1
|
Kashiwakura I, Takahashi TA. Fibroblast growth factor andex vivoexpansion of hematopoietic progenitor cells. Leuk Lymphoma 2009; 46:329-33. [PMID: 15621822 DOI: 10.1080/10428190400019958] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Fibroblast growth factor (FGF) belongs to a family of heparin-binding polypeptides and shows multiple functions including cell proliferation, differentiation, survival and motility. The expression of FGF receptors is widely distributed on different hematopoietic progenitor cells and stromal cells, and FGFs play an important role in hematopoietic stem cell homeostasis. FGFs have been shown to sustain the proliferation of hematopoietic progenitor cells, maintaining their primitive phenotype. Basic FGF (bFGF, FGF-2) stimulates the formation of an adherent stromal cell layer in human long-term bone marrow cultures, and promotes hematopoietic cell development. FGF-2 has also been shown to synergize with other hematopoietic growth factors to enhance in vitro colony formation by several classes of hematopoietic progenitor cells. Results of ex vivo expansion and clinical trials to date suggest that hematopoietic cells cultured under stroma-free cytokine combination conditions may be insufficient to restore hematopoiesis after a myeloablative conditioning regimen, although some recent trials demonstrated an improvement in engraftment and a reduction of the period of pancytopenia, especially neutrophils and platelets, after transplantation. A recent study by our group demonstrated that FGF-2 is effective in supporting the generation of megakaryocytic progenitor cells during ex vivo expansion. These observations could be useful in reducing the long period of severe thrombocytopenia that occurs frequently after umbilical/placental cord blood transplantation. The development of more effective amplifying systems for hematopoietic stem/progenitor cells can be expected since FGFs have multiple functions in hematopoiesis.
Collapse
Affiliation(s)
- Ikuo Kashiwakura
- Department of Radiological Technology, Hirosaki University School of Health Sciences, Hirosaki, Aomori, Japan.
| | | |
Collapse
|
2
|
Land SC, Darakhshan F. Thymulin evokes IL-6-C/EBPbeta regenerative repair and TNF-alpha silencing during endotoxin exposure in fetal lung explants. Am J Physiol Lung Cell Mol Physiol 2004; 286:L473-87. [PMID: 12639846 DOI: 10.1152/ajplung.00401.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chorioamnionitis is associated with increased risks of perinatal respiratory failure; however, components of the inflammatory acute-phase response are known to actively promote lung maturation. To manipulate this relationship, we examined the effect of the thymic immunomodulator thymulin on fetal lung mesenchyme-epithelial differentiation during exposure to Escherichia coli lipopolysaccharide (LPS). Gestation day 14 fetal rat lung explants were cultured for 96 h at fetal (23 mmHg) or ambient (142 mmHg) Po(2). Airway surface complexity (ASC, perimeter/ radical area(2)) was greater at fetal vs. ambient Po(2); however, exposure to 0.1-50 microg/ml LPS significantly raised ASC at 2 microg/ml in ambient Po(2) explants. LPS (50 microg/ml) depressed ASC in both conditions to untreated ambient Po(2) control values without changes in necrosis or apoptosis. To manipulate LPS-evoked TNF-alpha and IL-6 release, we exposed explants and A549 cells to combinations of 50 microg/ml LPS, 10 microM ZnCl(2), and 0.1-1,000 ng/ml thymulin at either Po(2). Thymulin+Zn(2+) suppressed and potentiated LPS-evoked TNF-alpha and IL-6 release, yielding an IC(50(TNF-alpha)) of 0.5 +/- 0.01 ng/ml and EC(50(IL-6)) of 1.4 +/- 0.3 ng/ml in A549 cells. This was accompanied by activation of the p38 MAPKMAPKAP-K2 pathway with sustained expression of TNF-alpha and IL-6 transcripts at ambient Po(2). LPS+thymulin+Zn(2+)-treated explants showed proliferation of CCAAT-enhancer binding protein-beta (C/EBPbeta) and fibroblast growth factor-9 immunoreactive mesenchyme, which was abolished by IL-6 antisense oligonucleotides. The posttranscriptional suppression of immunogenic TNF-alpha synthesis coupled with raised IL-6 and C/EBPbeta-dependent mesenchyme proliferation suggests a role for bioactive thymulin in regulating regenerative repair in the fetal lung.
