University of Tromsø, Norway
| | | | | | | |
Collapse
|
10
|
Ott M, Rajvanshi P, Sokhi RP, Alpini G, Aragona E, Dabeva M, Shafritz DA, Gupta S. Differentiation-specific regulation of transgene expression in a diploid epithelial cell line derived from the normal F344 rat liver. J Pathol 1999; 187:365-73. [PMID: 10398093 DOI: 10.1002/(sici)1096-9896(199902)187:3<365::aid-path237>3.0.co;2-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To establish the differentiation potential of progenitor cells, non-parenchymal epithelial cells from the F344 rat liver (FNRL cells) were studied. These cells reacted with the OV-6 antibody marker of oval cells, but were negative for hepatocyte markers (albumin, transferrin, glycogen, glucose-6-phosphatase, H4 antigen), biliary markers (gamma glutamyl transpeptidase, cytokeratin-19), and alpha-fetoprotein, although exposure to sodium butyrate induced nascent albumin and alpha-fetoprotein mRNA transcription. When stably transduced, FNRL cells expressed a retroviral promotor-driven lacZ reporter in vitro, similar to transgene expression in hepatocyte-derived HepG2 cells. However, lacZ expression in FNRL cells was rapidly extinguished in intact animals, whereas the reporter remained active in HepG2 cells. Transplanted FNRL cells showed copious glucose-6-phosphatase expression; however, the cell differentiation programme remained incomplete, despite two-thirds partial hepatectomy, D-galactosamine treatment or bile duct ligation. Interestingly, lacZ expression resumed in cultures of FNRL cells explanted from recipients. Moreover, lacZ expression was down-regulated by gamma-interferon in FNRL cells, without affecting lacZ activity in HepG2 cells. The data indicate that although subpopulations of oval cells may not fully differentiate into mature hepatocytes, these cells might serve critical functions, such as glucose utilization, and help survival after liver injury. Also, introduced genes may be regulated in progenitor cells at multiple levels, including by interactions between regulatory sequences, differentiation-specific cellular factors, and extracellular signals; in vivo studies are thus especially important for analysing gene regulation in progenitor cells.
Collapse
Affiliation(s)
- M Ott
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Pouillart PR. Role of butyric acid and its derivatives in the treatment of colorectal cancer and hemoglobinopathies. Life Sci 1998; 63:1739-60. [PMID: 9820119 DOI: 10.1016/s0024-3205(98)00279-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Butyric acid, a short chain fatty acid (SCFA), is a natural component of the animal metabolism. Physiological concentrations induce multiple and reversible biological effects. They concern regulatory mechanisms of gene expression conducing to promote markers of cell differentiation, apoptosis and cell growth control. The described hyperacetylation of histones and the induction of several immune or non-immune cell-activating mediators are consistent with the pleiotropic stimulatory effect of the agent. Butyric acid is considered as a biological response modifier (BRM) and is an interesting tool for biological studies. The history of butyric acid as a putative medication in human health is spanning since 60 years and is confusing in part because of conflicting data between exciting experimental results and clinical trials. In light of minimal impact of systemic therapy and the short half-life of the saline molecule used, it is evident that continuous infusions of butyrate are required to improve the efficacy of the treatment. Butyric acid has been viewed with skepticism because of less convenient for long-term chronic therapy. New experimental data from several studies conduced within the past decade with butyric derivatives, delivery systems, and long-acting prodrugs, have demonstrated the practical value of the therapeutic concept. To support issues regarding clinical development, it was of interest to evaluate the recent information, showing butyric acid currently considered as therapeutic purposes in the treatment of colorectal cancer and hemoglobinopathies.
