1
|
Jeyaraman M, Bingi SK, Muthu S, Jeyaraman N, Packkyarathinam RP, Ranjan R, Sharma S, Jha SK, Khanna M, Rajendran SNS, Rajendran RL, Gangadaran P. Impact of the Process Variables on the Yield of Mesenchymal Stromal Cells from Bone Marrow Aspirate Concentrate. Bioengineering (Basel) 2022; 9:bioengineering9020057. [PMID: 35200410 PMCID: PMC8869489 DOI: 10.3390/bioengineering9020057] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Human bone marrow (BM) has been highlighted as a promising source of mesenchymal stromal cells (MSCs) containing various growth factors and cytokines that can be potentially utilized in regenerative procedures involving cartilage and bone. However, the proportion of MSCs in the nucleated cell population of BM is only around 0.001% to 0.01% thereby making the harvesting and processing technique crucial for obtaining optimal results upon its use in various regenerative processes. Although several studies in the literature have given encouraging results on the utility of BM aspiration concentrate (BMAC) in various regenerative procedures, there is a lack of consensus concerning the harvesting variables such as choice of anesthetic agent to be used, site of harvest, size of the syringe to be used, anticoagulant of choice, and processing variables such as centrifugation time, and speed. In this review article, we aim to discuss the variables in the harvesting and processing technique of BMAC and their impact on the yield of MSCs in the final concentrate obtained from them.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine, Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, India;
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India;
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, India; (S.K.B.); (M.K.)
| | - Shiva Kumar Bingi
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, India; (S.K.B.); (M.K.)
- Fellow in Orthopaedic Rheumatology, Dr. RML National Law University, Lucknow 226010, India
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India;
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, India; (S.K.B.); (M.K.)
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624304, India
- Correspondence: (S.M.); (N.J.); (P.G.)
| | - Naveen Jeyaraman
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, India; (S.K.B.); (M.K.)
- Fellow in Orthopaedic Rheumatology, Dr. RML National Law University, Lucknow 226010, India
- Fellow in Joint Replacement, Department of Orthopaedics, Atlas Hospitals, Tiruchirappalli 620002, India
- Correspondence: (S.M.); (N.J.); (P.G.)
| | | | - Rajni Ranjan
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida 201310, India;
| | - Shilpa Sharma
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India;
| | - Manish Khanna
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, India; (S.K.B.); (M.K.)
- Department of Orthopaedics, Prasad Institute of Medical Sciences, Lucknow 226401, India
| | - Sree Naga Sowndary Rajendran
- Department of Medicine, Sri Venkateshwaraa Medical College Hospital and Research Centre, Puducherry 605102, India;
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (S.M.); (N.J.); (P.G.)
| |
Collapse
|
2
|
Regenerative Potential of Platelet Concentrate Lysate in Mechanically Injured Cartilage and Matrix-Associated Chondrocyte Implantation In Vitro. Int J Mol Sci 2021; 22:ijms222413179. [PMID: 34947976 PMCID: PMC8703707 DOI: 10.3390/ijms222413179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 11/26/2022] Open
Abstract
Adjuvant therapy in autologous chondrocyte implantation (ACI) can control the post-traumatic environment and guide graft maturation to support cartilage repair. To investigate both aspects, we examined potential chondro-regenerative effects of lysed platelet concentrate (PC) and supplementary interleukin 10 (IL-10) on mechanically injured cartilage and on clinically used ACI scaffolds. ACI remnants and human cartilage explants, which were applied to an uniaxial unconfined compression as injury model, were treated with human IL-10 and/or PC from thrombocyte concentrates. We analyzed nuclear blebbing/TUNEL, sGAG content, immunohistochemistry, and the expression of COL1A1, COL2A1, COL10A1, SOX9, and ACAN. Post-injuriously, PC was associated with less cell death, increased COL2A1 expression, and decreased COL10A1 expression and, interestingly, the combination with Il-10 or Il-10 alone had no additional effects, except on COL10A1, which was most effectively decreased by the combination of PC and Il-10. The expression of COL2A1 or SOX9 was statistically not modulated by these substances. In contrast, in chondrocytes in ACI grafts the combination of PC and IL-10 had the most pronounced effects on all parameters except ACAN. Thus, using adjuvants such as PC and IL-10, preferably in combination, is a promising strategy for enhancing repair and graft maturation of autologous transplanted chondrocytes after cartilage injury.
Collapse
|
3
|
Tang R, Wang S, Yang J, Wu T, Fei J. Application of platelet-rich plasma in traumatic bone infections. Expert Rev Anti Infect Ther 2020; 19:867-875. [PMID: 33259253 DOI: 10.1080/14787210.2021.1858801] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Traumatic bone infection represents a clinical challenge for orthopedic surgeons. Traditional treatments include surgical debridement and antibiotic, but prolonged use of antibiotic may lead to colonization of resistant bacteria and other adverse reactions.Areas covered: Platelet-rich plasma (PRP), a biological product extracted from the peripheral blood of patients, has been widely used in the field of tissue repair in recent years. Because if its structural and antibacterial properties, PRP is an innovative option for the prevention and treatment of infections. This review assesses the recent scientific literature on PRP, specifically its in the treatment of infections. To this end, a literature review was conducted using the PubMed and Web of Science databases with the following keywords 'platelet-rich plasma (PRP)'; 'PRP AND traumatic bone infections'; 'PRP AND bone defect'; 'PRP AND antibiotics'; and 'PRP AND wound healing'.Expert opinion: This review focuses on the mechanism of action, preparation methods, clinical applications and other aspects related to PRP to provide a reference for its use in the treatment of traumatic bone infections, thereby enhancing the therapeutic effectiveness and improving the prognosis of patients.
