1
|
Leva TM, Whitmire CJ. Thermosensory thalamus: parallel processing across model organisms. Front Neurosci 2023; 17:1210949. [PMID: 37901427 PMCID: PMC10611468 DOI: 10.3389/fnins.2023.1210949] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/15/2023] [Indexed: 10/31/2023] Open
Abstract
The thalamus acts as an interface between the periphery and the cortex, with nearly every sensory modality processing information in the thalamocortical circuit. Despite well-established thalamic nuclei for visual, auditory, and tactile modalities, the key thalamic nuclei responsible for innocuous thermosensation remains under debate. Thermosensory information is first transduced by thermoreceptors located in the skin and then processed in the spinal cord. Temperature information is then transmitted to the brain through multiple spinal projection pathways including the spinothalamic tract and the spinoparabrachial tract. While there are fundamental studies of thermal transduction via thermosensitive channels in primary sensory afferents, thermal representation in the spinal projection neurons, and encoding of temperature in the primary cortical targets, comparatively little is known about the intermediate stage of processing in the thalamus. Multiple thalamic nuclei have been implicated in thermal encoding, each with a corresponding cortical target, but without a consensus on the role of each pathway. Here, we review a combination of anatomy, physiology, and behavioral studies across multiple animal models to characterize the thalamic representation of temperature in two proposed thermosensory information streams.
Collapse
Affiliation(s)
- Tobias M. Leva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clarissa J. Whitmire
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Casey KL, Geisser M, Lorenz J, Morrow TJ, Paulson P, Minoshima S. Psychophysical and cerebral responses to heat stimulation in patients with central pain, painless central sensory loss, and in healthy persons. Pain 2012; 153:331-341. [PMID: 22130307 PMCID: PMC3406931 DOI: 10.1016/j.pain.2011.10.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 08/18/2011] [Accepted: 10/20/2011] [Indexed: 01/02/2023]
Abstract
Patients with central pain (CP) typically have chronic pain within an area of reduced pain and temperature sensation, suggesting an impairment of endogenous pain modulation mechanisms. We tested the hypothesis that some brain structures normally activated by cutaneous heat stimulation would be hyperresponsive among patients with CP but not among patients with a central nervous system lesion causing a loss of heat or nociceptive sensation with no pain (NP). We used H(2)(15)O positron emission tomography to measure, in 15 healthy control participants, 10 NP patients, and 10 CP patients, increases in regional cerebral blood flow among volumes of interest (VOI) from the resting (no stimulus) condition during bilateral contact heat stimulation at heat detection, heat pain threshold, and heat pain tolerance levels. Both patient groups had a reduced perception of heat intensity and unpleasantness on the clinically affected side and a bilateral impairment of heat detection. Compared with the HC group, both NP and CP patients had more hyperactive and hypoactive VOI in the resting state and more hyperresponsive and hyporesponsive VOI during heat stimulation. Compared with NP patients, CP patients had more hyperresponsive VOI in the intralaminar thalamus and sensory-motor cortex during heat stimulation. Our results show that focal CNS lesions produce bilateral sensory deficits and widespread changes in the nociceptive excitability of the brain. The increased nociceptive excitability within the intralaminar thalamus and sensory-motor cortex of our sample of CP patients suggests an underlying pathophysiology for the pain in some central pain syndromes.
