1
|
Bassiri Z, Akinniyi O, Humphrey N, Martelli D. The effects of subsensory electrical noise stimulation on the reactive control of balance during support surface perturbations. Gait Posture 2024; 114:297-304. [PMID: 39454456 DOI: 10.1016/j.gaitpost.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 06/14/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND The ability to respond effectively to balance perturbations is crucial for fall prevention. Subsensory electrical stimulation (SES) applied to the skin leads to improved proactive balance control but there is limited evidence on the SES effect on reactive balance control. RESEARCH QUESTIONS To test the efficiency of SES in improving reactive balance control against unpredictable support surface perturbations and to compare the effects of SES applied to the trunk and the lower legs. METHODS Twenty-three young adults stood on a treadmill while recovering from 15 forward and 15 backward surface translations of increasing magnitude to determine the backward and forward stepping thresholds (BSTh and FSTh). Then, they recovered from three repetitions of forward and backward perturbations of fixed magnitude to determine the characteristic of the compensatory step (i.e., step time, step length, step delay and Margin of Stability - MOS). Each test was conducted with no stimulation (NS), leg stimulation (LS), or trunk stimulation (TS) equal to 90 % of the sensory threshold. Repeated-measures ANOVA and Tukey post-hoc tests were used to analyze the main and interaction effects of stimulation and repetition. RESULTS TS and LS increased the BSTh by 31.5 % (p=0.002) and 16.4 % (p=0.028), respectively, with greater effects of TS; (ii) during backward perturbations, TS reduced compensatory step time by 9.0 %, step length by 17.1 %, and MOS at compensatory heel strike by 17.7 % (p<0.016); and (iii) during forward perturbations, LS and TS reduced the step time by 4.5 % and 3.5 % (p<0.017), and increased the minimum MOS by 7.8 % and 4.5 %, respectively (p<0.048). SIGNIFICANCE This is the first study that showed how the application of SES affects reactive balance control during support surface perturbations. TS was more effective than LS during backward perturbations. TS may be an effective strategy to enhance balance control during reactive postural tasks, thus potentially reducing fall risk.
Collapse
Affiliation(s)
- Zahra Bassiri
- Center for Motion Analysis, Division of Orthopedic Surgery, Connecticut Children's, Farmington, CT, United States.
| | - Oluwasegun Akinniyi
- Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487, United States.
| | - Nathan Humphrey
- Department of Aerospace Engineering, University of Alabama, Tuscaloosa, AL 35487, United States.
| | - Dario Martelli
- Department of Orthopedics and Sports Medicine, Medstar Health Research Institute, Baltimore, MD 21218, United States.
| |
Collapse
|
2
|
Holmes MD, Vindigni D, Moreland A, Bolton PS. What are the temporal and physical characteristics of locally applied vibration that modulate balance in older adults? - A systematic review of the literature. Gait Posture 2024; 111:75-91. [PMID: 38657476 DOI: 10.1016/j.gaitpost.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Compromised balance is known to contribute to falls, which are associated with increased morbidity and mortality for older adults. Evidence suggests that the application of local vibration to the lower limbs of older adults has the potential to modulate balance. RESEARCH QUESTION To identify the temporal and mechanical parameters of vibration applied locally to the lower limbs of older adults that modulate measures of balance, and to define the short- and long-term effects of vibration on balance in this population. METHODS The PRISMA 2020 guidelines were used to conduct a systematic search including the PUBMED, EMBASE, and Scopus databases to identify peer-reviewed literature where vibration was applied to the lower limbs of older adults to modulate balance. Data was extracted using a study-specific data extraction form and risk of bias assessed. Where possible, effect sizes were calculated. RESULTS Of 7777 records screened, ten randomised controlled trials and 43 prospective laboratory-based studies met the inclusion criteria. Vibration frequencies ranged from 1 to 272 Hz, most studies (n=41) used ≤100 Hz. Amplitude ranged from 0.2 to 3.0 mm, most studies (n=28) used ≤1 mm. Effects of short-term vibration (applied for seconds to hours) were measured during and/or immediately after application. Short-term suprathreshold perceived muscle/tendon vibration had a 'large' destabilising effect size on balance in healthy older adults, but little or no effect on older fallers. Short-term subthreshold vibration to the soles of the feet had a 'small' stabilising effect size. Suprathreshold muscle, tendon or sole vibration applied for 10-30 min over days to weeks improved balance measures, but most (8 of 10) had increased risk of bias. SIGNIFICANCE The heterogeneity of methodology, populations, and vibration and balance parameters precluded conclusions about the relative effects of lower limb vibration in older adults. However, these results suggest that the application of local vibration to the lower limbs of older adults can modulate balance in the short- and long-term.
Collapse
Affiliation(s)
- Matthew D Holmes
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; Australian Chiropractic College, Adelaide, SA 5000, Australia.
| | - Dein Vindigni
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Ashleigh Moreland
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Philip S Bolton
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
3
|
Endo T, Kim DH, Chamnongthai K. Enhancing Fingertip Tactile Sensitivity by Vibrotactile Noise and Cooling Skin Temperature Effect. IEEE TRANSACTIONS ON HAPTICS 2023; 16:391-399. [PMID: 37506002 DOI: 10.1109/toh.2023.3299575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
This article discusses a method to enhance fingertip tactile sensitivity by applying a vibrotactile noise at the wrist. This is an application of stochastic resonance to the field of haptics. We consider that the tactile sensitivity of the fingertip improves when a sufficiently large noise is propagated to it from the wrist. However, fingertip tactile sensitivity decreases when a large noise that humans can perceive is applied to the wrist. Therefore, in this article, we cool the wrist skin to reduce the wrist's tactile sensitivity to noise. This allows us to apply noise that is large, but still imperceptible, at the wrist and thus to propagate it to the fingertip. On the basis of these procedures, we propose a method to enhance fingertip tactile sensitivity. Further, we carry out several experiments and confirm that the proposed method improves fingertip tactile sensitivity.