Collapse
|
12
|
Wang XM, Wang X, Li J, Evers BM. Effects of 5-azacytidine and butyrate on differentiation and apoptosis of hepatic cancer cell lines. Ann Surg 1998; 227:922-31. [PMID: 9637556 PMCID: PMC1191406 DOI: 10.1097/00000658-199806000-00016] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To determine the cellular effects of 5-azacytidine (5-azaC) and sodium butyrate on two human liver cancers, HepG2 and Hep3B. SUMMARY BACKGROUND DATA Primary liver cancer is a significant health problem; treatment options are limited and prognosis is poor. Recent studies have focused on the role that programmed cell death (i.e., apoptosis) plays in both normal and neoplastic growth: certain genes can either suppress (e.g., Bcl-2, Bcl-xL) or promote (e.g., Bik, Bax, Bak) apoptosis. The identification of novel agents targeted to specific molecular pathways may be beneficial in the treatment of this disease. METHODS Human liver cancer cell lines HepG2 and Hep3B were treated with 5-azaC alone, butyrate alone, or 5-azaC and butyrate. Morphologic and proliferative changes were assessed by light microscopy and 5-bromo-2'-deoxyuridine staining; flow cytometry was used to determine cell cycle characteristics. Apoptosis was assessed by DNA laddering and the in situ apoptosis detection assay using the TdT-mediated dUTP nick end labeling method. In addition, total RNA and protein were analyzed by ribonuclease protection and Western blot, respectively, to assess changes in the expression of apoptosis-related genes. RESULTS Treatment with either 5-azaC or butyrate inhibited cell growth and induced apoptosis in both HepG2 and Hep3B cells; the combination of 5-azaC and butyrate was not more effective than either agent alone. 5-azaC alone resulted in a more differentiated-appearing morphology and G2 cell cycle arrest in both cell lines. Treatment with 5-azaC or butyrate affected the expression levels of proteins of the Bcl-2 family. CONCLUSIONS Both 5-azaC and butyrate induced apoptosis in the HepG2 and Hep3B liver cancer cells; 5-azaC treatment alone produced G2 arrest in both cell lines. Proteins of the Bcl-2 family may play a role in the cellular changes that occur with treatment, but further studies are required to define this potential role. Products of the apoptotic pathway may prove to be useful therapeutic targets in the treatment of hepatic cancers.
Collapse
Affiliation(s)
- X M Wang
- Department of Surgery, The University of Texas Medical Branch, Galveston 77555-0533, USA
| | | | | | | |
Collapse
|
13
|
Cuisset L, Tichonicky L, Delpech M. A protein phosphatase is involved in the inhibition of histone deacetylation by sodium butyrate. Biochem Biophys Res Commun 1998; 246:760-4. [PMID: 9618285 DOI: 10.1006/bbrc.1998.8698] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Treatment of cells with sodium butyrate is known to increase histone acetylation by inhibiting deacetylases. Here we have observed, in cultured hepatoma cells, that the potent serine-threonine phosphatase inhibitors, okadaic acid or calyculin A, inhibited phosphatase activity and concomitantly decreased the histone acetylation classically maintained by sodium butyrate. These results suggest that a protein phosphatase may mediate the sodium butyrate effect on deacetylases. Since we have previously found that such a protein would also mediate the sodium butyrate effect on gene expression, we propose that a phosphatase activity constitutes an early and essential step in the sodium butyrate-triggered signalling pathway.
Collapse
Affiliation(s)
- L Cuisset
- Laboratoire de Biologie Moléculaire des Cellules Eucaryotes, I.C.G.M-EA 1501, Université Paris V, Faculté de Médecine, France
| | | | | |
Collapse
|
14
|
Abstract
Polyphenolic-glutathione (GSH) conjugates and their metabolites retain the electrophilic and redox properties of the parent polyphenol. Indeed, the reactivity of the thioether metabolites frequently exceeds that of the parent polyphenol. Although the active transport of polyphenolic-GSH conjugates out of the cell in which they are formed will limit their potential toxicity to those cells, once within the circulation they can be transported to tissues that are capable of accumulating these metabolites. There are interesting physiological similarities between the organs that are known to be susceptible to polyphenolic-GSH conjugate-mediated toxicity. In addition, the frequent localization of gamma-glutamyl transpeptidase to cells separating the circulation from a second fluid-filled compartment coincides with tissues that are susceptible either to polyphenolic-GSH conjugate-induced toxicity or to quinone and reactive oxygen species-induced toxicity. Polyphenolic-GSH conjugates therefore contribute to the nephrotoxicity, nephrocarcinogenicity, and neurotoxicity of a variety of polyphenols.