Collapse
Affiliation(s)
- Ruohui Tang
- Outpatient Department of 96824 Troops of the Chinese People's Liberation Army, Kunming, China
| | - Shaochuan Wang
- Emergency Department of Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jing Yang
- Emergency Department of Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tong Wu
- Department of Orthopedics, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Jun Fei
- Emergency Department of Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
4
|
Ex vivo expansion of cord blood-derived endothelial cells using a novel xeno-free culture media. Future Sci OA 2019; 5:FSO376. [PMID: 31245040 PMCID: PMC6554691 DOI: 10.2144/fsoa-2018-0103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/09/2019] [Indexed: 01/06/2023] Open
Abstract
Aim Endothelial cells (ECs), isolated from peripheral blood (PB), bone marrow (BM) and cord blood (CB), are limited in numbers and expansion has had limited success. We used a novel serum-free medium (EndoGo) to evaluate effects on ex vivo expansion of CB-derived ECs. Materials & methods Flow cytometry and matrigel were used to determine expansion of ECs and for determination of the EC progenitor cell. Results EndoGo™-containing cultures demonstrated superior expansion and stimulated proliferation of two distinct subpopulations, CD34+CD31+ and CD34-CD31+, which exhibited different morphology, phenotype and function. EndoGo also expanded the CB endothelial progenitor cells from freshly isolated CB. Conclusion These findings demonstrate the potential of EndoGo to expand CB ECs, which could generate increased numbers of ECs for therapeutic applications.
Collapse
|
5
|
Herrmann M, Stanić B, Hildebrand M, Alini M, Verrier S. In vitro simulation of the early proinflammatory phase in fracture healing reveals strong immunomodulatory effects of CD146-positive mesenchymal stromal cells. J Tissue Eng Regen Med 2019; 13:1466-1481. [PMID: 31132812 DOI: 10.1002/term.2902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 03/27/2019] [Accepted: 04/29/2019] [Indexed: 01/06/2023]
Abstract
The impact of microenvironmental cues and changes due to injury on the phenotype and fate of mesenchymal stromal cells (MSCs) is poorly understood. Here, we aimed to simulate the microenvironment associated with the early stage of bone healing in vitro and to study the regenerative response of MSCs. We enriched CD146+ MSCs from the human bone marrow. Different physiological and pathological microenvironments were simulated by using conditioned medium (CM) from human endothelial cells and osteoblasts (healthy bone), femoral head-derived bone fragments (injured bone), and activated platelets (platelet-rich plasma [PRP], injury). Cells were incubated in CM and analyzed with respect to proliferation, gene expression, migration, osteogenic differentiation, and their effect on polyclonally induced proliferation of peripheral blood mononuclear cells. CD146+ MSCs showed a specific response to different microenvironments. Cell proliferation was observed in all media with the highest values in PRP-CM and injured bone-CM. Gene expression analysis revealed the upregulation of chemokines, proinflammatory, proangiogenic, and genes involved in immunomodulation in cells stimulated with PRP- and injured bone-CM, suggesting strong paracrine activity. PRP-CM led to pronounced inhibition of lymphocyte proliferation by CD146+MSCs. Our results indicate that a microenvironment simulating bone injury elicits strong immunomodulatory and proangiogenic activity of CD146+ MSCs. This suggests that in the early stage of bone healing, the prime function of MSCs and their CD146+ subpopulation is in regulating the immune response and inducing neovascularization. Future studies will investigate the key components in CM driving this function, which might be potential targets to therapeutically stimulate the regenerative potential of MSCs.