Collapse
Affiliation(s)
- Stephen C Land
- Tayside Inst. of Child Health, Maternal and Child Health Sciences, Ninewells Hospital and Medical School, Univ. of Dundee, Dundee, DD1 9SY, UK.
| | | |
Collapse
|
3
|
Moroni E, Dell'Era P, Rusnati M, Presta M. Fibroblast growth factors and their receptors in hematopoiesis and hematological tumors. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2002; 11:19-32. [PMID: 11847001 DOI: 10.1089/152581602753448513] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Fibroblast growth factors (FGFs) belong to a family of pleiotropic heparin-binding growth factors. They exert multiple functions on various cell types of mesodermal and neuroectodermal origin, affecting cell proliferation, motility, survival, and differentiation. FGF's exert their activity by interacting with tyrosine kinase receptors (FGFRs) and cell-surface heparan sulfate proteoglycans. This article reviews recent studies on the role of the FGF/FGFR system in embryonic hematopoietic development, hematopoiesis, and hematological tumors. FGFs exert both autocrine and paracrine functions in these biological processes by acting on blood cells and their precursors and accessory cells in the bone marrow, including stromal and endothelial cells.
Collapse
Affiliation(s)
- Emanuela Moroni
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, Via Valsabbina 19, 25123 Brescia, Italy
| | | | | | | |
Collapse
|
4
|
Kanda T, Iwasaki T, Nakamura S, Kurokawa T, Ikeda K, Mizusawa H. Self-secretion of fibroblast growth factor-9 supports basal forebrain cholinergic neurons in an autocrine/paracrine manner. Brain Res 2000; 876:22-30. [PMID: 10973589 DOI: 10.1016/s0006-8993(00)02563-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We examined the effect of fibroblast growth factor (FGF)-9 on primary cultures of rat basal forebrain cholinergic neurons (BFCN) obtained at embryonic day 17. FGF-9 enhanced survival of AChE-positive neurons, increased their mean soma size, and up-regulated their choline acetyltransferase (ChAT) activity. The ChAT-promoting effect of FGF-9 was approximately as potent as that of nerve growth factor (NGF) and was greater than those of basic fibroblast growth factor (bFGF), ciliary neurotrophic factor (CNTF), or glia-derived neurotrophic factor (GDNF). Simultaneous addition of FGF-9 and NGF induced extremely high ChAT levels, suggesting that FGF-9 and NGF may enhance cholinergic properties in BFCN via different pathways that can act synergistically. In immunocytochemical and in situ hybridization studies in cultured cells and also in sections of adult rat brain, BFCN showed cytoplasmic immunostaining for FGF-9 and expressed FGF-9 messenger RNA; thus, we concluded that FGF-9 acts on BFCN in an autocrine and/or paracrine manner. Although effective delivery of exogenous FGF-9 into the central nervous system remains a problem to be solved, FGF-9 may be a promising candidate for therapeutic trials in Alzheimer disease.