Collapse
|
4
|
Gerber ED, Giraldo C, Whorley B, Nichols P, Ring S, Luchies CW. Subthreshold white noise vibration alters trembling sway in older adults. Hum Mov Sci 2023; 90:103119. [PMID: 37390770 DOI: 10.1016/j.humov.2023.103119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/14/2023] [Accepted: 06/15/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND Somatosensory deficit is a significant contributor to falls in older adults. Stochastic resonance has shown promise in recent studies of somatosensation-based balance disorders, improving many measures of stability both inside and outside of the clinic. However, our understanding of this effect from a physiological perspective is poorly understood. Therefore, the primary goal of this study is to explore the influence of subthreshold vibratory stimulation on sway under the rambling-trembling framework. METHODS 10 Healthy older adults (60-65 years) volunteered to participate in this study. Each participant underwent two randomized testing sessions on separate days, one experimental and one placebo. During each session, the participants' baseline sway was captured during one 90-s quiet standing trial. Their sensation threshold was then captured using a custom vibratory mat and 4-2-1 vibration perception threshold test. Finally, participants completed another 90-s quiet standing trial while the vibratory mat vibrated at 90% of their measured threshold (if experimental) or with the mat off (if placebo). While they completed these trials, an AMTI force plate collected force and moment data in the anteroposterior (AP) and mediolateral (ML), from which the center of pressure (COP), rambling (RM), and trembling (TR) time series were calculated. From each of these time series, range, variability (root-mean-square), and predictability (sample entropy) were extracted. One-tailed paired t-tests were used to compare baseline and during-vibration measures. RESULTS No significant differences were found during the placebo session. For the experimental session, significant increases were found in AP TR range, ML TR RMS, AP COP predictability, and AP & ML TR predictability. The TR time series was particularly sensitive to vibration, suggesting a strong influence on peripheral/spinal mechanisms of postural control. SIGNIFICANCE Though it is unclear whether observed effects are indicative of "improvements" or not, it does suggest that there was a measurable effect of subthreshold vibration on sway. This knowledge should be utilized in future studies of stochastic resonance, potentially acting as a mode of customization, tailoring vibration location, duration, magnitude, and frequency content to achieve the desired effect. One day, this work may aid in our ability to treat somatosensation-based balance deficits, ultimately reducing the incidence and severity of falls in older adults.
Collapse
Affiliation(s)
- Eryn D Gerber
- Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA
| | - Camilo Giraldo
- Department of Engineering, Messiah University, Mechanicsburg, PA, USA
| | - Brett Whorley
- Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA
| | - Paris Nichols
- Department of Mechanical Engineering, School of Engineering, University of Kansas, Lawrence, KS, USA
| | - Scott Ring
- Department of Mechanical Engineering, School of Engineering, University of Kansas, Lawrence, KS, USA
| | - Carl W Luchies
- Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA; Department of Mechanical Engineering, School of Engineering, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
5
|
Xuan C, Zhang B, Jia X. The Effect of Human Settlement Pedestrian Environment on Gait of Older People: An Umbrella Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1567. [PMID: 36674319 PMCID: PMC9865741 DOI: 10.3390/ijerph20021567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Older people are limited by the pedestrian environment in human settlements and are prone to travel difficulties, falls, and stumbles. Furthermore, we still lack systematic knowledge of the pedestrian environment affecting the gait of older people. The purpose of this review is to synthesize current evidence of effective human settlement pedestrian environments interfering with gait in older people. The systematic effects of the human settlement pedestrian environment on gait in older people are discussed. Databases such as Web of Science, Medline (via PubMed), Scopus, and Embase were searched for relevant studies up to June 2022. The literature was screened to extract relevant evidence from the included literature, assess the quality of the evidence, and analyze the systematic effects of the pedestrian environment on gait in older people. From the 4297 studies identified in the initial search, 11 systematic reviews or meta-analysis studies were screened, from which 18 environmental factors and 60 gait changes were extracted. After removing duplicate elements and merging synonymous features, a total of 53 relationships between environmental factors and gait change in older people were extracted: the main human settlement pedestrian environmental factors affecting gait change in older people in existing studies were indoor and outdoor stairs/steps, uneven and irregular ground, obstacles, walking path turns, vibration interventions, mechanical perturbation during gait, and auditory sound cues. Under the influence of these factors, older people may experience changes in the degree of cautiousness and conservatism of gait and stability, and their body posture performance and control, and muscle activation may also be affected. Factors such as ground texture or material, mechanical perturbations during gait, and vibration interventions stimulate older people's understanding and perception of their environment, but there is controversy over the results of specific gait parameters. The results support that human settlements' pedestrian environment affects the gait changes of older people in a positive or negative way. This review may likely contribute evidence-based information to aid communication among practitioners in public health, healthcare, and environmental construction. The above findings are expected to provide useful preference for associated interdisciplinary researchers to understand the interactions among pedestrian environments, human behavior, and physiological characteristics.
Collapse
Affiliation(s)
- Changzheng Xuan
- Architecture College, Inner Mongolia University of Technology (IMUT), Hohhot 010051, China
- Inner Mongolia Key Laboratory of Green Building, Hohhot 010051, China
| | - Bo Zhang
- Architecture College, Inner Mongolia University of Technology (IMUT), Hohhot 010051, China
- Inner Mongolia Key Laboratory of Green Building, Hohhot 010051, China
| | - Xiaohu Jia
- Architecture College, Inner Mongolia University of Technology (IMUT), Hohhot 010051, China
- Inner Mongolia Key Laboratory of Green Building, Hohhot 010051, China
| |
Collapse
|
6
|
Plater EB, Seto VS, Peters RM, Bent LR. Remote Subthreshold Stimulation Enhances Skin Sensitivity in the Lower Extremity. Front Hum Neurosci 2022; 15:789271. [PMID: 35002660 PMCID: PMC8727473 DOI: 10.3389/fnhum.2021.789271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Foot sole skin interfaces with the ground and contributes to successful balance. In situations with reduced sensitivity in the glabrous foot skin, stochastic resonance (SR) improves skin sensitivity by adding tactile noise. Some situations, however, involve an interface comprised of hairy skin, which has higher thresholds for sensitivity. For example, in lower extremity amputation the residual limb is comprised of hairy leg skin. The main objective of this study was to determine if SR improves skin sensitivity in hairy skin, and whether a specific intensity of noise is most effective. Secondary objectives were to compare the effect between locations, ages and modalities. In 60 healthy participants a vibrotactile (test) input was delivered at the lower extremity concurrently with a second, noisy stimulus applied more proximally. The presence of a remote SR effect was tested in 15 young participants using electrotactile noise at the calf. Secondary objectives were tested in separate groups of 15 subjects and differed by substituting for one of the three variables: vibrotactile noise, heel site, and with older participants. A forced-choice protocol was used to determine detection ability of the subthreshold vibration test input with varying noise levels applied simultaneously (0, 20, 40, 60, 80, and 100% of perceptual threshold). An SR effect was identified when increased detection of the input was obtained at any level of noise versus no noise. It was found that all four test groups demonstrated evidence of SR: 33–47% of individuals showed better detection of the input with added noise. The SR effect did not appear consistently at any specific noise level for any of the groups, and none of the variables showed a superior ability to evoke SR. Interestingly, in approximately 33% of cases, threshold values fluctuated throughout testing. While this work has provided evidence that SR can enhance the perception of a vibrotactile input in hairy skin, these data suggest that the ability to repeatably show an SR effect relies on maintaining a consistent threshold.
