1
|
Duran T, P Costa A, Kneski J, Xu X, J Burgess D, Mohammadiarani H, Chaudhuri B. Manufacturing process of liposomal Formation: A coarse-grained molecular dynamics simulation. Int J Pharm 2024; 659:124288. [PMID: 38815641 DOI: 10.1016/j.ijpharm.2024.124288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
A method of producing liposomes has been previously developed using a continuous manufacturing technology that involves a co-axial turbulent jet in co-flow. In this study, coarse-grained molecular dynamics (CG-MD) simulations were used to gain a deeper understanding of how the self-assembly process of liposomes is affected by the material attributes (such as the concentration of ethanol) and the process parameters (such as temperature), while also providing detailed information on a nano-scale molecular level. Specifically, the CG-MD simulations yield a comprehensive internal view of the structure and formation mechanisms of liposomes containing DPPC, DPPG, and cholesterol molecules. The importance of this work is that structural details on the molecular level are proposed, and such detail is not possible to obtain through experimental studies alone. The assessment of structural properties, including the area per lipid, diffusion coefficient, and order parameters, indicated that a thicker bilayer was observed at higher ethanol concentrations, while a thinner bilayer was present at higher temperatures. These conditions led to more water penetrating the interior of the bilayer and an unstable structure, as indicated by a larger contact area between lipids and water, and a higher coefficient of lipid lateral diffusion. However, stable liposomes were found through these evaluations at lower ethanol concentrations and/or lower process temperatures. Furthermore, the CG-MD model was further compared and validated with experimental and computational data including liposomal bilayer thickness and area per lipid measurements.
Collapse
Affiliation(s)
- Tibo Duran
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs CT 06269, USA
| | - Antonio P Costa
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs CT 06269, USA
| | - Jake Kneski
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Xiaoming Xu
- Office of Testing and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Diane J Burgess
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs CT 06269, USA
| | | | - Bodhisattwa Chaudhuri
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs CT 06269, USA; Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA; Institute of Material Sciences (IMS), University of Connecticut, Storrs CT, 06269, USA.
| |
Collapse
|
2
|
Reidel IG, Curti CC, Dorémus L, Béré E, Delwail A, Russi RC, Lecron JC, Morel F, García MI, Müller DM, Jégou JF, Veaute CM. Liposomal co-encapsulation of a novel gemini lipopeptide and a CpG-ODN induces a strong Th1 response with the co-activation of a Th2/Th17 profile and high antibody levels. Vaccine 2024; 42:1953-1965. [PMID: 38378388 DOI: 10.1016/j.vaccine.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
A successful vaccine depends on its capacity to elicit a protective immune response against the target pathogen. The adjuvant used plays an important role in enhancing and directing the immune response. Liposomes are vaccine adjuvants that allow the co-encapsulation of antigens and immunostimulants. Our aim was to evaluate the adjuvanticity of a cationic liposome (Lip) formulated with a novel gemini lipopeptide (AG2-C16) alone or in combination with CpG-ODN as immunostimulants. To achieve this, we used the recombinant clumping factor of Staphylococcus aureus (rClfA) as a model antigen, in a murine model. We characterized the formulations by DLS, Cryo-SEM, and TEM, and analyzed the humoral and cellular immune responses induced in BALB/c and C57BL/6J mice injected with free rClfA and three formulations: Lip + CpG-ODN + rClfA, Lip + AG2-C16 + rClfA and Lip + AG2-C16 + CpG-ODN + rClfA. The addition of immunostimulants to the liposomes did not change the membrane diameter but affected their hydrodynamic diameter, z-potential, and homogeneity. All liposomal formulations were able to stimulate a specific humoral response, with high serum IgG, IgG1 and IgG2a or IgG2c titers in BALB/c or C57BL/6J mice, respectively. In addition, increased vaginal IgG levels were detected after injection, with no specific IgA. The cellular immunity induced by Lip + AG2-C16 + CpG-ODN + rClfA was characterized by a predominant Th1 profile, with the co-induction of Th2 and Th17 cells, and IFN-γ+ cytotoxic T cells. Furthermore, we studied the capacity of the different formulations to stimulate murine keratinocytes and fibroblasts in vitro. While no formulation activated keratinocytes, Lip + AG2-C16 + CpG-ODN increased the expression of CXCL9 in fibroblasts. These results suggest Lip + AG2-C16 + CpG-ODN as a promising adjuvant candidate to be used in vaccines against pathogens that require Th1/Th2/Th17 combined profiles, like S. aureus. Additionally, based on the IFN-γ+ cytotoxic T cells stimulation and the CXCL9 production by fibroblasts, we propose the use of this adjuvant formulation for the stimulation of a Th1 profile.
