1
|
Mehrabian A, Dadpour S, Mashreghi M, Zarqi J, Askarizadeh A, Badiee A, Arabi L, Moosavian SA, Jaafari MR. The comparison of biodistribution of glutathione PEGylated nanoliposomal doxorubicin formulations prepared by pre-insertion and post-insertion methods for brain delivery in normal mice. IET Nanobiotechnol 2023; 17:112-124. [PMID: 36594666 PMCID: PMC10116028 DOI: 10.1049/nbt2.12111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023] Open
Abstract
Several obstacles limit the efficacy of brain tumour treatment, most notably the blood-brain barrier (BBB), which prevents the brain uptake of the majority of accessible medicines due to tight junctions. The presence of glutathione (GSH) receptors on the BBB surface has been demonstrated in numerous papers; consequently, products containing glutathione as a targeting ligand coupled with nanoliposomes are used to enhance drug delivery across the BBB. Here, the 5% pre-inserted PEG2000-GSH PEGylated liposomal doxorubicin was conducted according to 2B3-101 being tested in clinical trials. In addition, PEGylated nanoliposomal doxorubicin connected to the spacer-GSH targeting ligand (GSGGCE) and the PEG3400 was conducted using post-insertion method. Next, in vivo biodistribution of the produced formulations was tested on healthy mice to see if GSGGCE, as the targeted ligand, could cross the BBB compared to 5% pre-inserted PEG2000-GSH and Caelyx® . Compared to the pre-inserted formulation and Caelyx® , the post-inserted formulations' concentration was lower in the heart and higher in brain tissues, resulting in boosting the brain concentration of accumulated doxorubicin with fewer possible side effects, including cardiotoxicity. In comparison to the pre-insertion procedure, the post-insertion method is easier, faster, and more cost-effective. Moreover, employing PEG3400 and the post-insertion approach in the PEG3400-GSGGCE liposomal formulations was found to be effective in crossing the BBB.
Collapse
Affiliation(s)
- Amin Mehrabian
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saba Dadpour
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Student Research Committee, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mashreghi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Zarqi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Anis Askarizadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Alia Moosavian
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Yang H, Le QV, Shim G, Oh YK, Shin YK. Molecular engineering of antibodies for site-specific conjugation to lipid polydopamine hybrid nanoparticles. Acta Pharm Sin B 2020; 10:2212-2226. [PMID: 33304787 PMCID: PMC7715496 DOI: 10.1016/j.apsb.2020.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/15/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022] Open
Abstract
Conjugation of antibodies to nanoparticles allows specific cancer targeting, but conventional conjugation methods generate heterogeneous conjugations that cannot guarantee the optimal orientation and functionality of the conjugated antibody. Here, a molecular engineering technique was used for site-specific conjugation of antibodies to nanoparticles. We designed an anti-claudin 3 (CLDN3) antibody containing a single cysteine residue, h4G3cys, then linked it to the maleimide group of lipid polydopamine hybrid nanoparticles (LPNs). Because of their negatively charged lipid coating, LPNs showed high colloidal stability and provided a functional surface for site-specific conjugation of h4G3cys. The activity of h4G3cys was tested by measuring the binding of h4G3cys-conjugated LPNs (C-LPNs) to CLDN3-positive tumor cells and assessing its subsequent photothermal effects. C-LPNsspecifically recognized CLDN3-overexpressing T47D breast cancer cells but not CLDN3-negative Hs578T breast cancer cells. High binding of C-LPNs to CLDN3-overexpressing T47D cells resulted in significantly higher temperature generation upon NIR irradiation and potent anticancer photothermal efficacy. Consistent with this, intravenous injection of C-LPNsin a T47D xenograft mouse model followed by NIR irradiation caused remarkable tumor ablation compared with other treatments through high temperature increases. Our results establish an accurate antibody-linking method and demonstrate the possibility of developing therapeutics using antibody-guided nanoparticles.