Collapse
Affiliation(s)
- Marietta Herrmann
- AO Research Institute Davos, Davos Platz, Switzerland.,IZKF Research Group Tissue Regeneration in Musculoskeletal Diseases, University Clinics Würzburg and Orthopedic Center for Musculoskeletal Research, University of Würzburg, Germany
| | | | | | - Mauro Alini
- AO Research Institute Davos, Davos Platz, Switzerland
| | | |
Collapse
|
6
|
Ex vivoexpansion of cord blood-derived endothelial cells using a novel xeno-free culture media. Future Sci OA 2019. [DOI: 10.4155/fsoa-2018-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Naskou MC, Sumner SM, Chocallo A, Kemelmakher H, Thoresen M, Copland I, Galipeau J, Peroni JF. Platelet lysate as a novel serum-free media supplement for the culture of equine bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther 2018; 9:75. [PMID: 29566772 PMCID: PMC5863827 DOI: 10.1186/s13287-018-0823-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/01/2018] [Indexed: 12/19/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) produced for clinical purposes rely on culture media containing fetal bovine serum (FBS) which is xenogeneic and has the potential to significantly alter the MSC phenotype, rendering these cells immunogenic. As a result of bovine-derived exogenous proteins expressed on the cell surface, MSCs may be recognized by the host immune system as non-self and be rejected. Platelet lysate (PL) may obviate some of these concerns and shows promising results in human medicine as a possible alternative to FBS. Our goal was to evaluate the use of equine platelet lysate (ePL) pooled from donor horses in place of FBS to culture equine MSCs. We hypothesized that ePL, produced following apheresis, will function as the sole media supplement to accelerate the expansion of equine bone marrow-derived MSCs without altering their phenotype and their immunomodulatory capacity. Methods Platelet concentrate was obtained via plateletpheresis and ePL were produced via freeze-thaw and centrifugation cycles. Population doublings (PD) and doubling time (DT) of bone marrow-derived MSCs (n = 3) cultured with FBS or ePL media were calculated. Cell viability, immunophenotypic analysis, and trilineage differentiation capacity of MSCs were assessed accordingly. To assess the ability of MSCs to modulate inflammatory responses, E. coli lipopolysaccharide (LPS)-stimulated monocytes were cocultured with MSCs cultured in the two different media formulations, and cell culture supernatants were assayed for the production of tumor necrosis factor (TNF)-α. Results Our results showed that MSCs cultured in ePL media exhibited similar proliferation rates (PD and DT) compared with those cultured in FBS at individual time points. MSCs cultured in ePL showed a statistically significant increased viability following a single washing step, expressed similar levels of MSC markers compared to FBS, and were able to differentiate towards the three lineages. Finally, MSCs cultured in ePL efficiently suppressed the release of TNF-α when exposed to LPS-stimulated monocytes similar to those cultured in FBS. Conclusion ePL has the potential to be used for the expansion of MSCs before clinical application, avoiding the concerns associated with the use of FBS.
Collapse
Affiliation(s)
- Maria C Naskou
- Department of Large Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens, GA, 30602, USA
| | - Scarlett M Sumner
- Department of Large Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens, GA, 30602, USA
| | - Anna Chocallo
- Department of Large Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens, GA, 30602, USA
| | - Hannah Kemelmakher
- Department of Large Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens, GA, 30602, USA
| | - Merrilee Thoresen
- Department of Large Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens, GA, 30602, USA
| | - Ian Copland
- Emory Personalized Immunotherapy Center [EPIC], Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA, 30322, USA
| | - Jacques Galipeau
- Department of Medicine and Carbone Comprehensive Cancer Center, University of Wisconsin, 600 Highland Ave., Madison, WI, 53792, USA
| | - John F Peroni
- Department of Large Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens, GA, 30602, USA.
| |
Collapse
|
8
|
Platelet-Rich Plasma as an Autologous and Proangiogenic Cell Delivery System. Mediators Inflamm 2017; 2017:1075975. [PMID: 28845088 PMCID: PMC5563430 DOI: 10.1155/2017/1075975] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis is a key factor in early stages of wound healing and is crucial for the repair of vascularized tissues such as the bone. However, supporting timely revascularization of the defect site still presents a clinical challenge. Tissue engineering approaches delivering endothelial cells or prevascularized constructs may overcome this problem. In the current study, we investigated platelet-rich plasma (PRP) gels as autologous, injectable cell delivery systems for prevascularized constructs. PRP was produced from human thrombocyte concentrates. GFP-expressing human umbilical vein endothelial cells (HUVECs) and human bone marrow-derived mesenchymal stem cells (MSCs) were encapsulated in PRP gels in different proportions. The formation of cellular networks was assessed over 14 days by time-lapse microscopy, gene expression analysis, and immunohistology. PRP gels presented a favorable environment for the formation of a three-dimensional (3D) cellular network. The formation of these networks was apparent as early as 3 days after seeding. Networks increased in complexity and branching over time but were only stable in HUVEC-MSC cocultures. The high cell viability together with the 3D capillary-like networks observed at early time points suggests that PRP can be used as an autologous and proangiogenic cell delivery system for the repair of vascularized tissues such as the bone.
Collapse
|
9
|
Leukocyte-Reduced Platelet-Rich Plasma Alters Protein Expression of Adipose Tissue-Derived Mesenchymal Stem Cells. Plast Reconstr Surg 2017; 138:397-408. [PMID: 27064225 DOI: 10.1097/prs.0000000000002388] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Application of platelet-rich plasma and stem cells has become important in regenerative medicine. Recent literature supports the use of platelet-rich plasma as a cell culture media supplement to stimulate proliferation of adipose tissue-derived mesenchymal stem cells. The underlying mechanism of proliferation stimulation by platelet-rich plasma has not been investigated so far. METHODS Adipose tissue-derived mesenchymal stem cells were cultured in α-minimal essential medium supplemented with platelet-rich plasma or fetal calf serum. Cell proliferation was assessed with cell cycle kinetics using flow cytometric analyses after 48 hours. Differences in proteome expression of the adipose tissue-derived mesenchymal stem cells were analyzed using a reverse-phase protein array to quantify 214 proteins. Complementary Ingenuity Pathways Analysis and gene set enrichment analysis were performed using protein data, and confirmed by Western blot analysis. RESULTS A higher percentage of adipose tissue-derived mesenchymal stem cells in the S phase in the presence of platelet-rich plasma advocates the proliferation stimulation. Ingenuity Pathways Analysis and gene set enrichment analysis confirm the involvement of the selected proteins in the process of cell growth and proliferation. Ingenuity Pathways Analysis revealed a participation in the top-ranked canonical pathways PI3K/AKT, PTEN, ILK, and IGF-1. Gene set enrichment analysis identified the authors' protein set as being part of significantly regulated protein sets with the focus on cell cycle, metabolism, and the Kyoto Encyclopedia of Genes and Genomes transforming growth factor-β signaling pathway. CONCLUSIONS The present study provides evidence that platelet-rich plasma stimulates proliferation and induces a unique change in the proteomic profile of adipose tissue-derived mesenchymal stem cells. The interpretation of altered expression of regulatory proteins represents a step forward toward achieving good manufacturing practice-compliant criteria for cell-based strategies.
