1
|
Jin C, Yan K, Wang M, Song W, Kong X, Zhang Z. Identification, Characterization and Functional Analysis of Fibroblast Growth Factors in Black Rockfish ( Sebastes schlegelii). Int J Mol Sci 2023; 24:ijms24043626. [PMID: 36835037 PMCID: PMC9958866 DOI: 10.3390/ijms24043626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Fibroblast growth factors (FGFs) are short polypeptides that play essential roles in various cellular biological processes, including cell migration, proliferation, and differentiation, as well as tissue regeneration, immune response, and organogenesis. However, studies focusing on the characterization and function of FGF genes in teleost fishes are still limited. In this study, we identified and characterized expression patterns of 24 FGF genes in various tissues of embryonic and adult specimens of the black rockfish (Sebates schlegelii). Nine FGF genes were found to play essential roles in myoblast differentiation, as well as muscle development and recovery in juvelines of S. schlegelii. Moreover, sex-biased expression pattern of multiple FGF genes was recorded in the species' gonads during its development. Among them, expression of the FGF1 gene was recorded in interstitial and sertoli cells of testes, promoting germ-cell proliferation and differentiation. In sum, the obtained results enabled systematic and functional characterization of FGF genes in S. schlegelii, laying a foundation for further studies on FGF genes in other large teleost fishes.
Collapse
Affiliation(s)
- Chaofan Jin
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Kai Yan
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Mengya Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Weihao Song
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiangfu Kong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhengrui Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Correspondence:
| |
Collapse
|
2
|
Podkalicka P, Mucha O, Bronisz-Budzyńska I, Kozakowska M, Pietraszek-Gremplewicz K, Cetnarowska A, Głowniak-Kwitek U, Bukowska-Strakova K, Cieśla M, Kulecka M, Ostrowski J, Mikuła M, Potulska-Chromik A, Kostera-Pruszczyk A, Józkowicz A, Łoboda A, Dulak J. Lack of miR-378 attenuates muscular dystrophy in mdx mice. JCI Insight 2020; 5:135576. [PMID: 32493839 PMCID: PMC7308053 DOI: 10.1172/jci.insight.135576] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/29/2020] [Indexed: 01/09/2023] Open
Abstract
The severity of Duchenne muscular dystrophy (DMD), an incurable disease caused by the lack of dystrophin, might be modulated by different factors, including miRNAs. Among them, miR-378 is considered of high importance for muscle biology, but intriguingly, its role in DMD and its murine model (mdx mice) has not been thoroughly addressed so far. Here, we demonstrate that dystrophic mice additionally globally lacking miR-378 (double-KO [dKO] animals) exhibited better physical performance and improved absolute muscle force compared with mdx mice. Accordingly, markers of muscle damage in serum were significantly decreased in dKO mice, accompanied by diminished inflammation, fibrosis, and reduced abundance of regenerating fibers within muscles. The lack of miR-378 also normalized the aggravated fusion of dystrophin-deficient muscle satellite cells (mSCs). RNA sequencing of gastrocnemius muscle transcriptome revealed fibroblast growth factor 1 (Fgf1) as one of the most significantly downregulated genes in mice devoid of miR-378, indicating FGF1 as one of the mediators of changes driven by the lack of miR-378. In conclusion, we suggest that targeting miR-378 has the potential to ameliorate DMD pathology.
