1
|
Rouquette M, Lepetre-Mouelhi S, Couvreur P. Adenosine and lipids: A forced marriage or a love match? Adv Drug Deliv Rev 2019; 151-152:233-244. [PMID: 30797954 DOI: 10.1016/j.addr.2019.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/21/2022]
Abstract
Adenosine is a fascinating compound, crucial in many biochemical processes: this ubiquitous nucleoside serves as an essential building block of RNA, is also a component of ATP and regulates numerous pathophysiological mechanisms via binding to four extracellular receptors. Due to its hydrophilic nature, it belongs to a different world than lipids, and has no affinity for them. Since the 1970's, however, new discoveries have emerged and prompted the scientific community to associate adenosine with the lipid family, especially via liposomal preparations and bioconjugation. This seems to be an arranged marriage, but could it turn into a true love match? This review considered all types of unions established between adenosine and lipids. Even though exciting supramolecular structures were observed with adenosine-lipid conjugates, as well as with liposomal preparations which resulted in promising pre-clinical results, the translation of these technologies to the clinic is still limited.
Collapse
|
2
|
Cheng N, Watkins-Schulz R, Junkins RD, David CN, Johnson BM, Montgomery SA, Peine KJ, Darr DB, Yuan H, McKinnon KP, Liu Q, Miao L, Huang L, Bachelder EM, Ainslie KM, Ting JPY. A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1-insensitive models of triple-negative breast cancer. JCI Insight 2018; 3:120638. [PMID: 30429378 DOI: 10.1172/jci.insight.120638] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 10/19/2018] [Indexed: 12/14/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has few therapeutic options, and alternative approaches are urgently needed. Stimulator of IFN genes (STING) is becoming an exciting target for therapeutic adjuvants. However, STING resides inside the cell, and the intracellular delivery of CDNs, such as cGAMP, is required for the optimal activation of STING. We show that liposomal nanoparticle-delivered cGAMP (cGAMP-NP) activates STING more effectively than soluble cGAMP. These particles induce innate and adaptive host immune responses to preexisting tumors in both orthotopic and genetically engineered models of basal-like TNBC. cGAMP-NPs also reduce melanoma tumor load, with limited responsivity to anti-PD-L1. Within the tumor microenvironment, cGAMP-NPs direct both mouse and human macrophages (M), reprograming from protumorigenic M2-like phenotype toward M1-like phenotype; enhance MHC and costimulatory molecule expression; reduce M2 biomarkers; increase IFN-γ-producing T cells; augment tumor apoptosis; and increase CD4+ and CD8+ T cell infiltration. Activated T cells are required for tumor suppression, as their depletion reduces antitumor activity. Importantly, cGAMP-NPs prevent the formation of secondary tumors, and a single dose is sufficient to inhibit TNBC. These data suggest that a minimal system comprised of cGAMP-NP alone is sufficient to modulate the tumor microenvironment to effectively control PD-L1-insensitive TNBC.
Collapse
Affiliation(s)
- Ning Cheng
- Oral and Craniofacial Biomedicine Program, School of Dentistry.,Lineberger Comprehensive Cancer Center
| | | | | | | | | | | | - Kevin J Peine
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics
| | | | - Hong Yuan
- Department of Radiology.,Biomedical Imaging Research Center
| | | | - Qi Liu
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics.,University of North Carolina/North Carolina State University Joint Department of Biomedical Engineering
| | - Lei Miao
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics
| | - Leaf Huang
- Lineberger Comprehensive Cancer Center.,Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics
| | - Eric M Bachelder
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics
| | - Kristy M Ainslie
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics
| | - Jenny P-Y Ting
- Oral and Craniofacial Biomedicine Program, School of Dentistry.,Lineberger Comprehensive Cancer Center.,Curriculum of Genetics and Molecular Biology.,Department of Microbiology and Immunology.,Department of Genetics.,Institute for Inflammatory Diseases, and.,Center for Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Choi YS, Cho DY, Lee HK, Cho JK, Lee DH, Bae YH, Lee JK, Kang HC. Enhanced cell survival of pH-sensitive bioenergetic nucleotide nanoparticles in energy/oxygen-depleted cells and their intranasal delivery for reduced brain infarction. Acta Biomater 2016; 41:147-60. [PMID: 27245429 DOI: 10.1016/j.actbio.2016.05.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 05/07/2016] [Accepted: 05/27/2016] [Indexed: 01/23/2023]