Collapse
Affiliation(s)
- Ivana Gabriela Reidel
- Laboratorio de Inmunología Experimental, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States; Université de Poitiers, LITEC, UR15560, Poitiers, France
| | - Cecilia Carol Curti
- Laboratorio de Inmunología Experimental, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Léa Dorémus
- Université de Poitiers, ImageUP platform, CNRS, UAR2038, BioS, Poitiers, France
| | - Emile Béré
- Université de Poitiers, ImageUP platform, CNRS, UAR2038, BioS, Poitiers, France
| | - Adriana Delwail
- Université de Poitiers, ImageUP platform, CNRS, UAR2038, BioS, Poitiers, France; Université de Poitiers, CNRS, UMR 6041, 4CS, Laboratory Channels & Connexins in Cancers and Cell Stemness, Poitiers, France
| | - Romina Cecilia Russi
- Laboratorio de Inmunología Experimental, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | | | - Franck Morel
- Université de Poitiers, LITEC, UR15560, Poitiers, France
| | - María Inés García
- Laboratorio de Inmunología Experimental, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Diana María Müller
- LAQUIMAP, Dto. Química Orgánica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jean-François Jégou
- Université de Poitiers, ImageUP platform, CNRS, UAR2038, BioS, Poitiers, France; Université de Poitiers, LITEC, UR15560, Poitiers, France
| | - Carolina Melania Veaute
- Laboratorio de Inmunología Experimental, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
3
|
Rasool M, Mazhar D, Afzal I, Zeb A, Khan S, Ali H. In vitro and in vivo characterization of Miconazole Nitrate loaded transethosomes for the treatment of Cutaneous Candidiasis. Int J Pharm 2023; 647:123563. [PMID: 37907141 DOI: 10.1016/j.ijpharm.2023.123563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/11/2023] [Accepted: 10/28/2023] [Indexed: 11/02/2023]
Abstract
This study aimed to fabricate Miconazole Nitrate transethosomes (MCZN TESs) embedded in chitosan-based gel for the topical treatment of Cutaneous Candidiasis. A thin film hydration method was employed to formulate MCZN TESs. The prepared MCZN TESs were optimized and analyzed for their physicochemical properties including particle size (PS), polydispersity index (PDI), zeta potential (ZP), entrapment efficiency (%EE), Fourier transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), deformability, and Transmission electron microscopy (TEM). In vitro release, skin permeation and deposition, skin irritation, antifungal assay, and in vivo efficacy against infected rats were evaluated. The optimized MCZN TESs showed PS of 224.8 ± 5.1 nm, ZP 21.1 ± 1.10 mV, PDI 0.207 ± 0.009, and % EE 94.12 ± 0.101 % with sustained drug release profile. Moreover, MCZN TESs Gel exhibited desirable pH, spreadability, and viscosity. Notably, the penetration and deposition capabilities of MCZN TESs Gel showed a 4-fold enhancement compared to MCZN TESs. Importantly, in vitro antifungal assay elaborated MCZN TESs Gel anti-fungal activity was 2.38-fold more compared to MCZN Gel. In vivo, studies showed a 1.5 times reduction in the duration of treatment MCZN TESs Gel treated animal group. Therefore, studies demonstrated that MCZN TESs could be a suitable drug delivery system with higher penetration and good antifungal potential.
Collapse
Affiliation(s)
- Maryam Rasool
- Department of Pharmacy, Quaid-i-Azam University Islamabad 45320, Pakistan
| | - Danish Mazhar
- Department of Pharmacy, Quaid-i-Azam University Islamabad 45320, Pakistan
| | - Iqra Afzal
- Department of Pharmacy, Quaid-i-Azam University Islamabad 45320, Pakistan
| | - Ahmad Zeb
- Department of Pharmacy, Quaid-i-Azam University Islamabad 45320, Pakistan
| | - Salman Khan
- Department of Pharmacy, Quaid-i-Azam University Islamabad 45320, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Quaid-i-Azam University Islamabad 45320, Pakistan.
| |
Collapse
|
4
|
Abstract
Ethanol injection method is one of the preferred methods for liposome preparation due to its advantages including rapidity, safety, and reproducibility. This method involves the injection of phospholipid solution of ethanol into a stirred aqueous solution. Due to the diffusion of ethanol in aqueous solution, the dissolved phospholipids precipitate to form bilayer phospholipid fragments, which further fuse to form closed liposomal structures. After evaporation of ethanol, the liposomes can be finally obtained. In this chapter, we will describe the details of ethanol injection method for preparing liposomes and discuss issues that need to be considered during the fabrication process.