Collapse
Affiliation(s)
- T Kanda
- Department of Neurology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, 113-8519, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
5
|
Nakamura S, Todo T, Motoi Y, Haga S, Aizawa T, Ueki A, Ikeda K. Glial expression of fibroblast growth factor-9 in rat central nervous system. Glia 1999. [DOI: 10.1002/(sici)1098-1136(199910)28:1<53::aid-glia7>3.0.co;2-v] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
6
|
Kanda T, Iwasaki T, Nakamura S, Ueki A, Kurokawa T, Ikeda K, Mizusawa H. FGF-9 is an autocrine/paracrine neurotrophic substance for spinal motoneurons. Int J Dev Neurosci 1999; 17:191-200. [PMID: 10452363 DOI: 10.1016/s0736-5748(99)00026-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Motoneurons need muscle-derived neurotrophic substances for their survival during the initial phase of their development, but after maturation they lose this requirement and can survive after axotomy. This suggests that some neurotrophic substances other than target-derived ones control the survival of motoneurons in adults. Because spinal motoneurons express fibroblast growth factor-9 (FGF-9) messenger RNA, we hypothesized that FGF-9 might be an autocrine or paracrine survival factor for motoneurons. FGF-9 promoted the survival of motoneurons and upregulated the choline acetyl-transferase (ChAT) activity in the dissociated cultures of ventral half of rat E13 spinal cord. Externally added FGF-9 was more effective in low density cultures, and polyclonal blocking antibody against FGF-9 significantly lowered the ChAT activity. Our results support an autocrine or paracrine role for FGF-9 in mediating the survival of spinal motoneurons. Non-target-derived neurotrophic substances for motoneurons including FGF-9 should be important in the pathogenesis of motor neuron disorders in the adults, especially amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- T Kanda
- Department of Neurology, Tokyo Medical and Dental University, Bunkyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
7
|
Todo T, Kondo T, Kirino T, Asai A, Adams EF, Nakamura S, Ikeda K, Kurokawa T. Expression and growth stimulatory effect of fibroblast growth factor 9 in human brain tumors. Neurosurgery 1998; 43:337-46. [PMID: 9696088 DOI: 10.1097/00006123-199808000-00098] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Fibroblast growth factor 9 (FGF-9) is a relatively new member of the FGF family isolated from the conditioned medium of a human glioblastoma cell line as a secreting type factor that exhibits a growth-stimulating effect on primary glial cells. To elucidate the roles of FGF-9 in human brain tumors, the expression and biological activities of FGF-9 were studied using culture cells and surgically obtained tumor specimens. METHODS Measurement of FGF-9 and basic FGF in conditioned media of cell cultures was performed by using a sandwich enzyme immunoassay. The mitogenic effect of FGF-9 was evaluated by cell growth studies. FGF-9 expression in vivo was demonstrated by immunohistochemistry. RESULTS One of 4 glioma cell lines and 4 of 16 human meningiomas examined actually secreted detectable amounts of FGF-9 proteins. In comparison, basic FGF production was detected from 3 of 4 glioma cell lines and 11 of 16 human meningiomas. Similarly to basic FGF, recombinant human FGF-9 significantly stimulated the in vitro cell proliferation in three of four glioma cell lines investigated in a dose-dependent manner. A time course growth study using U87 MG cells revealed an accelerated growth stimulation by FGF-9 after Day 4. The growth stimulatory activity was also shown in three of four human meningiomas studied. Moderate to strong immunoreactivity for FGF-9 was observed in 40 (82%) of 49 human brain tumors examined irrespective of origin, tumor type, grade of malignancy, or whether initial or recurrent. In contrast, strong immunostaining was localized in neurons in the normal human cerebral cortex. CONCLUSION The present findings suggest that FGF-9 may be involved in the biology of human brain tumors with a possible importance in tumor cell growth. Whether the growth factor is more generally involved in oncogenesis of human tumors awaits further investigation.
Collapse
Affiliation(s)
- T Todo
- Department of Neurosurgery, International Medical Center of Japan, Tokyo
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Todo T, Kondo T, Nakamura S, Kirino T, Kurokawa T, Ikeda K. Neuronal localization of fibroblast growth factor-9 immunoreactivity in human and rat brain. Brain Res 1998; 783:179-87. [PMID: 9507114 DOI: 10.1016/s0006-8993(97)01340-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fibroblast growth factor-9 (FGF-9) is a relatively new member of the FGF family isolated from the conditioned medium of a human glioblastoma cell line as a secreting-type factor that exhibits a growth-stimulating effect on cultured glial cells. In order to elucidate the roles of FGF-9 in the central nervous system, we investigated in detail the distribution of FGF-9 proteins in the normal human and rat brains by immunohistochemistry using two different antibodies specific to FGF-9. In both human and rat, a strong expression of FGF-9 immunoreactivity was localized mainly in neurons throughout the normal brain. Immunoreactive glial cells were rarely encountered. In the human brain, strong and uniform immunoreactivity was observed in neurons of cerebral cortex, hippocampus, substantia nigra, motor nuclei of the brainstem, and Purkinje cell layer. A detailed mapping in the rat brain showed a distribution of FGF-9 immunoreactivity in a widespread population of neurons, though the intensity varied between different locations and even among the same nucleus. The most prominent expression in rat was observed in neurons of the mitral cell layer of the olfactory bulb, red nucleus, mesencephalic trigeminal nucleus, motor trigeminal nucleus, facial nucleus, reticular nucleus and Purkinje cell layer. These findings suggest that FGF-9 plays an important role in the central nervous system and may have a potential function closely connected to neurons in the normal brain.