Collapse
Affiliation(s)
- Emma B Plater
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Vivian S Seto
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Ryan M Peters
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Leah R Bent
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
7
|
The effects of mechanical noise bandwidth on balance across flat and compliant surfaces. Sci Rep 2021; 11:12276. [PMID: 34112840 PMCID: PMC8192913 DOI: 10.1038/s41598-021-91422-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 05/25/2021] [Indexed: 12/29/2022] Open
Abstract
Although the application of sub-sensory mechanical noise to the soles of the feet has been shown to enhance balance, there has been no study on how the bandwidth of the noise affects balance. Here, we report a single-blind randomized controlled study on the effects of a narrow and wide bandwidth mechanical noise on healthy young subjects’ sway during quiet standing on firm and compliant surfaces. For the firm surface, there was no improvement in balance for both bandwidths—this may be because the young subjects could already balance near-optimally or optimally on the surface by themselves. For the compliant surface, balance improved with the introduction of wide but not narrow bandwidth noise, and balance is improved for wide compared to narrow bandwidth noise. This could be explained using a simple model, which suggests that adding noise to a sub-threshold pressure stimulus results in markedly different frequency of nerve impulse transmitted to the brain for the narrow and wide bandwidth noise—the frequency is negligible for the former but significantly higher for the latter. Our results suggest that if a person’s standing balance is not optimal (for example, due to aging), it could be improved by applying a wide bandwidth noise to the feet.
Collapse
|
8
|
Moon J, Pathak P, Kim S, Roh SG, Roh C, Shim Y, Ahn J. Shoes with active insoles mitigate declines in balance after fatigue. Sci Rep 2020; 10:1951. [PMID: 32029789 PMCID: PMC7004992 DOI: 10.1038/s41598-020-58815-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/21/2020] [Indexed: 01/12/2023] Open
Abstract
Fatigue can induce postural instability and even lead to falls. However, most current methods to delay or reduce fatigue require long preparatory time, or large and expensive equipment. We propose a convenient method to alleviate postural instability due to fatigue. We paid attention to that fatigue and aging share similar neurophysiological deterioration of sensory-motor function. Considering that stochastic resonance via sub-sensory mechanical vibration increases postural stability in the elderly, we propose that sub-sensory insole vibration reduces the negative effect of fatigue on postural control. We performed experiments with 21 young and healthy adult participants, and demonstrated that insole vibration compensates for the loss of balance ability due to fatigue. The sub-sensory insole vibration restored both the area of center of pressure and the complexity of the time series of the motor output after fatigue to the pre-fatigue levels. The insole units generating the vibration were completely concealed in shoes and controlled by a smart phone. This compact implementation contrasts with the cumbersome procedure of current solutions to fatigue-induced postural instability.
Collapse
Affiliation(s)
- Jeongin Moon
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea
| | - Prabhat Pathak
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea
| | - Sudeok Kim
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea
| | - Se-Gon Roh
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon, Republic of Korea
| | - Changhyun Roh
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon, Republic of Korea
| | - Youngbo Shim
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon, Republic of Korea
| | - Jooeun Ahn
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea.
- Institute of Sport Science, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Zhang S, Gao X. The effect of visual stimuli noise and fatigue on steady-state visual evoked potentials. J Neural Eng 2019; 16:056023. [DOI: 10.1088/1741-2552/ab1f4e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
10
|
Tenan MS, Tweedell AJ, Haynes CA, Passaro AD. The effect of imperceptible Gaussian tendon vibration on the Hoffmann reflex. Neurosci Lett 2019; 706:123-127. [PMID: 31085290 DOI: 10.1016/j.neulet.2019.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/21/2019] [Accepted: 05/10/2019] [Indexed: 11/25/2022]
Abstract
Imperceptible vibratory Gaussian noise stimulation to the periphery is frequently being applied to humans to enhance motor performance. It is commonly theorized that this stimulation creates a Stochastic Resonance-like effect across both sensory and motor systems, but this idea has no empirical support. In contrast, there is substantial work showing that tendon vibration can be both excitatory and inhibitory on the lower motor neuron output. In this work, we demonstrate that delivery of imperceptible vibratory Gaussian noise stimulation to the wrist flexor tendons results in a 27% increase in excitability of the lower motor neuron pool in the median nerve, as evidenced by changes in the Hoffmann reflex. We argue that the well-documented tonic vibration reflex is a sufficient mechanistic explanation for the behavioral changes observed during the introduction of vibratory noise stimulation.