Collapse
Affiliation(s)
- Kenneth L. Casey
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Neurology Research, Veteran’s Affairs Medical Center, Ann Arbor, Michigan, USA
| | - Michael Geisser
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, Michigan, USA
| | - Jürgen Lorenz
- Faculty of Life Sciences, Hamburg University of Applied Sciences, Hamburg, Germany
| | - Thomas J. Morrow
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Neurology Research, Veteran’s Affairs Medical Center, Ann Arbor, Michigan, USA
| | - Pamela Paulson
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- Neurology Research, Veteran’s Affairs Medical Center, Ann Arbor, Michigan, USA
| | - Satoshi Minoshima
- Department of Radiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Functional interaction between medial thalamus and rostral anterior cingulate cortex in the suppression of pain affect. Neuroscience 2010; 172:460-73. [PMID: 21034797 DOI: 10.1016/j.neuroscience.2010.10.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/19/2010] [Accepted: 10/19/2010] [Indexed: 11/22/2022]
Abstract
The medial thalamic parafascicular nucleus (PF) and the rostral anterior cingulate cortex (rACC) are implicated in the processing and suppression of the affective dimension of pain. The present study evaluated the functional interaction between PF and rACC in mediating the suppression of pain affect in rats following administration of morphine or carbachol (acetylcholine agonist) into PF. Vocalizations that occur following a brief noxious tailshock (vocalization afterdischarges) are a validated rodent model of pain affect, and were preferentially suppressed by injection of morphine or carbachol into PF. Vocalizations that occur during tailshock were suppressed to a lesser degree, whereas, spinal motor reflexes (tail flick and hindlimb movements) were only slightly suppressed by injection of carbachol into PF and unaffected by injection of morphine into PF. Blocking glutamate receptors in rACC (NMDA and non-NMDA) by injecting D-2-amino-5-phosphonovalerate (AP-5) or 6-cyano-7-nitroquinoxaline-2,3-dione disodium (CNQX) produced dose-dependent antagonism of morphine-induced increases in vocalization thresholds. Carbachol-induced increases in vocalization thresholds were not affected by injection of either glutamate receptor antagonist into rACC. The results demonstrate that glutamate receptors in the rACC contribute to the suppression of pain affect produced by injection of morphine into PF, but not to the suppression of pain affect generated by intra-PF injection of carbachol.
Collapse
|
4
|
Abstract
The distribution in the thalamus of terminal projections from lamina I neurons of the trigeminal, cervical, and lumbosacral dorsal horn was investigated with the anterograde tracer Phaseolus vulgaris leucoagglutinin (PHA-L) in the cat. Iontophoretic injections were guided by single- and multi-unit physiological recordings. The injections in particular cases were essentially restricted to lamina I, whereas in others they spread across laminae I-III or laminae I-V. The trigemino- and spinothalamic (TSTT) terminations were identified immunohistochemically. In all cases, regardless of the level of the injections, terminal fibers were consistently distributed in three main locations: the submedial nucleus; the ventral aspect of the basal ventral medial nucleus and ventral posterior nuclei; and, the dorsomedial aspect of the ventral posterior medial nucleus. The terminal fields in the submedial nucleus and the ventral aspect of the ventral posterior group were topographically organized. Terminations along the ventral aspect of the ventral posterior group extended posterolaterally into the caudal part of the posterior nucleus and anteromedially into the ventromedial part of the ventral lateral nucleus. In several cases with trigeminal lamina I injections, a terminal labeling patch was observed within the core of the ventral posterior medial nucleus. In cases with spinal lamina I injections, terminations were also consistently found in the lateral habenula, the parafascicular nucleus, and the nucleus reuniens. Isolated terminal fibers were occasionally seen in the zona incerta, the dorsomedial hypothalamus, and other locations. These anatomical observations extend prior studies of TSTT projections and identify lamina I projection targets that are important for nociceptive, thermoreceptive, and homeostatic processing in the cat. The findings are consistent with evidence from physiological (single-unit and antidromic mapping) and behavioral studies. The novel identification of spinal lamina I input to the lateral habenula could be significant for homeostatic behaviors.
Collapse
Affiliation(s)
- A D Craig
- Atkinson Pain Research Laboratory, Barrow Neurological Institute, Phoenix, AZ 85013, USA.
| |
Collapse
|
5
|
Valeriani M, Le Pera D, Restuccia D, de Armas L, Miliucci R, Betti V, Vigevano F, Tonali P. Parallel spinal pathways generate the middle-latency N1 and the late P2 components of the laser evoked potentials. Clin Neurophysiol 2007; 118:1097-104. [PMID: 17368092 DOI: 10.1016/j.clinph.2007.01.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 01/17/2007] [Accepted: 01/28/2007] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To investigate the possible presence of multiple spino-thalamic pathways with different conduction velocities (CVs) in the human spinal cord. METHODS Laser evoked potentials (LEPs) were recorded in 10 healthy subjects after stimulation of the dorsal midline at four vertebral level: C5, T2, T6, and T10. This method allowed us to minimize the influence of the conduction in the peripheral fibers and to calculate the spinal CV in two different ways: (1) the reciprocal of the slope of the regression line was obtained from the latencies of the different LEP components, and (2) the distance between C5 and T10 was divided by the latency difference of the responses at the two sites. In particular, we considered the middle-latency N1 potential (latencies of around 135, 150, 157, and 171 ms after stimulation at C5, T2, T6, and T10 levels, respectively), which is generated in the second somatosensory (SII) area, and the late P2 response (latencies of around 336, 344, 346, and 362 ms after stimulation at C5, T2, T6, and T10 levels, respectively), which is generated in the anterior cingulate cortex (ACC). RESULTS The calculated CV of the spinal fibers generating the N1 potential (around 9 m/s) was significantly different (P<0.05) from the one of the pathway producing the P2 response (around 13 m/s). CONCLUSIONS Our results suggest that the N1 and the P2 LEP components are generated by two parallel spinal pathways. SIGNIFICANCE Both the N1 and P2 potentials should be recorded in the clinical routine since a dissociated abnormality of either response may be found in lesions of the nociceptive system not only in the brain, but also at spinal cord level.