Collapse
Affiliation(s)
- T Todo
- Department of Neurosurgery, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Matsumoto-Yoshitomi S, Habashita J, Nomura C, Kuroshima K, Kurokawa T. Autocrine transformation by fibroblast growth factor 9 (FGF-9) and its possible participation in human oncogenesis. Int J Cancer 1997; 71:442-50. [PMID: 9139882 DOI: 10.1002/(sici)1097-0215(19970502)71:3<442::aid-ijc23>3.0.co;2-g] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transfection of human fibroblast growth factor 9 (FGF-9) cDNA into mouse BALB/c 3T3 clone A31 cells led to morphological transformation of the cells and foci formation 4 weeks later. Isolated transformants had a higher saturation density than parental A31 cells, could grow in soft agar, and secreted FGF-9 into the culture supernatant. The introduction of FGF-9 N33 cDNA, which encodes a truncated protein that has 33 N-terminal amino acids deleted and has the same mitogenic potency as FGF-9, failed to lead to foci formation. Although FGF-9 is a secretory protein, it does not have a typical secretory signal sequence, and the secreted protein retains the full sequence coded in the cDNA except for the initiating methionine. The produced FGF-9 N33 was not secreted and remained within the cell. It is possible that FGF-9 has an uncleavable signal sequence within the first 33 N-terminal amino acids. All of the phenotypes acquired by transformation could be arrested by treatment with a neutralizing anti-human FGF-9 monoclonal antibody (MAb) 150-59. Additionally, transformants formed tumors in nude mice. Injection of MAb 150-59 suppressed tumor formation in nude mice and caused existing tumors to regress. Our results suggest that the cellular transformation mediated by FG F-9 is produced by autocrine stimulation. We have detected FGF-9 production in the human tumor cell lines glioma NMC-G1, from which FGF-9 was originally purified, and stomach carcinoma AZ-521. The growth of NMC-G1 was not affected by MAb 150-59, but that of AZ-521 was arrested by MAb 150-59 in the presence of heparin. Moreover, the growth of the AZ-521 cell tumor in nude mice could be partially arrested by antibody treatment. The possibility of a participation of FGF-9 in the formation of human tumors is suggested.
Collapse
Affiliation(s)
- S Matsumoto-Yoshitomi
- Molecular Pharmacology Laboratory, Pharmaceutical Research Division, Takeda Chemical Industries Ltd., Osaka, Japan
| | | | | | | | | |
Collapse
|
10
|
Nakamura S, Todo T, Haga S, Aizawa T, Motoi Y, Ueki A, Kurokawa T, Ikeda K. Motor neurons in human and rat spinal cord synthesize fibroblast growth factor-9. Neurosci Lett 1997; 221:181-4. [PMID: 9121694 DOI: 10.1016/s0304-3940(96)13312-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fibroblast growth factor (FGF)-9, initially referred to as a glia-activating factor, is a recently identified member of the FGF family. In the present study we demonstrated that spinal cord motor neurons and dorsal root ganglion neurons were strongly immunostained with specific antibodies to FGF-9 in human and rat tissues. By in situ hybridization using digoxigenin-labeled antisense probe to FGF-9 mRNA, we found specific signals in these neurons in rat. By immunoblotting analysis, we detected a 30/29 kDa doublet band in human spinal cord proteins, which corresponded to the doublet band of originally isolated FGF-9 from culture media. Our results indicate that these neurons synthesize FGF-9.
Collapse
Affiliation(s)
- S Nakamura
- Department of Ultrastructure and Histochemistry, Tokyo Institute of Psychiatry, Kamikitazawa, Setagaya, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
150-59, anti-FGF-9. Hybridoma (Larchmt) 1996. [DOI: 10.1089/hyb.1996.15.316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
13-3, anti-FGF-9. Hybridoma (Larchmt) 1996. [DOI: 10.1089/hyb.1996.15.315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|