Collapse
Affiliation(s)
- Paulina Podkalicka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, and
| | - Olga Mucha
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, and
| | - Iwona Bronisz-Budzyńska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, and
| | - Magdalena Kozakowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, and
| | | | - Anna Cetnarowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, and
| | - Urszula Głowniak-Kwitek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, and
| | - Karolina Bukowska-Strakova
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, and.,Department of Clinical Immunology and Transplantology, Institute of Pediatrics, Medical College, Jagiellonian University, Krakow, Poland
| | - Maciej Cieśla
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, and
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland.,Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Michał Mikuła
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | | | | | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, and
| | - Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, and
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, and
| |
Collapse
|
3
|
Parker F, White K, Phillips S, Peckham M. Promoting differentiation of cultured myoblasts using biomimetic surfaces that present alpha-laminin-2 peptides. Cytotechnology 2016; 68:2159-69. [PMID: 27507643 PMCID: PMC5023573 DOI: 10.1007/s10616-016-0006-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/16/2016] [Indexed: 12/01/2022] Open
Abstract
Traditionally, muscle cell lines are cultured on glass coverslips and differentiated to investigate myoblast fusion and differentiation. Efficient differentiation of myoblasts produces a dense network of myotubes with the correct organisation for contraction. Here we have tested the ability of artificially generated, precisely controlled peptide surfaces to enhance the efficiency of myoblast differentiation. We focused on specific short peptides from α-laminin-2 (IKVSV, VQLRNGFPYFSY and GLLFYMARINHA) as well as residues 15–155 from FGF1. We tested if these peptides in isolation, and/or in combination promoted muscle differentiation in culture, by promoting fusion and/or by improving sarcomere organisation. The majority of these peptides promoted fusion and differentiation in two different mouse myogenic cell lines and in primary human myoblasts. The additive effects of all four peptides gave the best results for both mouse cell lines tested, while primary human cell cultures differentiated equally well on most peptide surfaces tested. These data show that a mixture of short biomimetic peptides can reliably promote differentiation in mouse and human myoblasts.
Collapse
Affiliation(s)
- Francine Parker
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, LS2 9JT, UK
| | - Kathryn White
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, LS2 9JT, UK
| | - Siȏn Phillips
- Bioscience Centre, International Centre for Life, Orla Protein Technologies Ltd, Newcastle upon Tyne, NE1 4EP, UK
| | - Michelle Peckham
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
4
|
Caldow MK, Digby MR, Cameron-Smith D. Short communication: Bovine-derived proteins activate STAT3 in human skeletal muscle in vitro. J Dairy Sci 2015; 98:3016-9. [PMID: 25726111 DOI: 10.3168/jds.2014-9035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/14/2015] [Indexed: 11/19/2022]
Abstract
Bovine milk contains biologically active peptides that may modulate growth and development within humans. In this study, targeted bovine-derived proteins were evaluated for their effects on signal transducer and activator of transcription-3 (STAT3) phosphorylation in human skeletal muscle cells. Following an acute exposure, bovine-derived acidic fibroblast growth factor-1 (FGF) and leukemia inhibitory factor (LIF) activated STAT3 in differentiating myotubes. Chronic exposure to FGF and LIF during the proliferative phase reduced myoblast proliferation and elevated MyoD and creatine kinase (CKM) mRNA expression without altering apoptotic genes. In mature myotubes, neither FGF nor LIF elicited any action. Together, these data indicate that a reduction in proliferation in the presence of bovine-derived FGF or LIF may stimulate early maturation of myoblasts.
Collapse
Affiliation(s)
- M K Caldow
- Molecular Nutrition Unit, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, 3125, Australia; Basic and Clinical Myology Laboratory, Department of Physiology, University of Melbourne, Melbourne, 3010, Australia.
| | - M R Digby
- Department of Zoology, University of Melbourne, Melbourne, 3010, Australia
| | - D Cameron-Smith
- Molecular Nutrition Unit, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, 3125, Australia; Liggins Institute, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
5
|
Sakai H, Furihata M, Matsuda C, Takahashi M, Miyazaki H, Konakahara T, Imamura T, Okada T. Augmented autocrine bone morphogenic protein (BMP) 7 signaling increases the metastatic potential of mouse breast cancer cells. Clin Exp Metastasis 2012; 29:327-38. [PMID: 22274590 DOI: 10.1007/s10585-012-9453-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 01/06/2012] [Indexed: 01/14/2023]
Abstract
As malignant breast cancers progress, they acquire the ability to spread to other regions of the body, including bone and lung, but the molecular mechanism underlying the increase in metastatic potential is not fully understood. Here we studied murine 4T1E/M3 highly bone marrow metastatic breast cancer cells, which we established previously. These cells show upregulated expression of bone morphogenetic protein (BMP) 7 and BMP receptors, as well as augmented phosphorylation of Smad1/5/8. Both anchorage-independent cell growth measured in colony forming assays and cell migration measured in wound healing assays were suppressed in 4T1E/M3 cells following treatment with a neutralizing anti-BMP7 antibody or knockdown of BMP7 gene expression. In addition, metastasis of 4T1E/M3 cells to the spine and lung and intracellular levels of phosphorylated Smad1/5/8 were suppressed by knocking down BMP7. Conversely, overexpression of BMP7 in the weakly metastatic parental 4T1E cells augmented their anchorage-independent growth, migration and metastasis to spine and lung. Taken together, our results strongly suggest that augmented autocrine BMP7 signaling leads to increases in the anchorage-independent cell growth, migration and metastatic potential in our bone marrow metastatic breast cancer model.