Collapse
|
10
|
Loibl M, Lang S, Brockhoff G, Gueorguiev B, Hilber F, Worlicek M, Baumann F, Grechenig S, Zellner J, Huber M, Valderrabano V, Angele P, Nerlich M, Prantl L, Gehmert S. The effect of leukocyte-reduced platelet-rich plasma on the proliferation of autologous adipose-tissue derived mesenchymal stem cells. Clin Hemorheol Microcirc 2017; 61:599-614. [PMID: 25536920 DOI: 10.3233/ch-141920] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clinical application of platelet-rich plasma (PRP) and stem cells has become more and more important in regenerative medicine during the last decade. However, differences in PRP preparations may contribute to variable PRP compositions with unpredictable effects on a cellular level. In the present study, we modified the centrifugation settings in order to provide a leukocyte-reduced PRP and evaluated the interactions between PRP and adipose-tissue derived mesenchymal stem cells (ASCs).PRP was obtained after modification of three different centrifugation settings and investigated by hemogram analysis, quantification of protein content and growth factor concentration. ASCs were cultured in serum-free α-MEM supplemented with autologous 10% or 20% leukocyte-reduced PRP. Cell cycle kinetics of ASCs were analyzed using flow cytometric analyses after 48 hours.Thrombocytes in PRP were concentrated, whereas erythrocytes, and white blood cells (WBC) were reduced, independent of centrifugation settings. Disabling the brake further reduced the number of WBCs. A higher percentage of cells in the S-phase in the presence of 20% PRP in comparison to 10% PRP and 20% fetal calf serum (FCS) advocates the proliferation stimulation of ASCs.These findings clearly demonstrate considerable differences between three PRP separation settings and assist in safeguarding the combination of leukocyte-reduced PRP and stem cells for regenerative therapies.
Collapse
Affiliation(s)
- Markus Loibl
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Siegmund Lang
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Gero Brockhoff
- Department of Obstetrics and Gynecology, University Medical Center Regensburg, Regensburg, Germany
| | | | - Franz Hilber
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Michael Worlicek
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Florian Baumann
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Stephan Grechenig
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Johannes Zellner
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Michaela Huber
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Victor Valderrabano
- Department of Orthopedic Surgery, University Hospital Basel, Basel, Switzerland
| | - Peter Angele
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Michael Nerlich
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Lukas Prantl
- Center of Plastic, Hand and Reconstructive Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Sebastian Gehmert
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany.,Department of Orthopedic Surgery, University Hospital Basel, Basel, Switzerland.,Center of Plastic, Hand and Reconstructive Surgery, University Medical Center Regensburg, Regensburg, Germany
| |
Collapse
|
11
|
Jalowiec JM, D'Este M, Bara JJ, Denom J, Menzel U, Alini M, Verrier S, Herrmann M. An In Vitro Investigation of Platelet-Rich Plasma-Gel as a Cell and Growth Factor Delivery Vehicle for Tissue Engineering. Tissue Eng Part C Methods 2015; 22:49-58. [PMID: 26467221 DOI: 10.1089/ten.tec.2015.0223] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Platelet-rich plasma (PRP) has been used for different applications in human and veterinary medicine. Many studies have shown promising therapeutic effects of PRP; however, there are still many controversies regarding its composition, properties, and clinical efficacy. The aim of this study was to evaluate the influence of different platelet concentrations on the rheological properties and growth factor (GF) release profile of PRP-gels. In addition, the viability of incorporated bone marrow-derived human mesenchymal stem cells (MSCs) was investigated. PRP (containing 1000 × 10(3), 2000 × 10(3), and 10,000 × 10(3) platelets/μL) was prepared from human platelet concentrates. Platelet activation and gelification were achieved by addition of human thrombin. Viscoelastic properties of PRP-gels were evaluated by rheological studies. The release of GFs and inflammatory proteins was measured using a membrane-based protein array and enzyme-linked immunosorbent assay. MSC viability and proliferation in PRP-gels were assessed over 7 days by cell viability staining. Cell proliferation was examined using DNA quantification. Regardless of the platelet content, all tested PRP-gels showed effective cross-linking. A positive correlation between protein release and the platelet concentration was observed at all time points. Among the detected proteins, the chemokine CCL5 was the most abundant. The greatest release appeared within the first 4 h after gelification. MSCs could be successfully cultured in PRP-gels over 7 days, with the highest cell viability and DNA content found in PRP-gels with 1000 × 10(3) platelets/μL. The results of this study suggest that PRP-gels represent a suitable carrier for both cell and GF delivery for tissue engineering. Notably, a platelet concentration of 1000 × 10(3) platelets/μL appeared to provide the most favorable environment for MSCs. Thus, the platelet concentration is an important consideration for the clinical application of PRP-gels.