Collapse
Affiliation(s)
- Guangsheng Du
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xun Sun
- West China School of Pharmacy, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Sheybanifard M, Guerzoni LPB, Omidinia-Anarkoli A, De Laporte L, Buyel J, Besseling R, Damen M, Gerich A, Lammers T, Metselaar JM. Liposome manufacturing under continuous flow conditions: towards a fully integrated set-up with in-line control of critical quality attributes. LAB ON A CHIP 2022; 23:182-194. [PMID: 36448477 DOI: 10.1039/d2lc00463a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Continuous flow manufacturing (CFM) has shown remarkable advantages in the industrial-scale production of drug-loaded nanomedicines, including mRNA-based COVID-19 vaccines. Thus far, CFM research in nanomedicine has mainly focused on the initial particle formation step, while post-formation production steps are hardly ever integrated. The opportunity to implement in-line quality control of critical quality attributes merits closer investigation. Here, we designed and tested a CFM setup for the manufacturing of liposomal nanomedicines that can potentially encompass all manufacturing steps in an end-to-end system. Our main aim was to elucidate the key composition and process parameters that affect the physicochemical characteristics of the liposomes. Total flow rate, lipid concentration and residence time of the liposomes in a high ethanol environment (i.e., above 20% v/v) emerged as critical parameters to tailor liposome size between 80 and 150 nm. After liposome formation, the pressure and the surface area of the filter in the ultrafiltration unit were critical parameters in the process of clearing the dispersion from residual ethanol. As a final step, we integrated in-line measurement of liposome size and residual ethanol content. Such in-line measurements allow for real-time monitoring and in-process adjustment of key composition and process parameters.
Collapse
Affiliation(s)
- Maryam Sheybanifard
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany.
| | - Luis P B Guerzoni
- DWI Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany
| | - Abdolrahman Omidinia-Anarkoli
- DWI Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany
- Institute of Applied Medical Engineering, RWTH University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Laura De Laporte
- DWI Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany
- Institute of Applied Medical Engineering, RWTH University, Pauwelsstraße 20, 52074 Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen, Worringerweg 1-2, 52074 Aachen, Germany
| | - Johannes Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, A-1190 Vienna, Austria
| | - Rut Besseling
- InProcess-LSP, Kloosterstraat 9, 5349 AB Oss, The Netherlands
| | - Michiel Damen
- InProcess-LSP, Kloosterstraat 9, 5349 AB Oss, The Netherlands
| | - Ad Gerich
- InProcess-LSP, Kloosterstraat 9, 5349 AB Oss, The Netherlands
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany.
| | - Josbert M Metselaar
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
6
|
Kang BR, Park JS, Ryu GR, Jung WJ, Choi JS, Shin HM. Effect of Chitosan Coating for Efficient Encapsulation and Improved Stability under Loading Preparation and Storage Conditions of Bacillus Lipopeptides. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4189. [PMID: 36500812 PMCID: PMC9737214 DOI: 10.3390/nano12234189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
This study aims to evaluate the effect of chitosan coating on the formation and properties of Bacillus cyclic lipopeptide (CLP)-loaded liposomes. A nanoencapsulation strategy for a chitosan-coated liposomal system using lecithin phospholipids for the entrapment of antibiotic CLP prepared from Bacillus subtilis KB21 was developed. The produced chitosan-coated CLP liposome had mean size in the range of 118.47-121.67 nm. Transmission electron microscopy showed the spherical-shaped vesicles. Fourier transform infrared spectroscopy findings indicated the successful coating of the produced CLP-loaded liposomes by the used chitosan. Liposomes coated with 0.2% and 0.5% chitosan concentration decreased the surface tension by 7.3-12.1%, respectively, and increased the CLP content by 15.1-27.0%, respectively, compared to the uncoating liposomes. The coated concentration of chitosan influenced their CLP loading encapsulation efficiency and release kinetics. The physicochemical results of the dynamic light scattering, CLP capture efficiency and long-term storage capacity of nanocapsules increased with chitosan coating concentration. Furthermore, the chitosan-coated liposomes exhibited a significant enhancement in the stability of CLP loading liposomes. These results may suggest the potential application of chitosan-coated liposomes as a carrier of antibiotics in the development of the functional platform.