Collapse
Affiliation(s)
- Hirofumi Sakai
- Signaling Molecules Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Conte C, Ainaoui N, Delluc-Clavières A, Khoury MP, Azar R, Pujol F, Martineau Y, Pyronnet S, Prats AC. Fibroblast growth factor 1 induced during myogenesis by a transcription-translation coupling mechanism. Nucleic Acids Res 2009; 37:5267-78. [PMID: 19561198 PMCID: PMC2760804 DOI: 10.1093/nar/gkp550] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Fibroblast growth factor 1 (FGF1) is involved in muscle development and regeneration. The FGF1 gene contains four tissue-specific promoters allowing synthesis of four transcripts with distinct leader regions. Two of these transcripts contain internal ribosome entry sites (IRESs), which are RNA elements allowing mRNA translation to occur in conditions of blockade of the classical cap-dependent mechanism. Here, we investigated the function and the regulation of FGF1 during muscle differentiation and regeneration. Our data show that FGF1 protein expression is induced in differentiating myoblasts and regenerating mouse muscle, whereas siRNA knock-down demonstrated FGF1 requirement for myoblast differentiation. FGF1 induction occurred at both transcriptional and translational levels, involving specific activation of both promoter A and IRES A, whereas global cap-dependent translation was inhibited. Furthermore, we identified, in the FGF1 promoter A distal region, a cis-acting element able to activate the IRES A-driven translation. These data revealed a mechanism of molecular coupling of mRNA transcription and translation, involving a unique process of IRES activation by a promoter element. The crucial role of FGF1 in myoblast differentiation provides physiological relevance to this novel mechanism. This finding also provides a new insight into the molecular mechanisms linking different levels of gene expression regulation.
Collapse
Affiliation(s)
- Caroline Conte
- Inserm, U858 and Institut de Médecine Moléculaire de Rangueil, Université de Toulouse, UPS, IFR150, F-31432 Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Suzuki M, Uehara Y, Motomura-Matsuzaka K, Oki J, Koyama Y, Kimura M, Asada M, Komi-Kuramochi A, Oka S, Imamura T. betaKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c. Mol Endocrinol 2008; 22:1006-14. [PMID: 18187602 PMCID: PMC5419549 DOI: 10.1210/me.2007-0313] [Citation(s) in RCA: 267] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 01/03/2008] [Indexed: 01/27/2023] Open
Abstract
Fibroblast growth factor (FGF) 21, a structural relative of FGF23 that regulates phosphate homeostasis, is a regulator of insulin-independent glucose transport in adipocytes and plays a role in the regulation of body weight. It also regulates ketogenesis and adaptive responses to starvation. We report that in a reconstituted receptor activation assay system using BaF3 cells, which do not endogenously express any type of FGF receptor (FGFR) or heparan sulfate proteoglycan, FGF21 alone does not activate FGFRs and that betaKlotho is required for FGF21 to activate two specific FGFR subtypes: FGFR1c and FGFR3c. Coexpression of betaKlotho and FGFR1c on BaF3 cells enabled FGF21, but not FGF23, to activate receptor signaling. Conversely, coexpression of FGFR1c and Klotho, a protein related to betaKlotho, enabled FGF23 but not FGF21 to activate receptor signaling, indicating that expression of betaKlotho/Klotho confers target cell specificity on FGF21/FGF23. In all of these cases, heparin enhanced the activation but was not essential. In 3T3-L1 adipocytes, up-regulation of glucose transporter (GLUT) expression by FGF21 was associated with expression of betaKlotho, which was absent in undifferentiated 3T3-L1 fibroblasts. It is thus suggested that betaKlotho expression is a crucial determinant of the FGF21 specificity of the target cells upon which it acts in an endocrine fashion.