Collapse
|
6
|
Saadé NE, Al Amin H, Abdel Baki S, Chalouhi S, Jabbur SJ, Atweh SF. Reversible attenuation of neuropathic-like manifestations in rats by lesions or local blocks of the intralaminar or the medial thalamic nuclei. Exp Neurol 2006; 204:205-19. [PMID: 17134698 DOI: 10.1016/j.expneurol.2006.10.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 10/18/2006] [Accepted: 10/23/2006] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND AIM Thalamic somatosensory nuclei have been classified into medial and lateral systems based on their role in nociception. An imbalance between these two systems may result in abnormal somatic sensations and spontaneous pain. This study aims to investigate the effects of transient or permanent block of the medial and intralaminar nuclear groups on the neuropathic-like behavior in a rat model for mononeuropathy. METHODS Neuropathy was induced on one hind paw in different groups of rats following the spared nerve injury model. When the resulting hyperalgesia and allodynia (tactile and cold) reached a maximum plateau, the rats received either chemical or electrolytic lesion or lidocaine (2%) microperfusion, placed in the various thalamic nuclear groups. RESULTS All procedures produced transient but significant decrease of neuropathic manifestations. The magnitude and duration of decrease depended on the type and the site of the block. These effects can be ranked in increasing order as follows, electrolytic<chemical<lidocaine micro-perfusion according to the procedure, and as rostro-medial<ventro-median<parafascicular nuclei, according to the site of the block. Thermal hyperalgesia was the most affected while cold allodynia showed the least attenuation. Neuropathic manifestations returned to their pre-lesion levels after 2-3 weeks, along with frequently observed delayed hyper-responsiveness to the hotplate test. CONCLUSION The observed results demonstrate the involvement of the medial and intralaminar thalamic nuclei in the processing of neuropathic-like manifestations, and the reversibility of the effects suggests the flexibility of the neural network involved in supraspinal processing of nociceptive information.
Collapse
Affiliation(s)
- N E Saadé
- Department of Human Morphology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | | | | | | | | | | |
Collapse
|
7
|
Craig AD'B'. Retrograde analyses of spinothalamic projections in the macaque monkey: Input to ventral posterior nuclei. J Comp Neurol 2006; 499:965-78. [PMID: 17072832 DOI: 10.1002/cne.21154] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The distribution of retrogradely labeled spinothalamic tract (STT) neurons was analyzed in monkeys following variously sized injections of cholera toxin subunit B (CTb) in order to determine whether different STT termination sites receive input from different sets of STT cells. This report focuses on STT input to the ventral posterior lateral nucleus (VPL) and the subjacent ventral posterior inferior nucleus (VPI), where prior anterograde tracing studies identified scattered STT terminal bursts and a dense terminal field, respectively. In cases with small or medium-sized injections in VPL, labeled STT cells were located almost entirely in lamina V (in spinal segments consistent with the mediolateral VPL topography); few cells were labeled in lamina I (<8%) and essentially none in lamina VII. Large and very large injections in VPL produced marked increases in labeling in lamina I, associated first with spread into VPI and next into the posterior part of the ventral medial nucleus (VMpo), and abundant labeling in lamina VII, associated with spread into the ventral lateral (VL) nucleus. Small injections restricted to VPI labeled many STT cells in laminae I and V with an anteroposterior topography. These observations indicate that VPL receives STT input almost entirely from lamina V neurons, whereas VPI receives STT input from both laminae I and V cells, with two different topographic organizations. Together with the preceding observation that STT input to VMpo originates almost entirely from lamina I, these findings provide strong evidence that the primate STT consists of anatomically and functionally differentiable components.