Collapse
Affiliation(s)
- Beom Ryong Kang
- Institute of Environmentally-Friendly Agriculture, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Joon Seong Park
- Gwangju Metropolitan City Agricultural Extension Center, Gwangju Metropolitan City 61945, Republic of Korea
| | - Gwang Rok Ryu
- Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Woo-Jin Jung
- Institute of Environmentally-Friendly Agriculture, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jun-Seok Choi
- Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hye-Min Shin
- Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
7
|
Lipid Nanoparticles for mRNA Delivery to Enhance Cancer Immunotherapy. Molecules 2022; 27:molecules27175607. [PMID: 36080373 PMCID: PMC9458026 DOI: 10.3390/molecules27175607] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 12/24/2022] Open
Abstract
Messenger RNA (mRNA) is being developed by researchers as a novel drug for the treatment or prevention of many diseases. However, to enable mRNA to fully exploit its effects in vivo, researchers need to develop safer and more effective mRNA delivery systems that improve mRNA stability and enhance the ability of cells to take up and release mRNA. To date, lipid nanoparticles are promising nanodrug carriers for tumor therapy, which can significantly improve the immunotherapeutic effects of conventional drugs by modulating mRNA delivery, and have attracted widespread interest in the biomedical field. This review focuses on the delivery of mRNA by lipid nanoparticles for cancer treatment. We summarize some common tumor immunotherapy and mRNA delivery strategies, describe the clinical advantages of lipid nanoparticles for mRNA delivery, and provide an outlook on the current challenges and future developments of this technology.
Collapse
|
8
|
Abdallah HM, El-Megrab NA, Balata GF, Eissa NG. Niosomal and ethosomal gels: A comparative in vitro and ex vivo evaluation for repurposing of spironolactone. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Barbălată CI, Tomuță I, Achim M, Boșca AB, Cherecheș G, Sorițău O, Porfire AS. Application of the QbD Approach in the Development of a Liposomal Formulation with EGCG. J Pharm Innov 2021. [DOI: 10.1007/s12247-021-09541-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Aghaei H, Solaimany Nazar AR, Varshosaz J. Double flow focusing microfluidic-assisted based preparation of methotrexate–loaded liposomal nanoparticles: Encapsulation efficacy, drug release and stability. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126166] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Fan Y, Yen CW, Lin HC, Hou W, Estevez A, Sarode A, Goyon A, Bian J, Lin J, Koenig SG, Leung D, Nagapudi K, Zhang K. Automated high-throughput preparation and characterization of oligonucleotide-loaded lipid nanoparticles. Int J Pharm 2021; 599:120392. [PMID: 33639228 DOI: 10.1016/j.ijpharm.2021.120392] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/25/2021] [Accepted: 02/11/2021] [Indexed: 01/18/2023]
Abstract
Lipid nanoparticles (LNPs) are increasingly employed to improve delivery efficiency and therapeutic efficacy of nucleic acids. Various formulation parameters can affect the quality attributes of these nanoparticle formulations, but currently there is a lack of systemic screening approaches to address this challenge. Here, we developed an automated high-throughput screening (HTS) workflow for streamline preparation and analytical characterization of LNPs loaded with antisense oligonucleotides (ASOs) in a full 96-well plate within 3 hrs. ASO-loaded LNPs were formulated by an automated solvent-injection method using a robotic liquid handler, and assessed for particle size distribution, encapsulation efficiency, and stability with different formulation compositions and ASO loadings. Results indicated that the PEGylated lipid content significantly affected the particle size distribution, while the ionizable lipid / ASO charge ratio impacted the encapsulation efficiency of ASOs. Furthermore, results from our HTS approach correlated with those from the state-of-the-art scale-up method using a microfluidic formulator, therefore opening up a new avenue for robust formulation development and design of experiment methods, while reducing material usage by 10 folds, improving analytical outputs and accumulation of information by 100 folds.
Collapse
Affiliation(s)
- Yuchen Fan
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Chun-Wan Yen
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hsiu-Chao Lin
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Weijia Hou
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Alberto Estevez
- Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Apoorva Sarode
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Alexandre Goyon
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Juan Bian
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jessica Lin
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Stefan G Koenig
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Dennis Leung
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Karthik Nagapudi
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kelly Zhang
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
12
|
Ethanol injection technique for liposomes formulation: An insight into development, influencing factors, challenges and applications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102174] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Liposomes: Advancements and innovation in the manufacturing process. Adv Drug Deliv Rev 2020; 154-155:102-122. [PMID: 32650041 DOI: 10.1016/j.addr.2020.07.002] [Citation(s) in RCA: 279] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/13/2020] [Accepted: 07/02/2020] [Indexed: 12/18/2022]
Abstract
Liposomes are well recognised as effective drug delivery systems, with a range of products approved, including follow on generic products. Current manufacturing processes used to produce liposomes are generally complex multi-batch processes. Furthermore, liposome preparation processes adopted in the laboratory setting do not offer easy translation to large scale production, which may delay the development and adoption of new liposomal systems. To promote advancement and innovation in liposome manufacturing processes, this review considers the range of manufacturing processes available for liposomes, from laboratory scale and scale up, through to large-scale manufacture and evaluates their advantages and limitations. The regulatory considerations associated with the manufacture of liposomes is also discussed. New innovations that support leaner scalable technologies for liposome fabrication are outlined including self-assembling liposome systems and microfluidic production. The critical process attributes that impact on the liposome product attributes are outlined to support potential wider adoption of these innovations.
