1
|
Tan C, Karaca AC, Assadpour E, Jafari SM. Influence of different nano/micro-carriers on the bioavailability of iron: Focus on in vitro-in vivo studies. Adv Colloid Interface Sci 2023; 318:102949. [PMID: 37348384 DOI: 10.1016/j.cis.2023.102949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/24/2023]
Abstract
Anemia resulting from iron (Fe) deficiency is a global public health problem. The deficiency of Fe is usually due to insufficient dietary intake of iron, interaction of Fe with other food components, and thus low bioaccessibility/bioavailability. Fe encapsulation has the potential to tackle some major challenges in iron fortification of foods. Various nano/micro-carriers have been developed for encapsulation of Fe, including emulsions, liposomes, hydrogels, and spray-dried microcapsules. They could reduce the interactions of Fe with food components, increase iron tolerance and intestinal uptake, and decrease adverse effects. This article review covers the factors affecting the bioavailability of Fe along with emerging carriers that can be used as a solution of this issue. The application of Fe-loaded carriers in food supplements and products is also described. The advantages and limitations associated with the delivery efficiency of each carrier for Fe are highlighted.
Collapse
Affiliation(s)
- Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
2
|
|
3
|
Borràs J, Mesa V, Suades J, Barnadas-Rodríguez R. Direct Synthesis of Rhenium and Technetium-99m Metallosurfactants by a Transmetallation Reaction of Lipophilic Groups: Potential Applications in the Radiolabeling of Liposomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1993-2002. [PMID: 31995988 DOI: 10.1021/acs.langmuir.9b03231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A new zinc dithiocarbamate functionalized with palmitoyl groups is described as a useful tool for the preparation of metallosurfactants through a transmetallation reaction with the transition metals rhenium and technetium. An amphiphilic rhenium complex is synthesized by a transmetallation reaction with the zinc complex in presence of the polar phosphine sodium triphenylphosphine trisulfonate, which leads to a rhenium complex with a lipophilic dithiocarbamate and a polar phosphine ligand. The study of this rhenium complex has shown that it self-aggregates, leading to the formation of aggregates that have been analyzed by dynamic light scattering and cryotransmission electron microscopy (cryo-TEM). In addition, this amphiphilic rhenium complex is incorporated into soy phosphatidylcholine liposomes, whether liposomes are prepared by mixing phospholipid and the rhenium complex or by the incorporation of the rhenium complex into preformed liposomes. The one-pot reaction of the radiocompound [99mTc(H2O)3(CO)3]+ with the above-mentioned zinc dithiocarbamate, the phosphine sodium triphenylphosphine trisulfonate and the phospholipid soy phosphatidylcholine, leads to liposomes labeled with a Tc-99m homologous complex of the rhenium complex, in accordance with the high-performance liquid chromatography (HPLC) data.
Collapse
Affiliation(s)
- Jordi Borràs
- Departament de Quı́mica, Edifici C, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Verónica Mesa
- Departament de Quı́mica, Edifici C, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Joan Suades
- Departament de Quı́mica, Edifici C, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Ramon Barnadas-Rodríguez
- Unitat de Biofı́sica/Centre d'Estudis en Biofı́sica, Departament de Bioquı́mica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
4
|
Maciel VB, Yoshida CM, Boesch C, Goycoolea FM, Carvalho RA. Iron-rich chitosan-pectin colloidal microparticles laden with ora-pro-nobis (Pereskia aculeata Miller) extract. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Assadpour E, Mahdi Jafari S. A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Crit Rev Food Sci Nutr 2018; 59:3129-3151. [PMID: 29883187 DOI: 10.1080/10408398.2018.1484687] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Today, there is an ever-growing interest on natural food ingredients both by consumers and producers in the food industry. In fact, people are looking for those products in the market which are free from artificial and synthetic additives and can promote their health. These food bioactive ingredients should be formulated in such a way that protects them against harsh process and environmental conditions and safely could be delivered to the target organs and cells. Nanoencapsulation is a perfect strategy for this situation and there have been many studies in recent years for nanoencapsulation of food components and nutraceuticals by different technologies. In this review paper, our main goal is firstly to have an overview of nanoencapsulation techniques applicable to food ingredients in a systematic classification, i.e., lipid-based nanocarriers, nature-inspired nanocarriers, special-equipment-based nanocarriers, biopolymer nanocarriers, and other miscellaneous nanocarriers. Then, application of these cutting-edge nanocarriers for different nutraceuticals including phenolic compounds and antioxidants, natural food colorants, antimicrobial agents and essential oils, vitamins, minerals, flavors, fish oils and essential fatty acids will be discussed along with presenting some examples in each field.