Collapse
Affiliation(s)
- A D ' Bud ' Craig
- Atkinson Research Laboratory, Barrow Neurological Institute, Phoenix, Arizona 85013, USA.
| |
Collapse
|
8
|
Andrew D, Krout KE, Craig ADB. Differentiation of lamina I spinomedullary and spinothalamic neurons in the cat. J Comp Neurol 2003; 458:257-71. [PMID: 12619080 DOI: 10.1002/cne.10592] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We characterized spinomedullary neurons that project to the ventrolateral portion of the medulla that receives lamina I terminations in two sets of experiments in the cat. First, their distribution was examined using single unilateral iontophoretic injections of cholera toxin subunit B. The injection sites were characterized by microelectrode recordings from nociceptive- and thermoreceptive-specific units, indicative of lamina I input. The spinomedullary neurons were symmetrically distributed bilaterally, predominantly (63-69%) in lamina I but also in laminae V-VIII and the thoracic lateral horn (intermediolateral cell column). In horizontal sections, spinomedullary lamina I neurons included all three main morphological types described earlier. Second, spinomedullary and spinothalamic neurons were compared in retrograde double-labeling experiments. Different combinations of tracers were injected in the right thalamus and the left or right ventrolateral medulla (guided by recordings). The numbers of spinomedullary and spinothalamic neurons on the left side were comparable, and the segmental and laminar distributions were similar, except that a greater proportion of spinomedullary neurons originated from thoracic segments. However, the proportion of double-labeled neurons was consistently approximately 1%, indicating that spinomedullary and spinothalamic pathways arise from separate subpopulations. Spinomedullary neurons were more ventrally located within lamina I than spinothalamic neurons. A significantly greater proportion of spinomedullary neurons had fusiform somata (49% vs. 36%). These observations indicate that lamina I is the major source of spinal input to this portion of the ventrolateral medulla, that the projection includes several morphological types of inputs, and that this projection is distinct from the spinothalamic projection. These findings are consistent with the concept that lamina I projections constitute an ascending homeostatic afferent pathway relating the physiological condition of the body.
Collapse
Affiliation(s)
- David Andrew
- Atkinson Pain Research Laboratory, Division of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona 85013, USA
| | | | | |
Collapse
|
9
|
Gauriau C, Bernard JF. A comparative reappraisal of projections from the superficial laminae of the dorsal horn in the rat: The forebrain. J Comp Neurol 2003; 468:24-56. [PMID: 14648689 DOI: 10.1002/cne.10873] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Projections to the forebrain from lamina I of spinal and trigeminal dorsal horn were labeled anterogradely with Phaseolus vulgaris-leucoagglutinin (PHA-L) and/or tetramethylrhodamine-dextran (RHO-D) injected microiontophoretically. Injections restricted to superficial laminae (I/II) of dorsal horn were used primarily. For comparison, injections were also made in deep cervical laminae. Spinal and trigeminal lamina I neurons project extensively to restricted portions of the ventral posterolateral and posteromedial (VPL/VPM), and the posterior group (Po) thalamic nuclei. Lamina I also projects to the triangular posterior (PoT) and the ventral posterior parvicellular (VPPC) thalamic nuclei but only very slightly to the extrathalamic forebrain. Furthermore, the lateral spinal (LS) nucleus, and to a lesser extent lamina I, project to the mediodorsal thalamic nucleus. In contrast to lamina I, deep spinal laminae project primarily to the central lateral thalamic nucleus (CL) and only weakly to the remaining thalamus, except for a medium projection to the PoT. Furthermore, the deep laminae project substantially to the globus pallidus and the substantia innominata and more weakly to the amygdala and the hypothalamus. Double-labeling experiments reveal that spinal and trigeminal lamina I project densely to distinct and restricted portions of VPL/VPM, Po, and VPPC thalamic nuclei, whereas projections to the PoT appeared to be convergent. In conclusion, these experiments indicate very different patterns of projection for lamina I versus deep laminae (III-X). Lamina I projects strongly onto relay thalamic nuclei and thus would have a primary role in sensory discriminative aspects of pain. The deep laminae project densely to the CL and more diffusely to other forebrain targets, suggesting roles in motor and alertness components of pain.