Collapse
Affiliation(s)
- Hobin Yang
- Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Quoc-Viet Le
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Gayong Shim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Kee Shin
- Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Bio-MAX, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Mastrotto F, Brazzale C, Bellato F, De Martin S, Grange G, Mahmoudzadeh M, Magarkar A, Bunker A, Salmaso S, Caliceti P. In Vitro and in Vivo Behavior of Liposomes Decorated with PEGs with Different Chemical Features. Mol Pharm 2020; 17:472-487. [PMID: 31789523 DOI: 10.1021/acs.molpharmaceut.9b00887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The colloidal stability, in vitro toxicity, cell association, and in vivo pharmacokinetic behavior of liposomes decorated with monomethoxy-poly(ethylene glycol)-lipids (mPEG-lipids) with different chemical features were comparatively investigated. Structural differences of the mPEG-lipids used in the study included: (a) surface-anchoring moiety [1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE), cholesterol (Chol), and cholane (Chln)]; (b) mPEG molecular weight (2 kDa mPEG45 and 5 kDa mPEG114); and (c) mPEG shape (linear and branched PEG). In vitro results demonstrated that branched (mPEG114)2-DSPE confers the highest stealth properties to liposomes (∼31-fold lower cell association than naked liposomes) with respect to all PEGylating agents tested. However, the pharmacokinetic studies showed that the use of cholesterol as anchoring group yields PEGylated liposomes with longer permeance in the circulation and higher systemic bioavailability among the tested formulations. Liposomes decorated with mPEG114-Chol had 3.2- and ∼2.1-fold higher area under curve (AUC) than naked liposomes and branched (mPEG114)2-DSPE-coated liposomes, respectively, which reflects the high stability of this coating agent. By comparing the PEGylating agents with same size, namely, linear 5 kDa PEG derivatives, linear mPEG114-DSPE yielded coated liposomes with the best in vitro stealth performance. Nevertheless, the in vivo AUC of liposomes decorated with linear mPEG114-DSPE was lower than that obtained with liposomes decorated with linear mPEG114-Chol. Computational molecular dynamics modeling provided additional insights that complement the experimental results.
Collapse
Affiliation(s)
- Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , via F. Marzolo 5 , 35131 Padova , Italy
| | - Chiara Brazzale
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , via F. Marzolo 5 , 35131 Padova , Italy
| | - Federica Bellato
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , via F. Marzolo 5 , 35131 Padova , Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , via F. Marzolo 5 , 35131 Padova , Italy
| | - Guillaume Grange
- Drug Research Program, Faculty of Pharmacy , University of Helsinki , 00014 Helsinki , Finland
| | - Mohamad Mahmoudzadeh
- Drug Research Program, Faculty of Pharmacy , University of Helsinki , 00014 Helsinki , Finland
| | - Aniket Magarkar
- Institute of Organic Chemistry and Biochemistry , Academy of the Sciences of the Czech Republic , 166 10 Prague , Czech Republic
| | - Alex Bunker
- Drug Research Program, Faculty of Pharmacy , University of Helsinki , 00014 Helsinki , Finland
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , via F. Marzolo 5 , 35131 Padova , Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , via F. Marzolo 5 , 35131 Padova , Italy
| |
Collapse
|
4
|
Nosova AS, Koloskova OO, Nikonova AA, Simonova VA, Smirnov VV, Kudlay D, Khaitov MR. Diversity of PEGylation methods of liposomes and their influence on RNA delivery. MEDCHEMCOMM 2019; 10:369-377. [PMID: 31015904 PMCID: PMC6457174 DOI: 10.1039/c8md00515j] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/10/2019] [Indexed: 12/18/2022]
Abstract
Gene therapy is a promising approach for personalized medicine, but its application in humans requires development of efficient and safe vehicles. PEGylated liposomes are some of the most suitable delivery systems for nucleic acids because of their stability under physiological conditions and prolonged circulation time, compared to conventional and other types of "stealth" liposomes. In vitro/in vivo activity of PEGylated liposomes is highly dependent on PEG motif abundance. The process of "stealth" coverage formation is a very important parameter for efficient transfection assays and further fate determination of the PEG layer after tissue penetration. In this review, we discuss the latest methods of PEGylated liposome preparation.
Collapse
Affiliation(s)
- A S Nosova
- NRC Institute of Immunology FMBA of Russia , Moscow , Russia .
| | - O O Koloskova
- NRC Institute of Immunology FMBA of Russia , Moscow , Russia .
| | - A A Nikonova
- NRC Institute of Immunology FMBA of Russia , Moscow , Russia .
- Mechnikov Research Institute of Vaccines and Sera , Moscow , Russia
| | - V A Simonova
- I. M. Sechenov First Moscow State Medical University , Moscow , Russia
| | - V V Smirnov
- NRC Institute of Immunology FMBA of Russia , Moscow , Russia .