Collapse
Affiliation(s)
- Matthew S Tenan
- U.S. Army Research Laboratory, Human Research and Engineering Directorate, Research Triangle Park, Durham, NC, USA.
| | - Andrew J Tweedell
- U.S. Army Research Laboratory, Human Research and Engineering Directorate, Aberdeen Proving Ground, MD, USA
| | - Courtney A Haynes
- U.S. Army Research Laboratory, Human Research and Engineering Directorate, Aberdeen Proving Ground, MD, USA
| | - Antony D Passaro
- U.S. Army Research Laboratory, Human Research and Engineering Directorate, ARL West, Playa Vista, CA, USA
| |
Collapse
|
11
|
The effects of sub-threshold vibratory noise on visuomotor entrainment during human walking and standing in a virtual reality environment. Hum Mov Sci 2019; 66:587-599. [PMID: 31255870 PMCID: PMC6934930 DOI: 10.1016/j.humov.2019.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 01/25/2023]
Abstract
Humans will naturally synchronize their posture to the motion of a visual surround, but it is unclear if this visuomotor entrainment can be attenuated with an increased sensitivity to somatosensory information. Sub-threshold vibratory noise applied to the Achilles tendons has proven to enhance ankle proprioception through the phenomenon of stochastic resonance. Our purpose was to compare visuomotor entrainment during walking and standing, and to understand how this entrainment might be attenuated by applying sub-threshold vibratory noise over the Achilles tendons. We induced visuomotor entrainment during standing and treadmill walking for ten subjects (24.5 ± 2.9 years) using a speed-matched virtual hallway with continuous mediolateral perturbations at three different frequencies. Vibrotactile motors over the Achilles tendons provided noise (0-400 Hz) with an amplitude set to 90% of each participant's sensory threshold. Mediolateral sacrum, C7, and head motion was greatly amplified (4-8× on average) at the perturbation frequencies during walking, but was much less pronounced during standing. During walking, individuals with greater mediolateral head motion at the fastest perturbation frequency saw the greatest attenuation of that motion with applied noise. Similarly, during standing, individuals who exhibited greater postural sway (as measured by the center of pressure) also saw the greatest reductions in sway with sub-threshold noise applied in three of our summary metrics. Our results suggest that, at least for healthy young adults, sub-threshold vibratory noise over the Achilles tendons can slightly improve postural control during disruptive mediolateral visual perturbations, but the applied noise does not substantially attenuate visuomotor entrainment during walking or standing.
Collapse
|
12
|
Sinusoidal vibrotactile stimulation differentially improves force steadiness depending on contraction intensity. Med Biol Eng Comput 2019; 57:1813-1822. [DOI: 10.1007/s11517-019-01999-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/29/2019] [Indexed: 01/25/2023]
|
13
|
Mohebi S, Torkaman G, Bahrami F, Darbani M. Postural instability and position of the center of pressure into the base of support in postmenopausal osteoporotic and nonosteoporotic women with and without hyperkyphosis. Arch Osteoporos 2019; 14:58. [PMID: 31161413 DOI: 10.1007/s11657-019-0581-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 02/18/2019] [Indexed: 02/03/2023]
Abstract
UNLABELLED In postmenopausal women, thoracic hyperkyphosis affects postural instability in the sagittal plane, whereas osteoporosis affects it in the frontal plane. Decrease of hip muscle strength can be changed the center of pressure distance to the center of base of support. These results may be important to design the therapeutic exercise for decreasing the postural instability. PURPOSE In this study, we investigated the effect of bone mineral density (BMD) and thoracic kyphosis on the center of pressure (CoP) sway and its location related to the base of support (BoS). METHODS Ten young and 39 postmenopausal women voluntarily participated in this study. Postmenopausal women were divided into four groups according to the thoracic kyphosis angle (normal kyphotic < 50° ≤ hyperkyphotic) and T-score values. The isometric strength of the trunk and lower limb muscles were measured. The CoP postural sway was measured in a comfortable double stance position, and the location of the CoP was then determined related to the BoS. RESULTS In both hyperkyphotic groups (osteoporotic and normal BMD), the strength of back extension and hip adduction showed a significant decrease compared to the normal kyphotic groups. In the osteoporotic groups (hyper- and normal kyphotic), hip abduction and ankle plantar flexion were significantly weaker than those in the nonosteoporotic groups. In both hyperkyphotic groups, velocity of the CoP displacement in the anterior-posterior (AP) direction was significantly higher than that in the young group, while, in both of the osteoporotic groups, velocity of the CoP displacement in the medio-lateral (ML) direction was significantly higher than that in the young group. In postmenopausal women, hip extensor strength negatively and significantly correlated with the CoP distance to the center of the BoS. CONCLUSION It appears that thoracic hyperkyphosis affects postural instability in the AP direction and that a decrease of BMD affects postural instability in the ML direction.
Collapse
Affiliation(s)
- Sanaz Mohebi
- Physical Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Giti Torkaman
- Physical Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, P. O. Box: 1411713116, Ale-Ahmad Ave., Tehran, Iran.
| | - Fariba Bahrami
- Human Motor Control and Computational Neuroscience Lab, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Malihe Darbani
- Physical Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
14
|
White O, Babič J, Trenado C, Johannsen L, Goswami N. The Promise of Stochastic Resonance in Falls Prevention. Front Physiol 2019; 9:1865. [PMID: 30745883 PMCID: PMC6360177 DOI: 10.3389/fphys.2018.01865] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022] Open
Abstract
Multisensory integration is essential for maintenance of motor and cognitive abilities, thereby ensuring normal function and personal autonomy. Balance control is challenged during senescence or in motor disorders, leading to potential falls. Increased uncertainty in sensory signals is caused by a number of factors including noise, defined as a random and persistent disturbance that reduces the clarity of information. Counter-intuitively, noise can be beneficial in some conditions. Stochastic resonance is a mechanism whereby a particular level of noise actually enhances the response of non-linear systems to weak sensory signals. Here we review the effects of stochastic resonance on sensory modalities and systems directly involved in balance control. We highlight its potential for improving sensorimotor performance as well as cognitive and autonomic functions. These promising results demonstrate that stochastic resonance represents a flexible and non-invasive technique that can be applied to different modalities simultaneously. Finally we point out its benefits for a variety of scenarios including in ambulant elderly, skilled movements, sports and to patients with sensorimotor or autonomic dysfunctions.