Collapse
Affiliation(s)
| | | | | | - Jessica Denom
- 2 Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Université Paris Diderot Paris 7 , Paris, France
| | | | - Mauro Alini
- 1 AO Research Institute Davos , Davos, Switzerland
| | | | | |
Collapse
|
12
|
Endothelial Progenitor Cell Fraction Contained in Bone Marrow-Derived Mesenchymal Stem Cell Populations Impairs Osteogenic Differentiation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:659542. [PMID: 26491682 PMCID: PMC4600555 DOI: 10.1155/2015/659542] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/28/2015] [Indexed: 12/11/2022]
Abstract
In bone tissue engineering (TE) endothelial cell-osteoblast cocultures are known to induce synergies of cell differentiation and activity. Bone marrow mononucleated cells (BMCs) are a rich source of mesenchymal stem cells (MSCs) able to develop an osteogenic phenotype. Endothelial progenitor cells (EPCs) are also present within BMC. In this study we investigate the effect of EPCs present in the BMC population on MSCs osteogenic differentiation. Human BMCs were isolated and separated into two populations. The MSC population was selected through plastic adhesion capacity. EPCs (CD34+ and CD133+) were removed from the BMC population and the resulting population was named depleted MSCs. Both populations were cultured over 28 days in osteogenic medium (Dex+) or medium containing platelet lysate (PL). MSC population grew faster than depleted MSCs in both media, and PL containing medium accelerated the proliferation for both populations. Cell differentiation was much higher in Dex+ medium in both cases. Real-time RT-PCR revealed upregulation of osteogenic marker genes in depleted MSCs. Higher values of ALP activity and matrix mineralization analyses confirmed these results. Our study advocates that absence of EPCs in the MSC population enables higher osteogenic gene expression and matrix mineralization and therefore may lead to advanced bone neoformation necessary for TE constructs.
Collapse
|
13
|
Steinert AF, Kunz M, Prager P, Göbel S, Klein-Hitpass L, Ebert R, Nöth U, Jakob F, Gohlke F. Characterization of bursa subacromialis-derived mesenchymal stem cells. Stem Cell Res Ther 2015; 6:114. [PMID: 26036250 PMCID: PMC4479225 DOI: 10.1186/s13287-015-0104-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 08/15/2014] [Accepted: 05/21/2015] [Indexed: 12/31/2022] Open
Abstract
Introduction The bursa subacromialis (BS) provides the gliding mechanism of the shoulder and regenerates itself after surgical removal. Therefore, we explored the presence of mesenchymal stem cells (MSCs) within the human adult BS tissue and characterized the BS cells compared to MSCs from bone marrow (BMSCs) on a molecular level. Methods BS cells were isolated by collagenase digest from BS tissues derived from patients with degenerative rotator cuff tears, and BMSCs were recovered by adherent culture from bone-marrow of patients with osteoarthritis of the hip. BS cells and BMSCs were compared upon their potential to proliferate and differentiate along chondrogenic, osteogenic and adipogenic lineages under specific culture conditions. Expression profiles of markers associated with mesenchymal phenotypes were comparatively evaluated by flow cytometry, immunohistochemistry, and whole genome array analyses. Results BS cells and BMSCs appeared mainly fibroblastic and revealed almost similar surface antigen expression profiles, which was CD44+, CD73+, CD90+, CD105+, CD106+, STRO-1+, CD14−, CD31−, CD34−, CD45−, CD144−. Array analyses revealed 1969 genes upregulated and 1184 genes downregulated in BS cells vs. BMSCs, indicating a high level of transcriptome similarity. After 3 weeks of differentiation culture, BS cells and BMSCs showed a similar strong chondrogenic, adipogenic and osteogenic potential, as shown by histological, immunohistochemical and RT-PCR analyses in contrast to the respective negative controls. Conclusions Our in vitro characterizations show that BS cells fulfill all characteristics of mesenchymal stem cells, and therefore merit further attention for the development of improved therapies for various shoulder pathologies.