- I. M. Sechenov First Moscow State Medical University , Moscow , Russia
| | - D Kudlay
- NRC Institute of Immunology FMBA of Russia , Moscow , Russia .
| | - M R Khaitov
- NRC Institute of Immunology FMBA of Russia , Moscow , Russia .
| |
Collapse
|
5
|
Negahdaripour M, Golkar N, Hajighahramani N, Kianpour S, Nezafat N, Ghasemi Y. Harnessing self-assembled peptide nanoparticles in epitope vaccine design. Biotechnol Adv 2017; 35:575-596. [PMID: 28522213 PMCID: PMC7127164 DOI: 10.1016/j.biotechadv.2017.05.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/23/2017] [Accepted: 05/11/2017] [Indexed: 12/11/2022]
Abstract
Vaccination has been one of the most successful breakthroughs in medical history. In recent years, epitope-based subunit vaccines have been introduced as a safer alternative to traditional vaccines. However, they suffer from limited immunogenicity. Nanotechnology has shown value in solving this issue. Different kinds of nanovaccines have been employed, among which virus-like nanoparticles (VLPs) and self-assembled peptide nanoparticles (SAPNs) seem very promising. Recently, SAPNs have attracted special interest due to their unique properties, including molecular specificity, biodegradability, and biocompatibility. They also resemble pathogens in terms of their size. Their multivalency allows an orderly repetitive display of antigens on their surface, which induces a stronger immune response than single immunogens. In vaccine design, SAPN self-adjuvanticity is regarded an outstanding advantage, since the use of toxic adjuvants is no longer required. SAPNs are usually composed of helical or β-sheet secondary structures and are tailored from natural peptides or de novo structures. Flexibility in subunit selection opens the door to a wide variety of molecules with different characteristics. SAPN engineering is an emerging area, and more novel structures are expected to be generated in the future, particularly with the rapid progress in related computational tools. The aim of this review is to provide a state-of-the-art overview of self-assembled peptide nanoparticles and their use in vaccine design in recent studies. Additionally, principles for their design and the application of computational approaches to vaccine design are summarized.
Collapse
Affiliation(s)
- Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasim Golkar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutics Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasim Hajighahramani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Kianpour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Li Y, Gao L, Tan X, Li F, Zhao M, Peng S. Lipid rafts-mediated endocytosis and physiology-based cell membrane traffic models of doxorubicin liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1801-11. [PMID: 27117641 DOI: 10.1016/j.bbamem.2016.04.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/09/2016] [Accepted: 04/13/2016] [Indexed: 12/01/2022]
|
7
|
Modulated cellular delivery of anti-VEGF siRNA (bevasiranib) by incorporating supramolecular assemblies of hydrophobically modified polyamidoamine dendrimer in stealth liposomes. Int J Pharm 2016; 510:30-41. [PMID: 27291973 DOI: 10.1016/j.ijpharm.2016.06.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 12/16/2022]
Abstract
A novel lipopolymer based system was designed and characterized for cellular delivery of anti-VEGF siRNA in SKBR-3 breast tumor cell line. Polyamidoamine (PAMAM) dendrimers of low generations (G1, G2 and G3) were incorporated into polyethylene glycol (PEG)-stabilized liposomes by following the consecutive steps: (a) synthesis of the cholesterol conjugates (40% molar ratio of cholesterol to primary amines of PAMAM), (b) incorporation of the conjugates in liposome by lipid mixing and (c) microencapsulation of the siRNA using the ethanol drop method. The cholesterol conjugates of PAMAM dendrimers (G1-Chol40%, G2-Chol40% and G3-Chol40%) formed self assembly with low CMC values (<11μg/ml). Not only did G2-Chol40% show the highest lipid mixing among the cholesterol conjugates, but also, had the lowest leakage of encapsulated carboxyfluorescein tracer. Various N(amine))/L(lipid)/P(phosphate) mole ratios were investigated for siRNA condensation by ethidium bromide dye exclusion assay. The optimum N/L/P ratio of 20:33:10 was chosen for microencapsulation of anti-VEGF siRNA by ethanol drop method, showing particle size of 130nm, zeta-potential of +4mV, siRNA loading efficiency and capacity of 96% and 13wt%, and high stability against heparin sulfate (extracellular matrix). TEM shows uniform and discrete oligo- or multi-lamellar vesicular structures. The liposome incorporating G2-Chol40% was successfully internalized into SKBR-3 cells mainly through clathrin-mediated endocytosis, which was able to escape from endosomes and showed a significantly higher sequence-specific inhibition of VEGF expression and cell growth than the respective G2-Chol40%/siRNA dendriplexes. Importantly, the cytotoxicity decreased with incorporation of G2-Chol40% in the liposomes.
Collapse
|
8
|
Kooijmans S, Fliervoet L, van der Meel R, Fens M, Heijnen H, van Bergen en Henegouwen P, Vader P, Schiffelers R. PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time. J Control Release 2016; 224:77-85. [DOI: 10.1016/j.jconrel.2016.01.009] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 12/30/2022]
|