Collapse
Affiliation(s)
- Elham Assadpour
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
6
|
Zariwala MG, Bendre H, Markiv A, Farnaud S, Renshaw D, Taylor KM, Somavarapu S. Hydrophobically modified chitosan nanoliposomes for intestinal drug delivery. Int J Nanomedicine 2018; 13:5837-5848. [PMID: 30310283 PMCID: PMC6166747 DOI: 10.2147/ijn.s166901] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Encapsulation of hydrophilic drugs within liposomes can be challenging. Methods A novel chitosan derivative, O-palmitoyl chitosan (OPC) was synthesized from chitosan and palmitoyl chloride using methane-sulfonic acid as a solvent. The success of synthesis was confirmed by Fourier transform infra-red (FT-IR) spectroscopy and proton NMR spectroscopy (H-NMR). Liposomes encapsulating ferrous sulphate as a model hydrophilic drug for intestinal delivery were prepared with or without OPC inclusion (Lipo-Fe and OPC-Lipo-Fe). Results Entrapment of iron was significantly higher in OPC containing liposomes compared to controls. Quantitative iron absorption from the OPC liposomes was significantly higher (1.5-fold P<0.05) than free ferrous sulphate controls. Qualitative uptake analysis by confocal imaging using coumarin-6 dye loaded liposomes also indicated higher cellular uptake and internalization of the OPC-containing liposomes. Conclusion These findings suggest that addition of OPC during liposome preparation creates robust vesicles that have improved mucoadhesive and absorption enhancing properties. The chitosan derivative OPC therefore provides a novel alternative for formulation of delivery vehicles targeting intestinal absorption.
Collapse
Affiliation(s)
- M Gulrez Zariwala
- Faculty of Science and Technology, University of Westminster, London, UK
| | - Harshada Bendre
- Department of Pharmaceutics, University College London School of Pharmacy, London, UK,
| | - Anatoliy Markiv
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Sebastien Farnaud
- Faculty of Health and Life Sciences, Coventry University, Coventry, UK
| | - Derek Renshaw
- Faculty of Health and Life Sciences, Coventry University, Coventry, UK
| | - Kevin Mg Taylor
- Department of Pharmaceutics, University College London School of Pharmacy, London, UK,
| | | |
Collapse
|
7
|
Lee SA, Joung HJ, Park HJ, Shin GH. Preparation of Chitosan-Coated Nanostructured Lipid Carriers (CH-NLCs) to Control Iron Delivery and Their Potential Application to Food Beverage System. J Food Sci 2017; 82:904-912. [DOI: 10.1111/1750-3841.13655] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Sun Ah Lee
- College of Life Sciences & Biotechnology; Korea Univ.; Anam-dong, Sungbuk-gu Seoul 02861 Korea
| | - Hee Joung Joung
- College of Life Sciences & Biotechnology; Korea Univ.; Anam-dong, Sungbuk-gu Seoul 02861 Korea
| | - Hyun Jin Park
- College of Life Sciences & Biotechnology; Korea Univ.; Anam-dong, Sungbuk-gu Seoul 02861 Korea
| | - Gye Hwa Shin
- Dept. of Food & Nutrition; Kunsan Natl. Univ.; Gunsan 54150 Korea
| |
Collapse
|
8
|
Alavi S, Haeri A, Dadashzadeh S. Utilization of chitosan-caged liposomes to push the boundaries of therapeutic delivery. Carbohydr Polym 2017; 157:991-1012. [DOI: 10.1016/j.carbpol.2016.10.063] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 11/25/2022]
|
9
|
Hermida LG, Sabés-Xamaní M, Barnadas-Rodríguez R. Characteristics and behaviour of liposomes when incubated with natural bile salt extract: implications for their use as oral drug delivery systems. SOFT MATTER 2014; 10:6677-6685. [PMID: 25060405 DOI: 10.1039/c4sm00981a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The use of liposomes for oral administration of drugs and for food applications is based on their ability to preserve entrapped substances and to increase their bioavailability. Bile salts are one of the agents that affect the liposome structure during intestinal digestion and the main reported studies on liposome/bile salt systems used only one bile salt. The aim of this work is to characterise the interaction of liposomes with a natural bile salt extract (BSE) at physiological pH and temperature. Three types of liposomes (fluid, gel-state and liquid-ordered bilayers) were studied. Phase diagrams were obtained and a very different behaviour was found. Fluid bilayers were completely permeable to an entrapped dye with partial or complete disruption of vesicles (final size 10 nm). Gel-state bilayers released their content but BSE led to the formation of large mixed structures (2000 nm). Liquid-ordered bilayers formed mixed vesicles (1000 nm) and, surprisingly, retained a high percentage of their aqueous content (about 50%). As a consequence, each type of liposome offers singular features to be used in oral applications due to their specific interaction with bile salts.