Collapse
Affiliation(s)
- Olivier White
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France.,Acquired Brain Injury Rehabilitation, Faculty of Medicine and Health Sciences, School of Health Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Jan Babič
- Laboratory for Neuromechanics and Biorobotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Carlos Trenado
- Leibniz Research Centre for Working Environment and Human Factors TU Dortmund (ifADO), Institute of Clinical Neuroscience and Medical Psychology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Leif Johannsen
- Acquired Brain Injury Rehabilitation, Faculty of Medicine and Health Sciences, School of Health Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Nandu Goswami
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| |
Collapse
|
15
|
Zandiyeh P, Küpper JC, Mohtadi NGH, Goldsmith P, Ronsky JL. Effect of stochastic resonance on proprioception and kinesthesia in anterior cruciate ligament reconstructed patients. J Biomech 2018; 84:52-57. [PMID: 30579577 DOI: 10.1016/j.jbiomech.2018.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Abstract
Low amplitude mechanical noise vibration has been shown to improve somatosensory acuity in various clinical groups with comparable deficiencies through a phenomenon known as Stochastic Resonance (SR). This technology showed promising outcomes in improving somatosensory acuity in other clinical patients (e.g., Parkinson's disease and osteoarthritis). Some degree of chronic somatosensory deficiency in the knee has been reported following anterior cruciate ligament (ACL) reconstruction surgery. In this study, the effect of the SR phenomenon on improving knee somatosensory acuity (proprioception and kinesthesia) in female ACL reconstructed (ACLR) participants (n = 19) was tested at three months post-surgery, and the results were compared to healthy controls (n = 28). Proprioception was quantified by the measure of joint position sense (JPS) and kinesthesia with the threshold to detection of passive movement (TDPM). The results based on the statistical analysis demonstrated an overall difference between the somatosensory acuity in the ACLR limb compared to healthy controls (p = 0.007). A larger TDPM was observed in the ACLR limb compared to the healthy controls (p = 0.002). However, the JPS between the ACLR and healthy limbs were not statistically significantly different (p = 0.365). SR significantly improved JPS (p = 0.006) while the effect was more pronounced in the ACLR cohort. The effect on the TDPM did not reach statistical significance (p = 0.681) in either group. In conclusion, deficient kinesthesia in the ACLR limb was observed at three months post-surgery. Also, the positive effects of SR on somatosensory acuity in the ACL reconstructed group warrant further investigation into the use of this phenomenon to improve proprioception in ACLR and healthy groups.
Collapse
Affiliation(s)
- Payam Zandiyeh
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Canada.
| | - Jessica C Küpper
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Canada
| | - Nicholas George H Mohtadi
- Department of Surgery, University of Calgary, Canada; Sport Medicine Centre, University of Calgary, Canada
| | - Peter Goldsmith
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Canada
| | - Janet L Ronsky
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Canada
| |
Collapse
|
16
|
Nobusako S, Osumi M, Matsuo A, Fukuchi T, Nakai A, Zama T, Shimada S, Morioka S. Stochastic resonance improves visuomotor temporal integration in healthy young adults. PLoS One 2018; 13:e0209382. [PMID: 30550570 PMCID: PMC6294379 DOI: 10.1371/journal.pone.0209382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 12/04/2018] [Indexed: 01/28/2023] Open
Abstract
Mechanical and electrical noise stimulation to the body is known to improve the sensorimotor system. This improvement is related to stochastic resonance (SR), a phenomenon described as a "noise benefit" to various sensory and motor systems. The current study investigated the influence of SR on visuomotor temporal integration and hand motor function under delayed visual feedback in healthy young adults. The purpose of this study was to measure the usefulness of SR as a neurorehabilitation device for disorders of visuomotor temporal integration. Thirty healthy volunteers underwent detection tasks and hand motor function tests under delayed visual feedback, with or without SR. Of the 30 participants, 15 carried out the tasks under delayed visual feedback in the order of SR on-condition, off-condition, off-condition, and on-condition. The remaining 15 participants conducted the experimental tasks in the order of SR off-condition, on-condition, on-condition, and off-condition. Comparisons of the delay detection threshold (DDT), steepness of the delay detection probability curves, box and block test (BBT) scores, and nine-hole peg test (NHPT) scores between the SR on- and off-conditions were performed. The DDT under the SR on-condition was significantly shortened compared with the SR off-condition. There was no significant difference between the SR on- and off-conditions for the steepness of the delay detection probability curves, BBT scores, and NHPT scores. SR improved visuomotor temporal integration in healthy young adults, and may therefore improve movement disorders in patients with impaired visuomotor temporal integration. However, because the current results showed that SR did not improve hand motor function under delayed visual feedback, it may not improve motor function when a large distortion of visuomotor temporal integration is present. Further studies are required considering several limitations of the current study, and future clinical trials are necessary to verify the effects of motor training using SR for the treatment of visuomotor temporal integration disorders.
Collapse
Affiliation(s)
- Satoshi Nobusako
- Neurorehabilitation Research Center, Kio University, Nara, Japan
- Graduate School of Health Science, Kio University, Nara, Japan
- * E-mail:
| | - Michihiro Osumi
- Neurorehabilitation Research Center, Kio University, Nara, Japan
- Graduate School of Health Science, Kio University, Nara, Japan
| | - Atsushi Matsuo
- Neurorehabilitation Research Center, Kio University, Nara, Japan
- Graduate School of Health Science, Kio University, Nara, Japan
- Department of Physical Therapy, Faculty of Health Sciences, Kio University, Nara, Japan
| | | | - Akio Nakai
- Graduate School of Clinical Education & The Center for the Study of Child Development, Institute for Education, Mukogawa Women’s University, Hyogo, Japan
| | - Takuro Zama
- Rhythm-Based Brain Information Processing Unit, RIKEN CBS-TOYOTA Collaboration Center, RIKEN Center for Brain Science, Saitama, Japan
| | - Sotaro Shimada
- Department of Electronics and Bioinformatics School of Science and Technology, Meiji University, Kanagawa, Japan
| | - Shu Morioka
- Neurorehabilitation Research Center, Kio University, Nara, Japan
- Graduate School of Health Science, Kio University, Nara, Japan
- Department of Physical Therapy, Faculty of Health Sciences, Kio University, Nara, Japan
| |
Collapse
|
17
|
Aboutorabi A, Arazpour M, Bahramizadeh M, Farahmand F, Fadayevatan R. Effect of vibration on postural control and gait of elderly subjects: a systematic review. Aging Clin Exp Res 2018; 30:713-726. [PMID: 28918597 DOI: 10.1007/s40520-017-0831-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 09/05/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND AIM Gait and balance disorders are common in the elderly populations, and their prevalence increases with age. This systematic review was performed to summarize the current evidence for subthreshold vibration interventions on postural control and gait in elderly. METHOD A review of intervention studies including the following words in the title/abstract: insole, foot and ankle appliances, vibration, noise and elderly related to balance and gait. Databases searched included PubMed, ISI Web of Knowledge, Ovid, Scopus, and Google Scholar. Fifteen articles were selected for final evaluation. The procedure was followed using the preferred reporting items for systematic reviews and meta-analysis method. RESULTS There was reduction in center of pressure velocity and displacement especially with eyes closed using vibration in healthy elderly subjects and this effect was greater in elderly faller and patients with more balance deficiency. Vibration programme training increased speed of walking, cadence, step time and length in stroke subjects. The vibratory insoles significantly improved performance on the Timed Up and Go and Functional Reach tests in older people. CONCLUSION Vibration was effective on balance improvement in elderly subject especially elderly with more balance deficiency and it can improve gait parameters in patients with greater baseline variability.