Collapse
Affiliation(s)
- Andre F Steinert
- Julius-Maximilians-University Würzburg, Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research, Julius-Maximilians-University Würzburg, Brettreichstr. 11, D - 97074, Würzburg, Germany.
| | - Manuela Kunz
- Julius-Maximilians-University Würzburg, Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research, Julius-Maximilians-University Würzburg, Brettreichstr. 11, D - 97074, Würzburg, Germany.
| | - Patrick Prager
- Julius-Maximilians-University Würzburg, Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research, Julius-Maximilians-University Würzburg, Brettreichstr. 11, D - 97074, Würzburg, Germany.
| | - Sascha Göbel
- Julius-Maximilians-University Würzburg, Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research, Julius-Maximilians-University Würzburg, Brettreichstr. 11, D - 97074, Würzburg, Germany.
| | - Ludger Klein-Hitpass
- University of Duisburg-Essen, Center for Medical Biotechnology, BioChip Laboratory, Essen, Germany.
| | - Regina Ebert
- Julius-Maximilians-University Würzburg, Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research, Julius-Maximilians-University Würzburg, Brettreichstr. 11, D - 97074, Würzburg, Germany.
| | - Ulrich Nöth
- Julius-Maximilians-University Würzburg, Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research, Julius-Maximilians-University Würzburg, Brettreichstr. 11, D - 97074, Würzburg, Germany.
| | - Franz Jakob
- Julius-Maximilians-University Würzburg, Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research, Julius-Maximilians-University Würzburg, Brettreichstr. 11, D - 97074, Würzburg, Germany.
| | - Frank Gohlke
- Julius-Maximilians-University Würzburg, Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research, Julius-Maximilians-University Würzburg, Brettreichstr. 11, D - 97074, Würzburg, Germany. .,Present address: Klinik für Schulterchirurgie, Rhön Klinikum AG, Bad Neustadt/Saale, Germany.
| |
Collapse
|
14
|
CD34/CD133 enriched bone marrow progenitor cells promote neovascularization of tissue engineered constructs in vivo. Stem Cell Res 2014; 13:465-77. [DOI: 10.1016/j.scr.2014.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 08/22/2014] [Accepted: 10/13/2014] [Indexed: 12/12/2022] Open
|
15
|
Glycosaminoglycan mimetic improves enrichment and cell functions of human endothelial progenitor cell colonies. Stem Cell Res 2014; 12:703-15. [PMID: 24681520 DOI: 10.1016/j.scr.2014.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 02/28/2014] [Accepted: 03/03/2014] [Indexed: 12/12/2022] Open
Abstract
Human circulating endothelial progenitor cells isolated from peripheral blood generate in culture cells with features of endothelial cells named late-outgrowth endothelial colony-forming cells (ECFC). In adult blood, ECFC display a constant quantitative and qualitative decline during life span. Even after expansion, it is difficult to reach the cell dose required for cell therapy of vascular diseases, thus limiting the clinical use of these cells. Glycosaminoglycans (GAG) are components from the extracellular matrix (ECM) that are able to interact and potentiate heparin binding growth factor (HBGF) activities. According to these relevant biological properties of GAG, we designed a GAG mimetic having the capacity to increase the yield of ECFC production from blood and to improve functionality of their endothelial outgrowth. We demonstrate that the addition of [OTR(4131)] mimetic during the isolation process of ECFC from Cord Blood induces a 3 fold increase in the number of colonies. Moreover, addition of [OTR(4131)] to cell culture media improves adhesion, proliferation, migration and self-renewal of ECFC. We provide evidence showing that GAG mimetics may have great interest for cell therapy applied to vascular regeneration therapy and represent an alternative to exogenous growth factor treatments to optimize potential therapeutic properties of ECFC.
Collapse
|
16
|
Platelet-rich plasma induces annulus fibrosus cell proliferation and matrix production. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2014; 23:745-53. [PMID: 24469887 DOI: 10.1007/s00586-014-3198-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 12/28/2022]
Abstract
PURPOSE Platelet-rich plasma (PRP) contains growth factors and creates a 3D structure upon clotting; PRP or platelet lysate (PL) might be considered for annulus fibrosus (AF) repair. METHODS Bovine AF cells were cultured with 25% PRP, 50% PRP, 25% PL, 50% PL, or 10% FBS. After 2 and 4 days, DNA, glycosaminoglycan (GAG), and mRNA levels were analyzed. Histology was performed after injection of PRP into an AF defect in a whole disc ex vivo. RESULTS By day 4, significant increases in DNA content were observed in all treatment groups. All groups also showed elevated GAG synthesis, with highest amounts at 50% PL. Collagen I and II expression was similar between groups; aggrecan, decorin, and versican expression was highest at 25% PL. Injection of PRP into the AF defect resulted in an increased matrix synthesis. CONCLUSIONS Platelet-rich preparations increased the matrix production and cell number and may therefore be considered to promote AF repair.
Collapse
|
17
|
Direct cell-cell contact between mesenchymal stem cells and endothelial progenitor cells induces a pericyte-like phenotype in vitro. BIOMED RESEARCH INTERNATIONAL 2014; 2014:395781. [PMID: 24563864 PMCID: PMC3915932 DOI: 10.1155/2014/395781] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/24/2013] [Accepted: 12/15/2013] [Indexed: 01/10/2023]
Abstract
Tissue engineering techniques for the regeneration of large bone defects require sufficient vascularisation of the applied constructs to ensure a sufficient supply of oxygen and nutrients. In our previous work, prevascularised 3D scaffolds have been successfully established by coculture of bone marrow derived stem cells (MSCs) and endothelial progenitor cells (EPCs). We identified stabilising pericytes (PCs) as part of newly formed capillary-like structures. In the present study, we report preliminary data on the interactions between MSCs and EPCs, leading to the differentiation of pericyte-like cells. MSCs and EPCs were seeded in transwell cultures, direct cocultures, and single cultures. Cells were cultured for 10 days in IMDM 10% FCS or IMDM 5% FCS 5% platelet lysate medium. Gene expression of PC markers, CD146, NG2, αSMA, and PDGFR-β, was analysed using RT-PCR at days 0, 3, 7, and 10. The upregulation of CD146, NG2, and αSMA in MSCs in direct coculture with EPCs advocates the MSCs' differentiation towards a pericyte-like phenotype in vitro. These results suggest that pericyte-like cells derive from MSCs and that cell-cell contact with EPCs is an important factor for this differentiation process. These findings emphasise the concept of coculture strategies to promote angiogenesis for cell-based tissue engineered bone grafts.