Collapse
|
14
|
Phospholipid Vesicles for Dermal/Transdermal and Nasal Administration of Active Molecules: The Effect of Surfactants and Alcohols on the Fluidity of Their Lipid Bilayers and Penetration Enhancement Properties. Molecules 2020; 25:molecules25132959. [PMID: 32605117 PMCID: PMC7412180 DOI: 10.3390/molecules25132959] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/18/2020] [Accepted: 06/26/2020] [Indexed: 12/29/2022] Open
Abstract
This is a comprehensive review on the use of phospholipid nanovesicles for dermal/transdermal and nasal drug administration. Phospholipid-based vesicular carriers have been widely investigated for enhanced drug delivery via dermal/transdermal routes. Classic phospholipid vesicles, liposomes, do not penetrate the deep layers of the skin, but remain confined to the upper stratum corneum. The literature describes several approaches with the aim of altering the properties of these vesicles to improve their penetration properties. Transfersomes and ethosomes are the most investigated penetration-enhancing phospholipid nanovesicles, obtained by the incorporation of surfactant edge activators and high concentrations of ethanol, respectively. These two types of vesicles differ in terms of their structure, characteristics, mechanism of action and mode of application on the skin. Edge activators contribute to the deformability and elasticity of transfersomes, enabling them to penetrate through pores much smaller than their own size. The ethanol high concentration in ethosomes generates a soft vesicle by fluidizing the phospholipid bilayers, allowing the vesicle to penetrate deeper into the skin. Glycerosomes and transethosomes, phospholipid vesicles containing glycerol or a mixture of ethanol and edge activators, respectively, are also covered. This review discusses the effects of edge activators, ethanol and glycerol on the phospholipid vesicle, emphasizing the differences between a soft and an elastic nanovesicle, and presents their different preparation methods. To date, these differences have not been comparatively discussed. The review presents a large number of active molecules incorporated in these carriers and investigated in vitro, in vivo or in clinical human tests.
Collapse
|
15
|
Modified Spraying Technique and Response Surface Methodology for the Preparation and Optimization of Propolis Liposomes of Enhanced Anti-Proliferative Activity against Human Melanoma Cell Line A375. Pharmaceutics 2019; 11:pharmaceutics11110558. [PMID: 31661945 PMCID: PMC6921042 DOI: 10.3390/pharmaceutics11110558] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/17/2019] [Accepted: 10/20/2019] [Indexed: 11/30/2022] Open
Abstract
Propolis is a honeybee product that contains a mixture of natural substances with a broad spectrum of biological activities. However, the clinical application of propolis is limited due to the presence of a myriad of constituents with different physicochemical properties, low bioavailability and lack of appropriate formulations. In this study, a modified injection technique (spraying technique) has been developed for the encapsulation of the Egyptian propolis within liposomal formulation. The effects of three variables (lipid molar concentration, drug loading and cholesterol percentage) on the particle size and poly dispersity index (PDI) were studied using response surface methodology and the Box–Behnken design. Response surface diagrams were used to develop an optimized liposomal formulation of the Egyptian propolis. A comparative study between the optimized liposomal formulation prepared either by the typical ethanol injection method (TEIM) or the spraying method in terms of particle size, PDI and the in-vitro anti-proliferative effect against human melanoma cell line A375 was carried out. The spraying method resulted in the formation of smaller propolis-loaded liposomes compared to TEIM (particle sizes of 90 ± 6.2 nm, and 170 ± 14.7 nm, respectively). Furthermore, the IC50 values against A375 cells were found to be 3.04 ± 0.14, 4.5 ± 0.09, and 18.06 ± 0.75 for spray-prepared propolis liposomes (PP-Lip), TEIM PP-Lip, and propolis extract (PE), respectively. The encapsulation of PE into liposomes is expected to improve its cellular uptake by endocytosis. Moreover, smaller and more uniform liposomes obtained by spraying can be expected to achieve higher cellular uptake, as the ratio of liposomes or liposomal aggregates that fall above the capacity of cell membrane to “wrap” them will be minimized.