Collapse
MESH Headings
- 3T3-L1 Cells
- Animals
- Fibroblast Growth Factor-23
- Fibroblast Growth Factors/pharmacology
- Gene Expression/drug effects
- Glucose Transport Proteins, Facilitative/genetics
- Glucose Transport Proteins, Facilitative/metabolism
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Immunoblotting
- Klotho Proteins
- Mice
- Protein Binding
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
Collapse
Affiliation(s)
- Masashi Suzuki
- Signaling Molecules Research Laboratory, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Miyakawa K, Imamura T. Secretion of FGF-16 requires an uncleaved bipartite signal sequence. J Biol Chem 2003; 278:35718-24. [PMID: 12851399 DOI: 10.1074/jbc.m300690200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor (FGF)-16 is one of the rare secreted proteins that do not possess a cleavable signal sequence. Here we describe our examination of the mechanism and structural requirements for the secretion of FGF-16 from COS-1 transfectants. Inhibition of its secretion by brefeldin A and identification of an N-glycan on the secreted form confirmed that FGF-16 is secreted by means of the endoplasmic reticulum and Golgi apparatus, as are secreted proteins having a conventional cleavable signal sequence. Deletion of its N terminus abolished secretion of FGF-16. When chimerized with prolactin, however, the N-terminal sequence of FGF-16 was not able to mediate secretion of the chimera. Point mutations that made the N terminus less hydrophobic had little effect on secretion of FGF-16, whereas making the central hydrophobic region less hydrophobic abolished secretion. Within cells, an unsecretable FGF-16 N-terminal deletion mutant was distributed in the perinuclear region and overlapped the distribution of the Golgi apparatus. Mutants with less hydrophobic central regions were distributed evenly throughout the cytosol. Collectively, these results indicate that FGF-16 employs a unique bipartite signal sequence (i.e. both the N-terminal region and central hydrophobic region) that is not cleaved, although it shares the same secretory machinery used by secreted proteins with cleavable signal sequences.
Collapse
Affiliation(s)
- Kazuko Miyakawa
- Age Dimension Research Center, National Institute of Advanced Industrial Science and Technology and Institute for Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
9
|
Xia D, Li X, Lou Y, Han W, Ding P, Zhang Y, Di C, Song Q, Ma D. Overexpression of chemokine-like factor 2 promotes the proliferation and survival of C2C12 skeletal muscle cells. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1591:163-173. [PMID: 12183067 DOI: 10.1016/s0167-4889(02)00270-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chemokine-like factor 1 (CKLF1) is a novel cytokine first cloned from U937 cells. It contains different splicing forms and has chemotactic effects on a wide spectrum of cells both in vitro and in vivo; it can also stimulate the regeneration of skeletal muscle cells in vivo, but the mechanism remains unclear. To probe the myogenesis function of CKLF2, which is the largest isoform of CKLFs, C2C12 murine myoblasts were stably transfected with human CKLF2 eukaryotic expression vector. Compared with control vector transfected C2C12 cells, CKLF2 overexpression causes accelerated myoblast proliferation as determined by cell counting and [(3)H]TdR incorporation assays. In addition, CKLF2 overexpression also promotes cell differentiation, which was determined by higher expression levels of myogenin, creatine kinase, myosin and the accelerated myoblast fusion. Further analysis also indicates that CKLF2 could activate the transcription activity of the bHLH/MyoD and MEF2 families. Finally, DNA synthesis and myotube formation could also be promoted by growing C2C12 cells in conditioned media from CKLF2-transfected cells. These findings strongly suggest a role for human CKLF2 in regulation of skeletal muscle myogenesis.
Collapse
Affiliation(s)
- Donglan Xia
- Laboratory of Medical Immunology, School of Basic Medical Science, Peking University, Xueyuan Road 38, Beijing 100083, China
| | | | | | | | | | | | | | | | | |
Collapse
|