Collapse
Affiliation(s)
- Atefeh Aboutorabi
- Department of Orthotics and Prosthetics, University of Social Welfare and Rehabilitation Sciences, Kodakyarst., Daneshjo Blvd., Evin, Tehran, 1985713834, Iran
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mokhtar Arazpour
- Department of Orthotics and Prosthetics, University of Social Welfare and Rehabilitation Sciences, Kodakyarst., Daneshjo Blvd., Evin, Tehran, 1985713834, Iran.
| | - Mahmood Bahramizadeh
- Department of Orthotics and Prosthetics, University of Social Welfare and Rehabilitation Sciences, Kodakyarst., Daneshjo Blvd., Evin, Tehran, 1985713834, Iran
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Farzam Farahmand
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Reza Fadayevatan
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
18
|
Paraskevoudi N, Balcı F, Vatakis A. "Walking" through the sensory, cognitive, and temporal degradations of healthy aging. Ann N Y Acad Sci 2018; 1426:72-92. [PMID: 29741265 DOI: 10.1111/nyas.13734] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/17/2018] [Accepted: 03/22/2018] [Indexed: 02/03/2023]
Abstract
As we age, there is a wide range of changes in motor, sensory, cognitive, and temporal processing due to alterations in the functioning of the central nervous and musculoskeletal systems. Specifically, aging is associated with degradations in gait; altered processing of the individual sensory systems; modifications in executive control, memory, and attention; and changes in temporal processing. These age-related alterations are often inter-related and have been suggested to result from shared neural substrates. Additionally, the overlap between these brain areas and those controlling walking raises the possibility of facilitating performance in several tasks by introducing protocols that can efficiently target all four domains. Attempts to counteract these negative effects of normal aging have been focusing on research to prevent falls and/or enhance cognitive processes, while ignoring the potential multisensory benefits accompanying old age. Research shows that the aging brain tends to increasingly rely on multisensory integration to compensate for degradations in individual sensory systems and for altered neural functioning. This review covers the age-related changes in the above-mentioned domains and the potential to exploit the benefits associated with multisensory integration in aging so as to improve one's mobility and enhance sensory, cognitive, and temporal processing.
Collapse
Affiliation(s)
- Nadia Paraskevoudi
- Multisensory and Temporal Processing Lab (MultiTimeLab), Department of History and Philosophy of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Fuat Balcı
- Department of Psychology, Koç University, Istanbul, Turkey
| | - Argiro Vatakis
- Multisensory and Temporal Processing Lab (MultiTimeLab), Department of History and Philosophy of Science, National and Kapodistrian University of Athens, Athens, Greece
- Cognitive Systems Research Institute, Athens, Greece
| |
Collapse
|
19
|
Lee BC, Martin BJ, Thrasher TA, Layne CS. The Effect of Vibrotactile Cuing on Recovery Strategies From a Treadmill-Induced Trip. IEEE Trans Neural Syst Rehabil Eng 2017; 25:235-243. [PMID: 28333619 DOI: 10.1109/tnsre.2016.2556690] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Effective fall prevention technologies need to detect and transmit the key information that will alert an individual in advance about a potential fall. This study investigated advanced vibrotactile cuing that may facilitate trip recovery for balance-impaired individuals who are prone to falling. A split-belt treadmill that simulated unpredictable trip perturbations was developed to compare balance recovery without and with cuing. Kinetic and kinematic measures from force plates and full body motion capture system were used to characterize the recovery responses. Experiment I evaluated recovery adaptation resulting from repeated trip exposure without vibrotactile cuing. Experiment II investigated the effects of vibrotactile cuing as a function of cuing location (upper arm, trunk, lower leg) and lead time prior to a trip (250, 500 ms). Experiment I showed that trip recovery improved progressively from the fourth to the eighth trial. Experiment II showed that trip recovery was almost the same as the eighth trial in Experiment I, regardless of the location of the cuing stimulus and lead time. The results suggest that a combination of vibrotactile cuing and hazard detection technology could reduce the risk of trips and falls.
Collapse
|
20
|
Improved proprioceptive function by application of subsensory electrical noise: Effects of aging and task-demand. Neuroscience 2017; 358:103-114. [PMID: 28673710 DOI: 10.1016/j.neuroscience.2017.06.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 11/23/2022]
Abstract
The application of subsensory noise stimulation over the lower limbs has been shown to improve proprioception and postural control under certain conditions. Whereas the effect specificity seems to depend on several factors, studies are still needed to determine the appropriate method for training and rehabilitation purposes. In the current study, we investigated whether the application of subsensory electrical noise over the legs improves proprioceptive function in young and older adults. We aimed to provide evidence that stronger and age-related differential effects occur in more demanding tasks. Proprioceptive function was initially assessed by testing the detection of passive ankle movement (kinesthetic perception) in twenty-eight subjects (14 young and 14 older adults). Thereafter, postural control was assessed during tasks with different sensory challenges: i) by removing visual information (eyes closed) and; ii) by moving the visual scene (moving room paradigm). Tests performed with the application of electrical noise stimulation were compared to those performed without noise. The results showed that electrical noise applied over the legs led to a reduction in the response time to kinesthetic perception in both young and older adults. On the other hand, the magnitude of postural sway was reduced by noise stimulation only during a more challenging task, namely, when the optical flow was changing in an unpredictable (nonperiodic) manner. No differential effects of stimulation between groups were observed. These findings suggest that the relevance of proprioceptive inputs in tasks with different challenges, but not the subjects' age, is a determining factor for sensorimotor improvements due to electrical noise stimulation.
