1
|
Toutirais L, Walrand S, Vaysse C. Are oilseeds a new alternative protein source for human nutrition? Food Funct 2024; 15:2366-2380. [PMID: 38372388 DOI: 10.1039/d3fo05370a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
This review focuses on the potential use, nutritional value and beneficial health effects of oilseeds as a source of food protein. The process of extracting oil from oilseeds produces a by-product that is rich in proteins and other valuable nutritional and bioactive components. This product is primarily used for animal feed. However, as the demand for proteins continues to rise, plant-based proteins have a real success in food applications. Among the different plant protein sources, oilseeds could be used as an alternative protein source for human diet. The data we have so far show that oilseeds present a protein content of up to 40% and a relatively well-balanced profile of amino acids with sulphur-containing amino acids. Nevertheless, they tend to be deficient in lysine and rich in anti-nutritional factors (ANFs), which therefore means they have lower anabolic potential than animal proteins. To enhance their nutritional value, oilseed proteins can be combined with other protein sources and subjected to processes such as dehulling, heating, soaking, germination or fermentation to reduce their ANFs and improve protein digestibility. Furthermore, due to their bioactive peptides, oilseeds can also bring health benefits, particularly in the prevention and treatment of diabetes, obesity and cardiovascular diseases. However, additional nutritional data are needed before oilseeds can be endorsed as a protein source for humans.
Collapse
Affiliation(s)
- Lina Toutirais
- ITERG, Department of Nutritional Health and Lipid Biochemistry, Bordeaux, France
- Université Clermont Auvergne, INRAE, UNH, 63000 Clermont-Ferrand, France.
| | - Stephane Walrand
- Université Clermont Auvergne, INRAE, UNH, 63000 Clermont-Ferrand, France.
- Clinical Nutrition Department, CHU, Clermont-Ferrand, France
| | - Carole Vaysse
- Clinical Nutrition Department, CHU, Clermont-Ferrand, France
| |
Collapse
|
2
|
Digestibility and bioavailability of plant-based proteins intended for use in meat analogues: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Novel Gluten-Free Bread with an Extract from Flaxseed By-Product: The Relationship between Water Replacement Level and Nutritional Value, Antioxidant Properties, and Sensory Quality. Molecules 2022; 27:molecules27092690. [PMID: 35566041 PMCID: PMC9103911 DOI: 10.3390/molecules27092690] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
The food industry generates a great amount of food waste and by-products, which in many cases are not fully valorized. Press cakes, deriving from oilseeds extraction, represent interesting co-products due to their nutritional value, high biopolymers content, and the presence of bioactive phytochemicals. Gluten-free breads (GFBs) are products that have disadvantages such as unsatisfactory texture, low nutritional value, and short shelf life, so natural additives containing proteins and hydrocolloids are in demand to increase GFBs value. In this study, extract from flaxseed by-product (FOCE-Flaxseed Oil Cake Extract) was used to replace water (25-100%) in GFBs formulations and their nutritional value, antioxidant properties, and sensory features were investigated. The results showed that GFBs with FOCE had an elevated nutritional and nutraceutical profile (up to 60% more proteins, significantly increased K, Mg, and P levels). Moreover, the addition of FOCE improved the technological parameters (increased specific volume, number of cells and height/width ratio, reduced density, average size, and perimeter of cells), antioxidant potential, and overall sensory quality of GFBs. This study showed an encouraging way of using a by-product that, due to its high content of proteins, polysaccharides, minerals, and antioxidants, can add value to GFBs.
Collapse
|
4
|
Improvement of functional cake formulation with fermented soy (Glycine max) and lupin (Lupinus albus L) powders. Int J Gastron Food Sci 2021. [DOI: 10.1016/j.ijgfs.2021.100429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Polak T, Mejaš R, Jamnik P, Kralj Cigić I, Poklar Ulrih N, Cigić B. Accumulation and Transformation of Biogenic Amines and Gamma-Aminobutyric Acid (GABA) in Chickpea Sourdough. Foods 2021; 10:foods10112840. [PMID: 34829121 PMCID: PMC8618307 DOI: 10.3390/foods10112840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 11/16/2022] Open
Abstract
In general, sourdough fermentation leads to an improvement in the technological, nutritional, and sensory properties of bakery products. The use of non-conventional flours with a specific autochthonous microbiota may lead to the formation of secondary metabolites, which may even have undesirable physiological and toxicological effects. Chickpea flours from different suppliers have been used to produce sourdoughs by spontaneous and inoculated fermentations. The content of nutritionally undesirable biogenic amines (BA) and beneficial gamma-aminobutyric acid (GABA) was determined by chromatography. Fenugreek sprouts, which are a rich source of amine oxidases, were used to reduce the BA content in the sourdoughs. Spontaneous fermentation resulted in a high accumulation of cadaverine, putrescine, and tyramine for certain flours. The use of commercial starter cultures was not effective in reducing the accumulation of BA in all sourdoughs. The addition of fenugreek sprouts to the suspension of sourdough with pH raised to 6.5 resulted in a significant reduction in BA contents. Enzymatic oxidation was less efficient during kneading. Baking resulted in only a partial degradation of BA and GABA in the crust and not in the crumb. Therefore, it could be suggested to give more importance to the control of sourdough fermentation with regard to the formation of nutritionally undesirable BA and to exploit the possibilities of their degradation.