Collapse
|
16
|
Has C, Sunthar P. A comprehensive review on recent preparation techniques of liposomes. J Liposome Res 2019; 30:336-365. [DOI: 10.1080/08982104.2019.1668010] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- C. Has
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - P. Sunthar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
17
|
Ahmed KS, Changling S, Shan X, Mao J, Qiu L, Chen J. Liposome-based codelivery of celecoxib and doxorubicin hydrochloride as a synergistic dual-drug delivery system for enhancing the anticancer effect. J Liposome Res 2019; 30:285-296. [DOI: 10.1080/08982104.2019.1634724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Kamel S. Ahmed
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Sun Changling
- Department of Otolaryngology–Head and Neck Surgery, Hospital of Jiangnan University, Wuxi, China
| | - Xiaotian Shan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Jing Mao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Lipeng Qiu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Jinghua Chen
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| |
Collapse
|
18
|
Hammoud Z, Gharib R, Fourmentin S, Elaissari A, Greige-Gerges H. New findings on the incorporation of essential oil components into liposomes composed of lipoid S100 and cholesterol. Int J Pharm 2019; 561:161-170. [PMID: 30836153 DOI: 10.1016/j.ijpharm.2019.02.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 12/29/2022]
Abstract
The encapsulation of essential oil components into liposomes was demonstrated to improve their solubility and chemical stability. In this study, we investigated the effect of chemical structure, Henry's law constant (Hc), and aqueous solubility of essential oil components on their liposomal encapsulation. Estragole, eucalyptol, isoeugenol, pulegone, terpineol, and thymol were encapsulated in lipoid S100-liposomes using the ethanol injection method. The Hc values were determined. The incorporation in liposomes was more efficient (encapsulation efficiency > 90%) for the essential oil components exhibiting low aqueous solubility (estragole, isoeugenol, and pulegone). Moreover, efficient entrapment into vesicles (loading rate > 18%) was obtained for isoeugenol, terpineol, and thymol. This result suggests that the presence of a hydroxyl group in the structure and a low Hc value enhance the entrapment of essential oil components into liposomes. Furthermore, drug release rate from liposomes was controlled by the loading rate of essential oil components into liposomes, the size of particles, the location of essential oil components within the lipid bilayer, and the cholesterol incorporation rate of liposomes. Finally, considerable concentrations of isoeugenol, pulegone, terpineol, and thymol were retained in liposomes after 10 months with respect to the initial concentration.
Collapse
Affiliation(s)
- Zahraa Hammoud
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Section II, Lebanese University, Lebanon; University Claude Bernard Lyon-1, CNRS, LAGEP-UMR 5007, F-69622 Lyon, France
| | - Riham Gharib
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Section II, Lebanese University, Lebanon
| | - Sophie Fourmentin
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, EA 4492), SFR Condorcet FR CNRS 3417, ULCO, F-59140 Dunkerque, France
| | | | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Section II, Lebanese University, Lebanon.
| |
Collapse
|
19
|
Vélez MA, Perotti MC, Hynes ER, Gennaro AM. Effect of lyophilization on food grade liposomes loaded with conjugated linoleic acid. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.07.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Wang A, Ahmad A, Ullah S, Cheng L, Ke L, Yuan Q. A Cheap and Convenient Method of Liposome Preparation Using Glass Beads as a Source of Shear Force. AAPS PharmSciTech 2017; 18:3227-3235. [PMID: 28560505 DOI: 10.1208/s12249-017-0812-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/17/2017] [Indexed: 11/30/2022] Open
Abstract
Liposomes, the biocompatible lipid bilayer vesicles, have attracted immense attention due to their distinctive features such as efficient vehicle for the delivery of a wide range of therapeutic agents, adjustable formulation properties, and high drug entrapment efficiency. In this contribution, we present a simple method for the preparation of liposomes using glass beads and compared the potential of this method with conventional methods of liposome preparation. The prepared liposomes were characterized by different analytical techniques (HPLC, DLS, TEM, differential scanning calorimetry, and in vitro drug release). Our findings revealed that the particle size of liposomes is mainly dependent on the size of the glass beads and the glass bead shearing time. An average liposome size of 67.7 ± 25.5 nm was obtained using 2-mm glass beads after 24-h incubation at 200 rpm. The liposomes prepared under the optimized conditions exhibited a high encapsulation efficiency of 92.1 ± 1.7% with 31.08% drug release after 360 min at 37°C. In conclusion, the developed method is a simple and convenient process of liposome preparation of different sizes with desirable entrapment efficiency capacity.