Collapse
|
21
|
Do Aging and Tactile Noise Stimulation Affect Responses to Support Surface Translations in Healthy Adults? Curr Gerontol Geriatr Res 2016; 2016:2941964. [PMID: 27195007 PMCID: PMC4853938 DOI: 10.1155/2016/2941964] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 02/23/2016] [Accepted: 04/04/2016] [Indexed: 11/18/2022] Open
Abstract
Appropriate neuromuscular responses to support surface perturbations are crucial to prevent falls, but aging-related anatomical and physiological changes affect the appropriateness and efficiency of such responses. Low-level noise application to sensory receptors has shown to be effective for postural improvement in a variety of different balance tasks, but it is unknown whether this intervention may have value for improvement of corrective postural responses. Ten healthy younger and ten healthy older adults were exposed to sudden backward translations of the support surface. Low-level noise (mechanical vibration) to the foot soles was added during random trials and temporal (response latency) and spatial characteristics (maximum center-of-pressure excursion and anterior-posterior path length) of postural responses were assessed. Mixed-model ANOVA was applied for analysis of postural response differences based on age and vibration condition. Age affected postural response characteristics, but older adults were well able to maintain balance when exposed to a postural perturbation. Low-level noise application did not affect any postural outcomes. Healthy aging affects some specific measures of postural stability, and in high-functioning older individuals, a low-level noise intervention may not be valuable. More research is needed to investigate if recurring fallers and neuropathy patients could benefit from the intervention in postural perturbation tasks.
Collapse
|
22
|
Associations between Tactile Sensory Threshold and Postural Performance and Effects of Healthy Aging and Subthreshold Vibrotactile Stimulation on Postural Outcomes in a Simple Dual Task. Curr Gerontol Geriatr Res 2016; 2016:9797369. [PMID: 27143967 PMCID: PMC4842039 DOI: 10.1155/2016/9797369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/22/2016] [Indexed: 11/17/2022] Open
Abstract
Specific activities that require concurrent processing of postural and cognitive tasks may increase the risk for falls in older adults. We investigated whether peripheral receptor sensitivity was associated with postural performance in a dual-task and whether an intervention in form of subthreshold vibration could affect performance. Ten younger (age: 20–35 years) and ten older adults (70–85 years) performed repeated auditory-verbal 1-back tasks while standing quietly on a force platform. Foot sole vibration was randomly added during several trials. Several postural control and performance measures were assessed and statistically analyzed (significance set to α-levels of .05). There were moderate correlations between peripheral sensitivity and several postural performance and control measures (r = .45 to .59). Several postural performance measures differed significantly between older and younger adults (p < 0.05); addition of vibration did not affect outcome measures. Aging affects healthy older adults' performance in dual-tasks, and peripheral sensitivity may be a contributor to the observed differences. A vibration intervention may only be useful when there are more severe impairments of the sensorimotor system. Hence, future research regarding the efficacy of sensorimotor interventions in the form of vibrotactile stimulation should focus on older adults whose balance is significantly affected.
Collapse
|
23
|
King GW, Abreu EL, Cheng AL, Chertoff KK, Brotto L, Kelly PJ, Brotto M. A multimodal assessment of balance in elderly and young adults. Oncotarget 2016; 7:13297-306. [PMID: 26934319 PMCID: PMC4924642 DOI: 10.18632/oncotarget.7758] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/30/2016] [Indexed: 11/25/2022] Open
Abstract
Falling is a significant health issue among elderly adults. Given the multifactorial nature of falls, effective balance and fall risk assessment must take into account factors from multiple sources. Here we investigate the relationship between fall risk and a diverse set of biochemical and biomechanical variables including: skeletal muscle-specific troponin T (sTnT), maximal strength measures derived from isometric grip and leg extension tasks, and postural sway captured from a force platform during a quiet stance task. These measures were performed in eight young and eleven elderly adults, along with estimates of fall risk derived from the Tinetti Balance Assessment. We observed age-related effects in all measurements, including a trend toward increased sTnT levels, increased postural sway, reduced upper and lower extremity strength, and reduced balance scores. We observed a negative correlation between balance scores and sTnT levels, suggesting its use as a biomarker for fall risk. We observed a significant positive correlation between balance scores and strength measures, adding support to the notion that muscle strength plays a significant role in postural control. We observed a significant negative correlation between balance scores and postural sway, suggesting that fall risk is associated with more loosely controlled center of mass regulation.