Abstract
UNLABELLED Nucleotides (NTs) (e.g., adenosine triphosphate) are very important molecules in the body. They generate bioenergy through phosphate group release, are involved in various biological processes, and are used to treat various diseases that involve energy depletion. However, their highly anionic characteristics might limit delivery of exogenous NTs into the cell, which is required to realize their functions as bioenergy sources. In this study, ionic complexation between Ca(2+) and NT phosphates was used to form Ca(2+)/NT nanocomplexes (NCs), and branched polyethyleneimine (bPEI1.8kDa) was coated on the surface of Ca(2+)/NT NCs via a simple electrostatic coating. The resultant Ca(2+)/NT/bPEI1.8kDa NCs were approximately 10-25nm in size and had positive zeta-potentials, and their NT loading efficiency and content were approximately 60-75% and 10-20 wt%, respectively. Faster NT release from Ca(2+)/NT/bPEI1.8kDa NCs was induced by lower pH and by NTs with fewer phosphates. Reductions in cell viability in response to low temperature, serum deprivation, or hypoxia were recovered by NT delivery in Ca(2+)/NT/bPEI1.8kDa NCs. In a middle cerebral artery occlusion (MCAO)-induced post-ischemic rat model, the BBB (blood brain barrier)-detoured intranasal administration of Ca(2+)/ATP/bPEI1.8kDa NCs induced a better reduction in infarct volume and neurological deficits than did free ATP. In conclusion, intracellular NT delivery using Ca(2+)/NT/bPEI1.8kDa NCs might potentially enhance cell survival and reduce infarction in energy-/oxygen-depleted environments. STATEMENT OF SIGNIFICANCE This study describes bioenergetic nucleotide delivery systems and their preparation, physicochemical characterization, and biological characterization both in vitro and in vivo. Nucleotides, such as adenosine triphosphate (ATP) and guanosine triphosphate (GTP), are very important signaling and energy molecules in the body. However, research on these nucleotides using nanosized carriers has been very limited. Liposomal ATP delivery has been reported in heart and renal ischemia studies. Notably, although this delivery system has potential in energy-depleted environments (e.g., low temperature, serum deprivation, and hypoxia) and in brain ischemia, studies are lacking regarding these systems. Thus, we designed polycation-shielded Ca(2+)/nucleotide nanocomplexes using simple mixing, which produced 10- to 25-nm-sized particles. The nanocomplexes released nucleotides in response to acidic pH, and they enhanced cell survival rates under conditions of low temperature, serum deprivation, or hypoxia. Importantly, the nanocomplexes reduced cerebral infarct volumes in a post-ischemic rat model. Thus, our study demonstrates that a novel nucleotide nanocomplex could have potential for preventing or treating diseases that involve energy depletion, such as cardiac, cerebral, and retinal ischemia, and liver failure.
Collapse
Affiliation(s)
- Yeon Su Choi
- Department of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Dong Youl Cho
- Department of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Hye-Kyung Lee
- Department of Anatomy and Inha Research Institute of Medical Sciences, Inha University School of Medicine, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Jung-Kyo Cho
- Department of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Don Haeng Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Inha University Hospital, 27 Inhang-ro, Jung-gu, Incheon 22332, Republic of Korea; Utah-Inha Drug Delivery Systems and Advanced Therapeutics Research Center, 9 Songdomirae-ro, Yeonsu-gu, Incheon 21988, Republic of Korea
| | - You Han Bae
- Utah-Inha Drug Delivery Systems and Advanced Therapeutics Research Center, 9 Songdomirae-ro, Yeonsu-gu, Incheon 21988, Republic of Korea; Department of Pharmaceutics and Pharmaceutical Chemistry, The University of Utah, 30 S 2000 E, Rm 2972, Salt Lake City, UT 84112, USA
| | - Ja-Kyeong Lee
- Department of Anatomy and Inha Research Institute of Medical Sciences, Inha University School of Medicine, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea.