Collapse
|
21
|
Sebaaly C, Greige-Gerges H, Stainmesse S, Fessi H, Charcosset C. Effect of composition, hydrogenation of phospholipids and lyophilization on the characteristics of eugenol-loaded liposomes prepared by ethanol injection method. FOOD BIOSCI 2016. [DOI: 10.1016/j.fbio.2016.04.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Shelke S, Shahi S, Jadhav K, Dhamecha D, Tiwari R, Patil H. Thermoreversible nanoethosomal gel for the intranasal delivery of Eletriptan hydrobromide. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:103. [PMID: 27091045 DOI: 10.1007/s10856-016-5713-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 04/01/2016] [Indexed: 06/05/2023]
Abstract
The objective of the current study was to formulate and characterize thermoreversible gel of Eletriptan Hydrobromide for brain targeting via the intranasal route. Ethosomes were prepared by 3(2) factorial design with two independent variables (concentration of soya lecithin and ethanol) and two response variables [percent entrapment efficiency and vesicle size (nm)] using ethanol injection method. Formulated ethosomes were evaluated for preliminary microscopic examination followed by percent drug entrapment efficiency, vesicle size analysis, zeta potential, polydispersibility index and Transmission electron microscopy (TEM). TEM confirms spherical morphology of ethosomes, whereas Malvern zeta sizer confirms that the vesicle size was in the range of 191 ± 6.55-381.3 ± 61.0 nm. Ethosomes were incorporated in gel using poloxamer 407 and carbopol 934 as thermoreversible and mucoadhesive polymers, respectively. Ethosomal gels were evaluated for their pH, viscosity, mucoadhesive strength, in vitro drug release and ex vivo drug permeation through the sheep nasal mucosa. Mucoadhesive strength and pH was found to be 4400 ± 45 to 5500 ± 78.10 dynes/cm(2) and 6.0 ± 0.3 to 6.2 ± 0.1, respectively. In-vitro drug release from the optimized ethosomal gel formulation (G4) was found to be almost 100 % and ex vivo permeation of 4980 µg/ml with a permeability coefficient of 11.94 ± 0.04 × 10(-5) cm/s after 24 h. Histopathological study of the nasal mucosa confirmed non-toxic nature of ethosomal gels. Formulated EH loaded ethosomal thermoreversible gel could serve as the better alternative for the brain targeting via the intranasal route which in turn could subsequently improve its bioavailability.
Collapse
Affiliation(s)
- Santosh Shelke
- Department of Pharmaceutics, Yash Institute of Pharmacy, Bajaj Nagar, Aurangabad, Maharashtra, 431134, India.
| | - Sadhana Shahi
- Department of Pharmaceutics, Government College of Pharmacy, Osmanpura, Aurangabad, Maharashtra, 431005, India
| | - Kiran Jadhav
- KLE University's College of Pharmacy, Nehru Nagar, Belgaum, Karnataka, 590010, India
| | - Dinesh Dhamecha
- KLE University's College of Pharmacy, Nehru Nagar, Belgaum, Karnataka, 590010, India
| | - Roshan Tiwari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Hemlata Patil
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
23
|
Shelke S, Shahi S, Jalalpure S, Dhamecha D. Poloxamer 407-based intranasal thermoreversible gel of zolmitriptan-loaded nanoethosomes: formulation, optimization, evaluation and permeation studies. J Liposome Res 2016; 26:313-23. [PMID: 26758957 DOI: 10.3109/08982104.2015.1132232] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Zolmitriptan is the drug of choice for migraine, but low oral bioavailability (<50%) and recurrence of migraine lead to frequent dosing and increase in associated side effects. Increase in the residence time of drug at the site of drug absorption along with direct nose to brain targeting of zolmitriptan can be a solution to the existing problems. Hence, in the present investigation, thermoreversible intranasal gel of zolmitriptan-loaded nanoethosomes was formulated by using mucoadhesive polymers to increase the residence of the drug into the nasal cavity. The preparation of ethosomes was optimized by using 3(2) factorial design for percent drug entrapment efficiency, vesicle size, zeta potential, and polydispersity index. Optimized formulation E6 showed the vesicle size (171.67 nm) and entrapment efficiency (66%) when compared with the other formulations. Thermoreversible gels prepared by using poloxamer 407 showed the phase transition temperature at 32-33 °C which was in line with the nasal physiological temperature. The optimized ethosomes were loaded into the thermoreversible mucoadhesive gel optimized by varying concentrations of poloxamer 407, carbopol 934, HPMC K100, and evaluated for gel strength, gelation temperature, mucoadhesive strength, in vitro drug release, and ex vivo drug permeation, where G3 and G6 were found to be optimized formulations. In vitro drug release was studied by different kinetic models suggested that G3 (n = 0.582) and G6 (n = 0.648) showed Korsemeyer-Peppas (KKP) model indicating non-Fickian release profiles. A permeation coefficient of 5.92 and 5.9 µg/cm(2) for G3 and G6, respectively, revealed very little difference in release rate after 24 h between both the formulations. Non-toxic nature of the gels on columnar epithelial cells was confirmed by histopathological evaluation.