Collapse
Affiliation(s)
- Gregory W. King
- Human Balance and Ambulation Research Laboratory, School of Computing and Engineering, University of Missouri, Kansas City, MO, USA
| | - Eduardo L. Abreu
- Human Balance and Ambulation Research Laboratory, School of Computing and Engineering, University of Missouri, Kansas City, MO, USA
- Muscle Biology Research Group (MUBIG), School of Nursing and Health Studies, University of Missouri, Kansas City, MO, USA
| | - An-Lin Cheng
- Human Balance and Ambulation Research Laboratory, School of Computing and Engineering, University of Missouri, Kansas City, MO, USA
- Muscle Biology Research Group (MUBIG), School of Nursing and Health Studies, University of Missouri, Kansas City, MO, USA
| | - Keyna K. Chertoff
- Human Balance and Ambulation Research Laboratory, School of Computing and Engineering, University of Missouri, Kansas City, MO, USA
- Muscle Biology Research Group (MUBIG), School of Nursing and Health Studies, University of Missouri, Kansas City, MO, USA
| | - Leticia Brotto
- Human Balance and Ambulation Research Laboratory, School of Computing and Engineering, University of Missouri, Kansas City, MO, USA
- Current address: Bone-Muscle Collaborative Sciences, College of Nursing and Health Innovation, University of Texas, Arlington, TX, USA
| | - Patricia J. Kelly
- Muscle Biology Research Group (MUBIG), School of Nursing and Health Studies, University of Missouri, Kansas City, MO, USA
| | - Marco Brotto
- Human Balance and Ambulation Research Laboratory, School of Computing and Engineering, University of Missouri, Kansas City, MO, USA
- Muscle Biology Research Group (MUBIG), School of Nursing and Health Studies, University of Missouri, Kansas City, MO, USA
- Current address: Bone-Muscle Collaborative Sciences, College of Nursing and Health Innovation, University of Texas, Arlington, TX, USA
| |
Collapse
|
24
|
Lubetzky AV, Price R, Ciol MA, Kelly VE, McCoy SW. Relationship of multiscale entropy to task difficulty and sway velocity in healthy young adults. Somatosens Mot Res 2015; 32:211-8. [DOI: 10.3109/08990220.2015.1074565] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Anat V. Lubetzky
- Department of Physical Therapy, New York University, New York, NY, USA and
| | - Robert Price
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Marcia A. Ciol
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Valerie E. Kelly
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Sarah W. McCoy
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
25
|
Lee BC, Thrasher TA, Fisher SP, Layne CS. The effects of different sensory augmentation on weight-shifting balance exercises in Parkinson's disease and healthy elderly people: a proof-of-concept study. J Neuroeng Rehabil 2015; 12:75. [PMID: 26329918 PMCID: PMC4557900 DOI: 10.1186/s12984-015-0064-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/18/2015] [Indexed: 11/22/2022] Open
Abstract
Background Earlier versions of biofeedback systems for balance-related applications were intended primarily to provide “alarm” signals about body tilt rather than to guide rehabilitation exercise motion. Additionally, there have been few attempts to evaluate guidance modalities for balance rehabilitation exercises. The purpose of this proof-of-concept study is to evaluate the effects of guidance modalities during common dynamic weight-shifting exercises used in clinical settings. Methods A motion guidance system providing visual biofeedback, vibrotactile biofeedback, or both, was used during weight-shifting exercises. Eleven people with idiopathic Parkinson’s disease (PD) and nine healthy elderly people participated. Each participant wore a six-degree-of-freedom inertial measurement unit (IMU) located near the sacrum and four linear vibrating actuators (Tactors) attached to the skin over the front, back, and right and left sides of the abdomen. The IMU measured angular displacements and velocities of body tilt in anterior-posterior (A/P) and medial-lateral (M/L) directions. Participants were instructed to follow a slow moving target by shifting their weight in either the A/P or M/L direction up to 90 % of their limits of stability (LOS). Real-time position error was provided to participants in one of three sensory modalities: visual, vibrotactile, or both. Participants performed 5 trials for each biofeedback modality and movement direction (A/P and M/L) for a total of 30 trials in a random order. To characterize performance, position error was defined as the average absolute difference between the target and participant movements in degrees. Results Simultaneous delivery of visual and vibrotactile biofeedback resulted in significantly lower position error compared to either visual or vibrotactile biofeedback alone regardless of the movement direction for both participant cohorts. The pairwise comparisons were not significantly different between visual and vibrotactile biofeedback. Conclusion The study is the first attempt to assess the effects of guidance modalities on common balance rehabilitation exercises in people with PD and healthy elderly people. The results suggest that combined visual and vibrotactile biofeedback can improve volitional responses during postural tracking tasks. Index Terms – sensory augmentation, weight-shifting balance exercise, guidance modality, vibrotactile biofeedback, visual biofeedback, Parkinson’s disease.
Collapse
Affiliation(s)
- Beom-Chan Lee
- Department of Health and Human Performance, University of Houston, Houston, TX, USA. .,Center for Neuromotor and Biomechanics Research, University of Houston, Houston, TX, USA.
| | - Timothy A Thrasher
- Department of Health and Human Performance, University of Houston, Houston, TX, USA. .,Center for Neuromotor and Biomechanics Research, University of Houston, Houston, TX, USA.
| | - Stanley P Fisher
- Center for Neuromotor and Biomechanics Research, University of Houston, Houston, TX, USA. .,Movement Disorders and Neurorehabilitation Center, Houston Methodist Neurological Institute, Houston, TX, USA.
| | - Charles S Layne
- Department of Health and Human Performance, University of Houston, Houston, TX, USA. .,Center for Neuromotor and Biomechanics Research, University of Houston, Houston, TX, USA. .,Center for Neuro-Engineering and Cognitive Science, University of Houston, Houston, TX, USA.
| |
Collapse
|
26
|
Méndez-Balbuena I, Huidobro N, Silva M, Flores A, Trenado C, Quintanar L, Arias-Carrión O, Kristeva R, Manjarrez E. Effect of mechanical tactile noise on amplitude of visual evoked potentials: multisensory stochastic resonance. J Neurophysiol 2015; 114:2132-43. [PMID: 26156387 DOI: 10.1152/jn.00457.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/06/2015] [Indexed: 11/22/2022] Open
Abstract
The present investigation documents the electrophysiological occurrence of multisensory stochastic resonance in the human visual pathway elicited by tactile noise. We define multisensory stochastic resonance of brain evoked potentials as the phenomenon in which an intermediate level of input noise of one sensory modality enhances the brain evoked response of another sensory modality. Here we examined this phenomenon in visual evoked potentials (VEPs) modulated by the addition of tactile noise. Specifically, we examined whether a particular level of mechanical Gaussian noise applied to the index finger can improve the amplitude of the VEP. We compared the amplitude of the positive P100 VEP component between zero noise (ZN), optimal noise (ON), and high mechanical noise (HN). The data disclosed an inverted U-like graph for all the subjects, thus demonstrating the occurrence of a multisensory stochastic resonance in the P100 VEP.
Collapse
Affiliation(s)
| | - Nayeli Huidobro
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Mayte Silva
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Amira Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Carlos Trenado
- Institute of Clinical Neuroscience, Heinrich Heine University, Düsseldorf, Germany
| | - Luis Quintanar
- Facultad de Psicología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño (TMS), Hospital General Dr. Manuel Gea González/IFC-UNAM, Mexico City, Mexico; and
| | - Rumyana Kristeva
- Department of Neurology, University of Freiburg, Freiburg, Germany
| | - Elias Manjarrez
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico;
| |
Collapse
|