| | - Han Chang Kang
- Department of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
4
|
Asialoglycoprotein receptor mediated hepatocyte targeting — Strategies and applications. J Control Release 2015; 203:126-39. [DOI: 10.1016/j.jconrel.2015.02.022] [Citation(s) in RCA: 286] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/14/2015] [Accepted: 02/16/2015] [Indexed: 02/07/2023]
|
5
|
Cho H, Cho YY, Bae YH, Kang HC. Nucleotides as nontoxic endogenous endosomolytic agents in drug delivery. Adv Healthc Mater 2014; 3:1007-14. [PMID: 24535942 DOI: 10.1002/adhm.201400008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 01/27/2014] [Indexed: 11/07/2022]
Abstract
Nontoxic endogenous nucleotides such as adenosine triphosphate and guanosine triphosphate have secondary phosphate groups, causing proton-buffering capacity and/or hemolytic activity in endolysosomal pH ranges. Nucleotides co-delivered in single polymeric pDNA nanocarrier induce highly enhanced transfection efficiency with negligible cytotoxicity due to their endosomolytic functions.
Collapse
Affiliation(s)
- Hana Cho
- Department of Pharmacy and Integrated Research; Institute of Pharmaceutical Sciences; College of Pharmacy; The Catholic University of Korea; 43 Jibong-ro Wonmi-gu, Bucheon-si Gyeonggi-do 420-743 Republic of Korea
| | - Yong-Yeon Cho
- Department of Pharmacy and Integrated Research; Institute of Pharmaceutical Sciences; College of Pharmacy; The Catholic University of Korea; 43 Jibong-ro Wonmi-gu, Bucheon-si Gyeonggi-do 420-743 Republic of Korea
| | - You Han Bae
- Department of Pharmaceutics and Pharmaceutical Chemistry; The University of Utah; 30 S 2000 E, Rm 2972 Salt Lake City UT 84112 USA
- Utah-Inha Drug Delivery Systems (DDS) and Advanced Therapeutics Research Center; 7-50 Songdo-dong Yeonsu-gu Incheon 406-840 Republic of Korea
| | - Han Chang Kang
- Department of Pharmacy and Integrated Research; Institute of Pharmaceutical Sciences; College of Pharmacy; The Catholic University of Korea; 43 Jibong-ro Wonmi-gu, Bucheon-si Gyeonggi-do 420-743 Republic of Korea
| |
Collapse
|
6
|
Atchison N, Swindlehurst G, Papas KK, Tsapatsis M, Kokkoli E. Maintenance of ischemic β cell viability through delivery of lipids and ATP by targeted liposomes. Biomater Sci 2014; 2:548-559. [PMID: 24653833 PMCID: PMC3955996 DOI: 10.1039/c3bm60094g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Islet transplantation is a promising treatment for type 1 diabetes, but despite the successes, existing challenges prevent widespread application. Ischemia, occurring during pancreas preservation and isolation, as well as after islet transplantation, decreases islet viability and function. We hypothesized that the liposomal delivery of adenosine triphosphate (ATP) could prevent the loss of cell viability during an ischemic insult. In this work we use a model β cell line, INS-1 to probe the liposome/cell interactions and examined the ability of liposomes functionalized with the fibronectin-mimetic peptide PR_b to facilitate the delivery of ATP to ischemic β cells. We demonstrate that PR_b increases the binding and internalization of liposomes to the β cells. Unexpectedly, when comparing the ability of PR_b liposomes with and without ATP to protect INS-1 cells from ischemia we found that both formulations increased cell survival. By probing the functional activity of ischemic cells treated with PR_b functionalized liposomes with and without ATP we find that both lipids and ATP play a role in maintaining cell metabolic activity after an ischemic insult and preventing cell necrosis. This approach may be beneficial for preventing ischemia related damage to islet cells, especially in the organ preservation stage.