Collapse
Affiliation(s)
- Santosh Shelke
- a Department of Pharmaceutics , Yash Institute of Pharmacy , Aurangabad , Maharashtra , India
| | - Sadhana Shahi
- b Department of Pharmaceutics , Government College of Pharmacy , Osmanpura , Aurangabad , Maharashtra , India , and
| | - Sunil Jalalpure
- c KLE University's College of Pharmacy and Dr. Prabhakar Kore Basic Science Research Center, KLE University, Nehru Nagar , Belagavi , Karnataka , India
| | - Dinesh Dhamecha
- c KLE University's College of Pharmacy and Dr. Prabhakar Kore Basic Science Research Center, KLE University, Nehru Nagar , Belagavi , Karnataka , India
| |
Collapse
|
24
|
Yang G, Zhao Y, Zhang Y, Dang B, Liu Y, Feng N. Enhanced oral bioavailability of silymarin using liposomes containing a bile salt: preparation by supercritical fluid technology and evaluation in vitro and in vivo. Int J Nanomedicine 2015; 10:6633-44. [PMID: 26543366 PMCID: PMC4622520 DOI: 10.2147/ijn.s92665] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The aim of this investigation was to develop a procedure to improve the dissolution and bioavailability of silymarin (SM) by using bile salt-containing liposomes that were prepared by supercritical fluid technology (ie, solution-enhanced dispersion by supercritical fluids [SEDS]). The process for the preparation of SM-loaded liposomes containing a bile salt (SM-Lip-SEDS) was optimized using a central composite design of response surface methodology with the ratio of SM to phospholipids (w/w), flow rate of solution (mL/min), and pressure (MPa) as independent variables. Particle size, entrapment efficiency (EE), and drug loading (DL) were dependent variables for optimization of the process and formulation variables. The particle size, zeta potential, EE, and DL of the optimized SM-Lip-SEDS were 160.5 nm, −62.3 mV, 91.4%, and 4.73%, respectively. Two other methods to produce SM liposomes were compared to the SEDS method. The liposomes obtained by the SEDS method exhibited the highest EE and DL, smallest particle size, and best stability compared to liposomes produced by the thin-film dispersion and reversed-phase evaporation methods. Compared to the SM powder, SM-Lip-SEDS showed increased in vitro drug release. The in vivo AUC0−t of SM-Lip-SEDS was 4.8-fold higher than that of the SM powder. These results illustrate that liposomes containing a bile salt can be used to enhance the oral bioavailability of SM and that supercritical fluid technology is suitable for the preparation of liposomes.
Collapse
Affiliation(s)
- Gang Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yaping Zhao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yongtai Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Beilei Dang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
25
|
Bouaoud C, Lebouille JGJL, Mendes E, De Braal HEA, Meesters GMH. Formulation and antifungal performance of natamycin-loaded liposomal suspensions: the benefits of sterol-enrichment. J Liposome Res 2015; 26:103-12. [PMID: 26009272 DOI: 10.3109/08982104.2015.1046079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of this study is to develop and evaluate food-grade liposomal delivery systems for the antifungal compound natamycin. Liposomes made of various soybean lecithins are prepared by solvent injection, leading to small unilamellar vesicles (<130 nm) with controlled polydispersity, able to encapsulate natamycin without significant modification of their size characteristics. Presence of charged phospholipids and reduced content of phosphatidylcholine in the lecithin mixture are found to be beneficial for natamycin encapsulation, indicating electrostatic interactions of the preservative with the polar head of the phospholipids. The chemical instability of natamycin upon storage in these formulations is however significant and proves that uncontrolled leakage out of the liposomes occurs. Efficient prevention of natamycin degradation is obtained by incorporation of sterols (cholesterol, ergosterol) in the lipid mixture and is linked to higher entrapment levels and reduced permeability of the phospholipid membrane provided by the ordering effect of sterols. Comparable action of ergosterol is observed at concentrations 2.5-fold lower than cholesterol and attributed to a preferential interaction of natamycin-ergosterol as well as a higher control of membrane permeability. Fine-tuning of sterol concentration allows preparation of liposomal suspensions presenting modulated in vitro release kinetics rates and enhanced antifungal activity against the model yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Clotilde Bouaoud
- a DSM Food Specialties, DSM Biotechnology Center , Delft , The Netherlands
- b Faculty of Chemical Engineering , Delft University of Technology , Delft , The Netherlands , and
| | | | - Eduardo Mendes
- b Faculty of Chemical Engineering , Delft University of Technology , Delft , The Netherlands , and
| | | | - Gabriel M H Meesters
- a DSM Food Specialties, DSM Biotechnology Center , Delft , The Netherlands
- b Faculty of Chemical Engineering , Delft University of Technology , Delft , The Netherlands , and
| |
Collapse
|