Collapse
Affiliation(s)
- Caroline Gauriau
- Institut National de la Santé et de la Recherche Médicale, INSERM U-288, F-75013 Paris, France
| | | |
Collapse
|
10
|
Sewards TV, Sewards M. Separate, parallel sensory and hedonic pathways in the mammalian somatosensory system. Brain Res Bull 2002; 58:243-60. [PMID: 12128150 DOI: 10.1016/s0361-9230(02)00783-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We propose that separate sensory and hedonic representations exist in each of the primary structures of the somatosensory system, including brainstem, thalamic and cortical components. In the dorsal horn of the spinal cord, the hedonic representation, which consists primarily of nociceptive-specific, wide dynamic range, and thermoreceptive neurons, is located in laminae I and II, while the sensory representation, composed primarily by low-threshold and wide dynamic range neurons, is found in laminae III through V. A similar arrangement is found in the caudal spinal trigeminal nucleus. Based on the available anatomical and electrophysiological data, we then determine the corresponding hedonic and sensory representations in the area of the dorsal column nuclei, ventrobasal and posterior thalamic complex, and cortex. In rodent primary somatosensory cortex, a hedonic representation can be found in laminae Vb and VI. In carnivore and primate primary and secondary somatosensory cortical areas no hedonic representation exists, and the activities of neurons in both areas represent the sensory aspect exclusively. However, there is a hedonic representation in the posterior part of insular cortex, bordering on retroinsular cortex, that receives projections from two thalamic areas in which hedonics are represented. The functions of the segregated components of the system are discussed, especially in relation to the subjective awareness of pain.
Collapse
|
11
|
Zhang X, Wenk HN, Honda CN, Giesler GJ. Locations of spinothalamic tract axons in cervical and thoracic spinal cord white matter in monkeys. J Neurophysiol 2000; 83:2869-80. [PMID: 10805684 DOI: 10.1152/jn.2000.83.5.2869] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The spinothalamic tract (STT) is the primary pathway carrying nociceptive information from the spinal cord to the brain in humans. The aim of this study was to understand better the organization of STT axons within the spinal cord white matter of monkeys. The location of STT axons was determined using method of antidromic activation. Twenty-six lumbar STT cells were isolated. Nineteen were classified as wide dynamic range neurons and seven as high-threshold cells. Fifteen STT neurons were recorded in the deep dorsal horn (DDH) and 11 in superficial dorsal horn (SDH). The axons of 26 STT neurons were located at 73 low-threshold points (<30 microA) within the lateral funiculus from T(9) to C(6). STT neurons in the SDH were activated from 33 low-threshold points, neurons in the DDH from 40 low-threshold points. In lower thoracic segments, SDH neurons were antidromically activated from low-threshold points at the dorsal-ventral level of the denticulate ligament. Neurons in the DDH were activated from points located slightly ventral, within the ventral lateral funiculus. At higher segmental levels, axons from SDH neurons continued in a position dorsal to those of neurons in the DDH. However, axons from neurons in both areas of the gray matter were activated from points located in more ventral positions within the lateral funiculus. Unlike the suggestions in several previous reports, the present findings indicate that STT axons originating in the lumbar cord shift into increasingly ventral positions as they ascend the length of the spinal cord.