Collapse
Affiliation(s)
- Laura G Hermida
- Centre of Research and Development in Chemistry, National Institute of Industrial Technology (INTI), Av. Gral. Paz e/ Constituyentes y Albarellos San Martín, Buenos Aires, Argentina
| | | | | |
Collapse
|
10
|
Zariwala MG, Farnaud S, Merchant Z, Somavarapu S, Renshaw D. Ascorbyl palmitate/DSPE-PEG nanocarriers for oral iron delivery: preparation, characterisation and in vitro evaluation. Colloids Surf B Biointerfaces 2013; 115:86-92. [PMID: 24333557 DOI: 10.1016/j.colsurfb.2013.11.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 11/03/2013] [Accepted: 11/17/2013] [Indexed: 10/26/2022]
Abstract
The objective of this study was to encapsulate iron in nanocarriers formulated with ascorbyl palmitate and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine polyethylene glycol (DSPE-PEG) for oral delivery. Blank and iron (Fe) loaded nanocarriers were prepared by a modified thin film method using ascorbyl palmitate and DSPE-PEG. Surface charge of the nanocarriers was modified by the inclusion of chitosan (CHI) during the formulation process. Blank and iron loaded ascorbyl palmitate/DSPE nanocarriers were visualised by transmission electron microscopy (TEM) and physiochemical characterisations of the nanocarriers carried out to determine the mean particle size and zeta potential. Inclusion of chitosan imparted a net positive charge on the nanocarrier surface and also led to an increase in mean particle size. Iron entrapment in ascorbyl palmitate-Fe and ascorbyl palmitate-CHI-Fe nanocarriers was 67% and 76% respectively, suggesting a beneficial effect of chitosan on nanocarrier Fe entrapment. Iron absorption was estimated by measuring Caco-2 cell ferritin formation using ferrous sulphate as a reference standard. Iron absorption from ascorbyl palmitate-Fe (592.17±21.12 ng/mg cell protein) and ascorbyl palmitate-CHI-Fe (800.12±47.6 ng/mg, cell protein) nanocarriers was 1.35-fold and 1.5-fold higher than that from free ferrous sulphate, respectively (505.74±23.73 ng/mg cell protein) (n=6, p<0.05). This study demonstrates for the first time preparation and characterisation of iron loaded ascorbyl palmitate/DSPE PEG nanocarriers, and that engineering of the nanocarriers with chitosan leads to a significant augmentation of iron absorption.
Collapse
Affiliation(s)
- M Gulrez Zariwala
- Faculty of Science & Technology, University of Westminster, 115 New Cavendish Street, London W1W 6UW, United Kingdom.
| | - Sebastien Farnaud
- Department of Life Sciences, University of Bedfordshire, Luton, Bedfordshire LU1 3JU, United Kingdom
| | - Zahra Merchant
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Satyanarayana Somavarapu
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Derek Renshaw
- Faculty of Science & Technology, University of Westminster, 115 New Cavendish Street, London W1W 6UW, United Kingdom
| |
Collapse
|
11
|
Zariwala M, Elsaid N, Jackson TL, Corral López F, Farnaud S, Somavarapu S, Renshaw D. A novel approach to oral iron delivery using ferrous sulphate loaded solid lipid nanoparticles. Int J Pharm 2013; 456:400-7. [DOI: 10.1016/j.ijpharm.2013.08.070] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/25/2013] [Accepted: 08/28/2013] [Indexed: 01/24/2023]
|
12
|
Barnadas-Rodríguez R. Effect and Mechanism of Association of 8-Hydroxy-1,3,6-pyrenetrisulfonic Acid to Chitosan: Physicochemical Properties of the Complex. MACROMOL CHEM PHYS 2012. [DOI: 10.1002/macp.201200266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|