Collapse
|
18
|
Werling NJ, Thorpe R, Zhao Y. A systematic approach to the establishment and characterization of endothelial progenitor cells for gene therapy. Hum Gene Ther Methods 2013; 24:171-84. [PMID: 23570242 DOI: 10.1089/hgtb.2012.146] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It has been recently demonstrated that endothelial progenitor cells (EPCs) have increasing potential for gene therapy or regenerative cell therapy for cardiovascular diseases and cancer. However, current therapies involving EPCs are inefficient because of the very low level of EPCs in the available sources, for example, in blood. One solution is to derive in vitro an expanded population of EPCs from circulation. In addition, EPCs like other progenitor cells have an intrinsic predisposition of differentiating into mature cell types, for example, mature endothelial cells; therefore, establishing a sufficient amount of EPCs alongside maintaining the EPC characteristic phenotype during genetic modification and long-term culture presents a significant challenge to the field of gene and cell therapies. In this study, we have systematically investigated EPCs from different sources and used multiple parameters, including cell surface markers and a tubule formation assay to identify factors that influence the establishment, characteristics, and vector transduction capability of EPCs. Our results show the considerable promise, as well as certain limitations in the establishment and manipulation of genetically modified EPCs for gene therapy. While obtaining high transduction efficiency and robust in vitro tubule formation of EPCs using lentiviral vectors, we also observed that lentiviral vector transduction significantly altered EPC phenotype as demonstrated by an increased percentage of CD34(+) progenitor cells and increased expression of adhesion molecule CD144 (VE-cadherin). Taking account of the increased expression of CD144 reported in cancer patients, the altered expression of EPC-related markers, for example, VE-cadherin and the enrichment of CD34(+) cells, after vector transduction indicates the importance of extensive characterization and vigorous safety control of genetically modified EPCs before they are accepted for clinical use.
Collapse
Affiliation(s)
- Natalie Jayne Werling
- Biotherapeutics Group, National Institute for Biological Standards and Control, Hertfordshire EN6 3QG, United Kingdom
| | | | | |
Collapse
|
19
|
Hoppe S, Alini M, Benneker LM, Milz S, Boileau P, Zumstein MA. Tenocytes of chronic rotator cuff tendon tears can be stimulated by platelet-released growth factors. J Shoulder Elbow Surg 2013; 22:340-9. [PMID: 22521394 DOI: 10.1016/j.jse.2012.01.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 01/11/2012] [Accepted: 01/15/2012] [Indexed: 02/01/2023]
Abstract
BACKGROUND Bone-to-tendon healing after rotator cuff repairs is mainly impaired by poor tissue quality. The tenocytes of chronic rotator cuff tendon tears are not able to synthesize normal fibrocartilaginous extracellular matrix (ECM). We hypothesized that in the presence of platelet-released growth factors (PRGF), tenocytes from chronically retracted rotator cuff tendons proliferate and synthesize the appropriate ECM proteins. MATERIALS AND METHODS Tenocytes from 8 patients with chronic rotator cuff tears were cultured for 4 weeks in 2 different media: standard medium (Iscove's Modified Dulbecco's Media + 10% fetal calf serum + 1% nonessential amino acids + 0.5 μg/mL ascorbic acid) and media with an additional 10% PRGF. Cell proliferation was assessed at 7, 14, 21, and 28 days. Messenger (m)RNA levels of collagens I, II, and X, decorin, biglycan, and aggrecan were analyzed using real time reverse-transcription polymerase chain reaction. Immunocytochemistry was also performed. RESULTS The proliferation rate of tenocytes was significantly higher at all time points when cultured with PRGF. At 21 days, the mRNA levels for collagens I, II, and X, decorin, aggrecan, and biglycan were significantly higher in the PRGF group. The mRNA data were confirmed at protein level by immunocytochemistry. CONCLUSIONS PRGFs enhance tenocyte proliferation in vitro and promote synthesis of ECM to levels similar to those found with insertion of the normal human rotator cuffs. CLINICAL RELEVANCE Biologic augmentation of repaired rotator cuffs with PRGF may enhance the properties of the repair tissue. However, further studies are needed to determine if application of PRGF remains safe and effective in long-term clinical studies. LEVEL OF EVIDENCE Basic Science Study, Cell Biology.