Collapse
Affiliation(s)
- X Zhang
- Department of Neuroscience, Graduate Program in Neuroscience, University of Minnesota, Minneapolis 55455, USA
| | | | | | | |
Collapse
|
12
|
Craig A. Spinal location of ascending lamina I axons in the macaque monkey. THE JOURNAL OF PAIN 2000. [DOI: 10.1016/s1526-5900(00)90086-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Bice TN, Beal JA. Quantitative and neurogenic analysis of neurons with supraspinal projections in the superficial dorsal horn of the rat lumbar spinal cord. J Comp Neurol 1997; 388:565-74. [PMID: 9388016 DOI: 10.1002/(sici)1096-9861(19971201)388:4<565::aid-cne5>3.0.co;2-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dual retrograde axonal tracers, Fluoro-Gold (FG) and true blue (TB), were used in conjunction with [3H]thymidine autoradiography to determine the number and neurogenic pattern of neurons with supraspinal projections in the superficial dorsal horn (SDH), i.e., laminae I and II, in spinal segment L1 of the rat. FG was injected into rostral brain centers (dorsal thalamus and midbrain), and TB was injected into the caudal brainstem (medulla) in young adult rats previously administered [3H]thymidine in utero. Following stereological correction, each dorsal horn had an average of 1.22 neurons in lamina I and 0.24 neurons in lamina II that had supraspinal projections per 10-microm transverse section. In the SDH, 52% of the neurons with supraspinal projections were found to project to rostral brain centers alone, 3.0% only to the caudal brainstem, and 45% to both areas. There was no significant difference in the percentage distribution of each of the three groups of neurons between lamina I and lamina II. Cell counts in the present study, in conjunction with previous observations in the literature, suggest that the majority of supraspinal projection neurons in the SDH fall into two groups: 1) spinomesencephalic neurons with collaterals to the medulla and 2) spinothalamic neurons with collaterals to the midbrain. The neurogenesis of supraspinal projection neurons in the SDH proceeded along an axon-length gradient, whereby neurons with the longest axons, those with projections to rostral brain centers, completed neurogenesis prior to neurons with shorter axons, those with projections only to the caudal brainstem. The generation of all SDH neurons with supraspinal projections was completed on embryonic day 14 (E14), 2 days prior to the completion of neurogenesis for SDH neurons with intraspinal projections.
Collapse
Affiliation(s)
- T N Bice
- Department of Cellular Biology and Anatomy, Louisiana State University Medical Center in Shreveport, 71130, USA
| | | |
Collapse
|
14
|
Craig AD. Spinal distribution of ascending lamina I axons anterogradely labeled with Phaseolus vulgaris leucoagglutinin (PHA-L) in the cat. J Comp Neurol 1991; 313:377-93. [PMID: 1722491 DOI: 10.1002/cne.903130212] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The location of the ascending axons of spinal lamina I cells was studied in cats that received injections of Phaseolus vulgaris leucoagglutinin (PHA-L) in the superficial dorsal horn of the cervical or lumbosacral enlargement. Lamina I axons that could be ascribed to the spinothalamic tract (STT) were of particular interest. The cases were divided into three sets: in seven optimal cases the injections were restricted to lamina I; in ten nominal cases the injections involved laminae I-II or laminae I-III and occasionally lamina IV; and in eight mixed cases laminae I-V were injected. Since ipsilateral propriospinal and bilateral supraspinal axons originate from laminae I and V, but only ipsilateral propriospinal axons from laminae II-IV, this categorization facilitated a comparative analysis. Ascending axons labeled immunohistochemically with avidin/Texas Red were observed in oblique transverse sections from the C1, C3/4, T6, T12, and L3/4 levels. Incidental axonal labeling occurred in the ipsilateral dorsal columns because of passing primary afferent fiber uptake and, in nominal and mixed cases with involvement of laminae III-IV, in the superficial dorsolateral funiculus at the location of the spinocervical tract. Ipsilateral ascending lamina I axons in optimal cases were located in Lissauer's tract and in the white matter adjacent to the dorsal horn. Since these appeared to terminate in lamina I, and few remained at C1, they were ascribed to propriospinal projections. Contralateral ascending lamina I axons in optimal and nominal cases were distributed throughout the dorsal and ventral portions of the lateral funiculus (LF), but, despite considerable variability between animals in their location and dispersion, they were consistently concentrated in the middle of the LF (i.e., at the level of the central canal). This concentration was observed in a slightly more ventral location at C1, and a similar but weaker concentration of lamina I axons was located slightly more dorsally in C1 on the ipsilateral side. These supraspinal lamina I projections were ascribed to the spinomesencephalic tract (SMT) and to the STT. In mixed cases, additional ascending axons ascribed to lamina V cells were labeled in the ventrolateral and ventral funiculi. Many labeled axons were found in this region following a large injection of biocytin into lumbosacral laminae V-VIII in a supplementary case. These results thus together support previous descriptions of a dorsoventral distribution of STT axons according to laminar origin, but they contradict recent reports that lamina I axons ascend in the dorsolateral funiculus.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- A D Craig
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona 85013
| |
Collapse
|
15
|
Ren K, Randich A, Gebhart GF. Effects of electrical stimulation of vagal afferents on spinothalamic tract cells in the rat. Pain 1991; 44:311-319. [PMID: 1646992 DOI: 10.1016/0304-3959(91)90102-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effects of electrical stimulation of cervical vagal afferents (VAS) on the background activity and on the responses of 25 spinothalamic tract (STT) neurons to noxious stimuli were studied in anesthetized rats. Background (spontaneous) activity of 9 (36%) STT neurons was inhibited by all intensities of VAS. 6 (24%) units were facilitated at lesser and inhibited at greater intensities of VAS, 5 (20%) units were only facilitated by all intensities of VAS, and 5 (20%) units were not affected by VAS. Responses of 8 (36%) STT neurons to noxious stimuli were only inhibited by VAS, 9 (41%) were facilitated at lesser and inhibited at greater intensities of VAS, and 5 units (23%) were only facilitated by VAS. There were no significant differences in VAS-produced modulatory effects between STT neurons and 16 unidentified lumbar spinal dorsal horn neurons studied under the same conditions. These results reveal that descending facilitatory and inhibitory pathways engaged by activation of vagal afferents modulate rostrally projecting nociceptive transmission neurons in the spinal cord, constituting an important regulatory network for nociception.