Collapse
Affiliation(s)
- T J Monks
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas, Austin 78712-1074, USA
| | | |
Collapse
|
15
|
Cuisset L, Tichonicky L, Jaffray P, Delpech M. The effects of sodium butyrate on transcription are mediated through activation of a protein phosphatase. J Biol Chem 1997; 272:24148-53. [PMID: 9305863 DOI: 10.1074/jbc.272.39.24148] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this study we have investigated the molecular mechanism by which sodium butyrate modulates gene expression when added to cultured cells. As a model system we used hepatoma tissue culture cells in which sodium butyrate treatment increases histone H1(0) mRNA level and decreases c-myc mRNA level. Because we observed that stimulation of histone H1(0) gene expression could take place in the absence of protein neosynthesis, we hypothesized that sodium butyrate induced a post-translational modification of a factor involved in the transcription process. Using different types of well known kinase and phosphatase inhibitors, we studied the implication of kinase or phosphatase activity in this pathway. Interestingly, cell treatment with potent serine-threonine-phosphatase inhibitors, calyculin A or okadaic acid, prevented the regulation of both histone H1(0) and c-myc gene expressions by sodium butyrate. On the other hand, the tyrosine phosphatase inhibitor, vanadate, or the protein kinase C inhibitor, staurosporine, did not significantly modify sodium butyrate effects. Using protein phosphatase 1 and 2A for in vitro assays, we found a 45% increase of phosphatase activity after cell treatment by sodium butyrate, possibly due to a protein phosphatase 1-type protein phosphatase. These data strongly suggest that signaling pathway(s) triggered by sodium butyrate to modulate gene expression involve(s) a serine-threonine-phosphatase activity.
Collapse
Affiliation(s)
- L Cuisset
- Laboratoire de Biologie Moléculaire des Cellules Eucaryotes, I.C.G. M-EA 1501, Université Paris V, René Descartes, Faculté de Médecine Cochin Port-Royal, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France
| | | | | | | |
Collapse
|
16
|
Jeong JK, Huang Q, Lau SS, Monks TJ. The response of renal tubular epithelial cells to physiologically and chemically induced growth arrest. J Biol Chem 1997; 272:7511-8. [PMID: 9054455 DOI: 10.1074/jbc.272.11.7511] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cells respond to a variety of stresses by activating the transcription of a battery of "acute phase" or "stress response" genes. The nature of this response is tailored to the nature of the stress. The extent to which physiologically and pathophysiologically induced growth arrest share common genomic responses is unclear. We therefore compared the effects of a physiologically induced (serum and nutrient depletion) and a chemically induced (2-Br-bis-(GSyl)HQ and 2-Br-6-(GSyl)HQ) stress in renal tubular epithelial cells (LLC-PK1). The response to physiological stress, induced by serum depletion, involves growth arrest characterized by an inhibition of DNA synthesis that occurs in the absence of a decrease in histone mRNA or an increase in gadd153 mRNA, one of the growth arrest and DNA damage inducible genes. In contrast, the chemical-induced stress involves growth arrest accompanied by a decrease in histone mRNA, particularly core histone H2B and H2A mRNA, and the induction of gadd153. Chemical-induced changes in histone mRNA inversely correlate to changes in the expression of a stress gene, hsp70, whose expression is dependent upon the maintenance of appropriate nucleosomal structure.
Collapse
Affiliation(s)
- J K Jeong
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
17
|
Nuydens R, Heers C, Chadarevian A, De Jong M, Nuyens R, Cornelissen F, Geerts H. Sodium butyrate induces aberrant tau phosphorylation and programmed cell death in human neuroblastoma cells. Brain Res 1995; 688:86-94. [PMID: 8542327 DOI: 10.1016/0006-8993(95)00514-q] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Paired helical filaments, one of the major hallmarks of Alzheimer's disease brains at autopsy, consist mainly of aberrantly phosphorylated tau. This aberrant tau phosphorylation can be induced in the human neuroblastoma cell line TR14 by a hyperstimulating mixture, consisting of nerve growth factor (NGF), db-cAMP, gangliosides and sodium butyrate (NaBut) [20,23]. Evidence is presented that exposing these cells to increasing concentrations of NaBut alone in the 0.5-2 mM dose-range is sufficient to induce aberrant tau phosphorylation within 24 h, measured by AT-8 immunocytochemistry and Western blotting. This process is associated with increased morphological differentiation. Furthermore, the aberrant tau phosphorylation is followed by neurotoxicity. This neurotoxicity has features of programmed cell death, such as fragmentation on a DNA agarose gel, fragmented nuclei and chromatin condensation and inhibition by the protein synthesis inhibitor cycloheximide. The mechanism by which NaBut induces these modified tau proteins and neurotoxicity are largely unknown but the data suggest an involvement of cytoskeletal proteins.
Collapse
Affiliation(s)
- R Nuydens
- Department of Cellular Physiology, Life Sciences, Janssen Research Foundation, Beerse, Belgium
| | | | | | | | | | | | | |
Collapse
|