Collapse
Affiliation(s)
- Sven Hoppe
- Orthopedic Sports Medicine, Department of Orthopedic Surgery and Traumatology, University of Bern, Inselspital, CH- 3010 Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
20
|
Masuda H, Iwasaki H, Kawamoto A, Akimaru H, Ishikawa M, Ii M, Shizuno T, Sato A, Ito R, Horii M, Ishida H, Kato S, Asahara T. Development of serum-free quality and quantity control culture of colony-forming endothelial progenitor cell for vasculogenesis. Stem Cells Transl Med 2012. [PMID: 23197763 DOI: 10.5966/sctm.2011-0023] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Quantitative and qualitative impairment of endothelial progenitor cells (EPCs) limits the efficacy of autologous cell therapy in patients with cardiovascular diseases. Here, we developed a serum-free quality and quantity control culture system for colony-forming EPCs to enhance their regenerative potential. A culture with serum-free medium containing stem cell factor, thrombopoietin, vascular endothelial growth factor, interleukin-6, and Flt-3 ligand was determined as optimal quality and quantity culture (QQc) in terms of the most vasculogenic colony-forming EPC expansion, evaluated by the newly established EPC colony formation assay. The QQc of umbilical cord blood-CD133(+) cells for 7 days produced a 52.9-fold increase in total cell number and 3.28-fold frequency in definitive EPC colony development, resulting in a 203.9-fold increase in estimated total definitive EPC colony number in vitro. Pre- or post-QQc cells were intramyocardially transplanted into nude rats with myocardial infarction (MI). Echocardiographic and micromanometer-tipped conductance catheter examinations 28 days post-MI revealed significant preservation of left ventricular (LV) function in rats receiving pre- or post-QQc cells compared with those receiving phosphate-buffered saline. Assessments of global LV contractility indicated a dose-dependent effect of pre- or post-QQc cells and the superior potency of post-QQc cells over pre-QQc cells. Furthermore, immunohistochemistry showed more abundant formation of both human and rat endothelial cells and cardiomyocytes in the infarcted myocardium following transplantation of post-QQc cells compared with pre-QQc cells. Our optimal serum-free quality and quantity culture may enhance the therapeutic potential of EPCs in both quantitative and qualitative aspects for cardiovascular regeneration.
Collapse
MESH Headings
- AC133 Antigen
- Animals
- Antigens, CD/metabolism
- Buffers
- Cell Count
- Cell Culture Techniques/methods
- Cell Culture Techniques/standards
- Cell Proliferation
- Cell- and Tissue-Based Therapy/methods
- Cell- and Tissue-Based Therapy/standards
- Cells, Cultured
- Colony-Forming Units Assay/methods
- Colony-Forming Units Assay/standards
- Culture Media, Serum-Free/metabolism
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Echocardiography
- Endothelial Cells/cytology
- Endothelial Cells/metabolism
- Endothelial Cells/transplantation
- Fetal Blood/cytology
- Fetal Blood/metabolism
- Glycoproteins/metabolism
- Humans
- Immunohistochemistry
- Myocardial Contraction
- Myocardial Infarction/metabolism
- Myocardial Infarction/therapy
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/transplantation
- Neovascularization, Physiologic
- Peptides/metabolism
- Quality Control
- Rats
- Rats, Nude
- Stem Cells/cytology
- Stem Cells/metabolism
- Ventricular Function, Left
Collapse
Affiliation(s)
- Haruchika Masuda
- Department of Regenerative Medicine Science, Tokai University School of Medicine, Isehara, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Anitua E, Sánchez M, Prado R, Orive G. The P makes the difference in plasma rich in growth factors (PRGF) technology. Platelets 2011; 22:473-4; author reply 475. [DOI: 10.3109/09537104.2011.583999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Platelet-released growth factors can accelerate tenocyte proliferation and activate the anti-oxidant response element. Histochem Cell Biol 2011; 135:453-60. [PMID: 21476078 DOI: 10.1007/s00418-011-0808-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2011] [Indexed: 12/22/2022]
Abstract
Little is know about the pathophysiology of acute and degenerative tendon injuries. Although most lesions are uncomplicated, treatment is long and unsatisfactory in a considerable number of cases. Besides the common growth factors that were shown to be relevant for tendon integrity more recently protection against oxidative stress was shown to promote tendon healing. To improve tendon regeneration, many have advocated the use of platelet-rich plasma (PRP), a thrombocyte concentrate that can serve as an autologous source of growth factors. In this study, we investigated the effect of platelet-released growth factors (PRGF) on tenocytes. Tenocytes were isolated from the Achilles tendon of postnatal rats. Tenocyte cell cultures were stimulated with PRGF. We used a CyQuant assay and WST assay to analyse tendon cell growth and viability in different concentrations of PRGF. Migration and proliferation of cells grown in PRGF were assessed by a scratch test. A dual-luciferase assay was used to demonstrate the activation of the anti-oxidant response element (ARE) in tenocytes. A positive effect of PRGF could be shown on tendon cell growth and migratory capacity. PRGF activated the Nrf2-ARE pathway in a dose-dependent manner. Here, we provide evidence of a biological effect of PRGF on tenocytes by the promotion of tenocyte growth and activation of the Nrf2-ARE pathway. This is a novel aspect of the action of platelet concentrates on tendon growth.
Collapse
|