Collapse
Affiliation(s)
- K Ren
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242 U.S.A. Department of Psychology, University of Iowa, Iowa City, IA 52242 U.S.A
| | | | | |
Collapse
|
16
|
Stevens RT, Apkarian AV, Hodge CJ. The location of spinothalamic axons within spinal cord white matter in cat and squirrel monkey. Somatosens Mot Res 1991; 8:97-102. [PMID: 1887729 DOI: 10.3109/08990229109144733] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The locations of spinothalamic (STT) fibers in the spinal cord white matter have been identified in cat and squirrel monkey by light-microscopic visualization of labeled fibers following multiple thalamic injections of wheatgerm agglutinin conjugated to horseradish peroxidase. Thalamic injections were combined with either a constricting dural tie or an intraspinal injection of colchicine to facilitate axonal labeling at more rostral spinal levels. In the cat, the ventral-to-dorsal distribution of labeled STT fibers was bimodal. In the ventrolateral white matter, labeled axons were coarse in nature and were primarily concentrated peripherally. In the dorsolateral white matter, labeled STT axons consisted of fine-caliber fibers concentrated in the ventral portion of the dorsolateral funiculus and were equally distributed throughout the medial and lateral white matter. In the squirrel monkey, the distribution of STT fibers was unimodal, extending from the ventral surface of the spinal white matter to the ventralmost portion of the dorsolateral funiculus. As in the cat, however, the ventrally located axons were large and coarse and were primarily located in the peripheral white matter, whereas the dorsalmost STT fibers were of fine caliber and were distributed equally in the medial and lateral white matter.
Collapse
Affiliation(s)
- R T Stevens
- Department of Neurosurgery, SUNY Health Science Center, Syracuse 13210
| | | | | |
Collapse
|
17
|
Apkarian AV, Hodge CJ. Primate spinothalamic pathways: I. A quantitative study of the cells of origin of the spinothalamic pathway. J Comp Neurol 1989; 288:447-73. [PMID: 2477420 DOI: 10.1002/cne.902880307] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In six monkeys spinothalamic (STT) cells were retrogradely labeled by injecting 2% wheat germ agglutinin-conjugated horseradish peroxidase into the somatosensory thalamus. Following a 5-day survival period, the animals were perfused and the tissue was removed and processed with the tetramethyl benzidine technique. In all animals there were HRP-labeled STT cells in all segments of the spinal cord. In one old world monkey, the injection included most of the thalamus and resulted in 18.235 estimated total number of STT cells. Of this total, 35% were located in the upper cervical segments (C1-C3), 18% were located in C4-C8, 19% were in the thoracic spinal cord with most found in T1-T3; 6% were in L1-L3, 13% were in L4-L7, and 7% were in the coccygeal segments. Of the total labeled STT cells, 17% were found in the spinal cord ipsilateral to the thalamic injections; 53% of these cells were located in C1-C3 primarily in lamina VIII. The percentage of label found in the contralateral lower cervical region laminae I-III (43-50%), IV-VI (33-48%), and VII-X (8-17%) was similar among three animals with similar thalamic injections. The distributions of the shapes of the labeled STT cells were similar for each lamina between the lower cervical and lower lumbar regions. The mean diameter of the labeled STT cells varied with spinal cord segment and lamina. The lamina I STT cells were the smallest. In the cervical spinal cord, lamina VIII STT cells had the largest diameters, while in the lumbar region laminae IV-VI had the largest STT cells.