Collapse
Affiliation(s)
- Nicole Atchison
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Garrett Swindlehurst
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA. Fax: 612- 626-7246; Tel: 612-626-1185
| | | | - Michael Tsapatsis
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA. Fax: 612- 626-7246; Tel: 612-626-1185
| | - Efrosini Kokkoli
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA. Fax: 612- 626-7246; Tel: 612-626-1185
| |
Collapse
|
7
|
Vincourt V, Escriou V, Largeau C, Bessodes M, Scherman D, Chaumeil JC, Dumortier G. Altered HepG2 cell models using etomoxir versus tert-butylhydroperoxide. Cell Biol Toxicol 2011; 27:363-70. [PMID: 21706388 DOI: 10.1007/s10565-011-9193-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/13/2011] [Indexed: 01/23/2023]
Abstract
Energetic failure which occurs in both ischemia/reperfusion and acute drug-induced hepatotoxicity is frequently associated with oxidative stress. This study displays the setting of a new cell culture model for hepatic energetic failure, i.e., HepG2 models modified by etomoxir [ETO] addition [0.1 mM to 1 mM] and compares the cell impact versus tert-butylhydroperoxide [TBOOH; 0.2 mM], an oxidative stress inducer. As it was observed with Minimum Essential Medium (MEM) without any interfering agent, decreasing temperature drastically lowered adenosine triphosphate (ATP) levels, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) viability test, and protein content, compared to 37 °C (p=0.02, p<0.001 and p<0.001, respectively), but to a larger extent in the presence of ETO or TBOOH. The alteration was generally highly dependent on the ETO concentration, time, and temperature. At 37 °C 24 h after (T24h), regarding ETO concentration, R² correlation ratio was 0.65 (p<0.001), 0.70 (p<0.001), and 0.89 (p<0.001) for ATP levels, protein content, and viability, respectively. The lowest ETO concentration producing a significant effect was 0.25 mM. Concerning time dependency (i.e., T24h versus after 5 h (T5h)), at 37 °C with ETO, ATP level continued to significantly decrease between T5h and T24h. In a similar way, at 37 °C, the MTT viability test decrease was accelerated only between T5h and T24h for ETO concentrations higher than 0.5 mM (p=0.016 and p=0.0001 for 0.75 and 1 mM, respectively). On the contrary, with TBOOH, comparing T24h versus T5h, cellular indicators were improved but generally remained lower than MEM without any interfering agent at T24h, suggesting that TBOOH action was time limited probably in relation with its oxidation in cell medium. This study confirms the interest of altered ETO cell model to screen agents (or formulation) prone to prevent or treat energetic depletion in relation with oxidative stress.
Collapse
Affiliation(s)
- Véronique Vincourt
- Laboratoire de Pharmacie Galénique, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, 4, Avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | | | | | | | | | | | | |
Collapse
|
8
|
Vincourt V, Nguyen L, Chaumeil JC, Dumortier G. Freeze-drying of ATP entrapped in cationic, low lipid liposomes. Cryobiology 2010; 60:262-70. [PMID: 20097191 DOI: 10.1016/j.cryobiol.2010.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 12/10/2009] [Accepted: 01/08/2010] [Indexed: 10/19/2022]
Abstract
Concerning the instability of ATP liposomes formulated to easily diffuse through the liver (size approximately 100 nm), this work targets the key parameters that influence the freeze-drying of a preparation that combines cholesterol, DOTAP and phosphatidylcholine (either natural soybean or egg (SPC or EPC) or hydrogenated (HSPC)). After freeze-drying blank liposomes, size increased significantly when initial lipid concentration was lowered from 20 to 5mM (p=0.0018). With low lipid concentration preparation (5mM), SPC limited size increase (SI) more efficiently compared to EPC or HSPC. With SPC and EPC, sucrose showed better size results compared to trehalose (Lyoprotectant/Lipid ratio (w/w) avoiding any SI: approximately 5 and approximately 10 (for SPC), approximately 10 and approximately 15 (for EPC), for sucrose and trehalose, respectively), but the opposite was evidenced with HSPC liposomes where a Trehalose/Lipid ratio of 25 barely prevented SI. In addition, slow versus quick cooling rate led to limiting SI for HSPC liposomes (p=0.0035). With sucrose or trehalose at both Lyoprotectant/Lipid ratios ensuring size stabilisation (10:1 and 15:1, respectively), ATP leakage ranged between 38.8+/-7.9% and 58.2+/-1.4%. In conclusion, this study emphasizes that using strict size maintenance as the primary objective does not result in drug complete retention inside the liposome core.
Collapse
Affiliation(s)
- Véronique Vincourt
- Laboratoire de Pharmacie Galénique, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, 4, Avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | | | | | | |
Collapse
|