Collapse
Affiliation(s)
- A V Apkarian
- Department of Neurosurgery, SUNY Health Science Center, Syracuse 13210
| | | |
Collapse
|
18
|
Apkarian AV, Hodge CJ. Primate spinothalamic pathways: II. The cells of origin of the dorsolateral and ventral spinothalamic pathways. J Comp Neurol 1989; 288:474-92. [PMID: 2794144 DOI: 10.1002/cne.902880308] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The cells of origin of the dorsolateral (DSTT) and the ventral (VSTT) spinothalamic tracts were studied in 11 monkeys. The spinothalamic tract cells were retrogradely labeled by horseradish peroxidase (HRP) injected in the thalamus. All animals also received a midthoracic spinal cord lesion on the side ipsilateral to the thalamic injections. The distribution of labeled cells found in these animals throughout the cervical segments was similar to animals with no spinal cord lesions. Five animals had ventral quadrant lesions to demonstrate the cells of origin of the DSTT. In macaques with complete ventral quadrant lesions, more than 80% of the HRP label in the contralateral L4-L7 segments was located in lamina I, while in squirrel monkeys, the label in the contralateral lower lumbar region was distributed between laminae I-III and IV-VI. Few labeled cells were found in laminae VII-X. Six animals received dorsolateral funiculus lesions to demonstrate the cells of origin of the VSTT. In animals with adequate lesions, 84-99% of the contralateral HRP label in L4-L7 was located in laminae IV-X. Macaques had a larger percentage of labeled cells located in lamina I than squirrel monkeys. The results indicate the existence of two spinothalamic pathways in the primate. The DSTT was calculated to compose about one fourth of the total spinothalamic population.
Collapse
Affiliation(s)
- A V Apkarian
- Neurosurgery Department, SUNY Health Science Center, Syracuse 13210
| | | |
Collapse
|
19
|
Apkarian AV, Hodge CJ. Primate spinothalamic pathways: III. Thalamic terminations of the dorsolateral and ventral spinothalamic pathways. J Comp Neurol 1989; 288:493-511. [PMID: 2477421 DOI: 10.1002/cne.902880309] [Citation(s) in RCA: 154] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The termination sites of the dorsolateral (DSTT) and ventral (VSTT) spinothalamic pathways were determined by using anterograde transport of horseradish peroxidase from the lumbar spinal cord in primates. One animal had no spinal cord lesion, while of two other animals, one received a midthoracic dorsolateral funiculus lesion, and the other received a midthoracic ventral quadrant lesion contralateral to the injection. The thalamic label in the animal with no spinal cord lesion was much less than the label in the two animals with spinal lesions. Moreover, in the animals with spinal lesions, HRP-labeled cells were found within the thalamus. Therefore, the remaining six animals received ipsilateral hemisections and bilateral dorsal column lesions, irrespective of the contralateral lesions. The thalamic label in the animals without contralateral lesions were assumed to represent the total spinothalamic input to the diencephalon. In these animals, label was located mainly in suprageniculate and pulvinar oralis, caudal and oral divisions of ventral posterior lateral nucleus, the lateral half of ventral posterior inferior nucleus, and zona incerta, while in the medial thalamus label was primarily in two distinct bands in medial dorsal nucleus and in the posterior dorsal portion of central lateral nucleus. Scattered lighter labeling was found in other thalamic nuclei. The pattern of terminal labeling observed in the ventral posterior lateral region was arranged in patches, while elsewhere in the thalamus a more uniform labeling pattern was observed. The thalamic label in animals with contralateral ventral quadrant lesions represented the terminations of the DSTT, while the label in animals with contralateral dorsolateral funiculus lesions represented VSTT terminations. The labeling pattern was similar between these two groups. However, there were small differences between them. These results indicate that DSTT and VSTT terminations largely overlap and innervate the lateral and medial thalamamus.
Collapse
Affiliation(s)
- A V Apkarian
- Neurosurgery Department, SUNY Health Science Center, Syracuse 13210
| | | |
Collapse
|