Collapse
Affiliation(s)
- Tomaž Polak
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (T.P.); (R.M.); (P.J.); (N.P.U.)
| | - Rok Mejaš
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (T.P.); (R.M.); (P.J.); (N.P.U.)
| | - Polona Jamnik
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (T.P.); (R.M.); (P.J.); (N.P.U.)
| | - Irena Kralj Cigić
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia;
| | - Nataša Poklar Ulrih
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (T.P.); (R.M.); (P.J.); (N.P.U.)
| | - Blaž Cigić
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (T.P.); (R.M.); (P.J.); (N.P.U.)
- Correspondence: ; Tel.: +386-1-320-37-84; Fax: +386-1-256-57-82
| |
Collapse
|
6
|
Canon F, Nidelet T, Guédon E, Thierry A, Gagnaire V. Understanding the Mechanisms of Positive Microbial Interactions That Benefit Lactic Acid Bacteria Co-cultures. Front Microbiol 2020; 11:2088. [PMID: 33013761 PMCID: PMC7500094 DOI: 10.3389/fmicb.2020.02088] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022] Open
Abstract
Microorganisms grow in concert, both in natural communities and in artificial or synthetic co-cultures. Positive interactions between associated microbes are paramount to achieve improved substrate conversion and process performance in biotransformation and fermented food production. The mechanisms underlying such positive interactions have been the focus of numerous studies in recent decades and are now starting to be well characterized. Lactic acid bacteria (LAB) contribute to the final organoleptic, nutritional, and health properties of fermented food products. However, interactions in LAB co-cultures have been little studied, apart from the well-characterized LAB co-culture used for yogurt manufacture. LAB are, however, multifunctional microorganisms that display considerable potential to create positive interactions between them. This review describes why LAB co-cultures are of such interest, particularly in foods, and how their extensive nutritional requirements can be used to favor positive interactions. In that respect, our review highlights the benefits of co-cultures in different areas of application, details the mechanisms underlying positive interactions and aims to show how mechanisms based on nutritional interactions can be exploited to create efficient LAB co-cultures.
Collapse
Affiliation(s)
| | - Thibault Nidelet
- SPO, INRAE, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | | | | |
Collapse
|
7
|
Ingallina C, Sobolev AP, Circi S, Spano M, Fraschetti C, Filippi A, Di Sotto A, Di Giacomo S, Mazzoccanti G, Gasparrini F, Quaglio D, Campiglia E, Carradori S, Locatelli M, Vinci G, Rapa M, Ciano S, Giusti AM, Botta B, Ghirga F, Capitani D, Mannina L. Cannabis sativa L. Inflorescences from Monoecious Cultivars Grown in Central Italy: An Untargeted Chemical Characterization from Early Flowering to Ripening. Molecules 2020; 25:molecules25081908. [PMID: 32326129 PMCID: PMC7221798 DOI: 10.3390/molecules25081908] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 01/26/2023] Open
Abstract
The chemical composition of the inflorescences from four Cannabis sativa L. monoecious cultivars (Ferimon, Uso-31, Felina 32 and Fedora 17), recently introduced in the Lazio Region, was monitored over the season from June to September giving indications on their sensorial, pharmaceutical/nutraceutical proprieties. Both untargeted (NMR) and targeted (GC/MS, UHPLC, HPLC-PDA/FD and spectrophotometry) analyses were carried out to identify and quantify compounds of different classes (sugars, organic acids, amino acids, cannabinoids, terpenoids, phenols, tannins, flavonoids and biogenic amines). All cultivars in each harvesting period showed a THC content below the Italian legal limit, although in general THC content increased over the season. Citric acid, malic acid and glucose showed the highest content in the late flowering period, whereas the content of proline drastically decreased after June in all cultivars. Neophytadiene, nerolidol and chlorogenic acid were quantified only in Felina 32 cultivar, characterized also by a very high content of flavonoids, whereas alloaromadendrene and trans-cinnamic acid were detected only in Uso-31 cultivar. Naringenin and naringin were present only in Fedora 17 and Ferimon cultivars, respectively. Moreover, Ferimon had the highest concentration of biogenic amines, especially in July and August. Cadaverine was present in all cultivars but only in September. These results suggest that the chemical composition of Cannabis sativa L. inflorescences depends on the cultivar and on the harvesting period. Producers can use this information as a guide to obtain inflorescences with peculiar chemical characteristics according to the specific use.
Collapse
Affiliation(s)
- Cinzia Ingallina
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (C.I.); (S.C.); (M.S.); (C.F.); (A.F.); (G.M.); (F.G.); (D.Q.); (B.B.)
| | - Anatoly P. Sobolev
- Institute for Biological Systems, Magnetic Resonance Laboratory “Segre-Capitani”, CNR, Via Salaria Km 29.300, 00015 Monterotondo, Italy;
- Correspondence: (A.P.S.); (L.M.); Tel.: +39-06-9067-2385 (A.P.S.); +39-064-991-3735 (L.M.)
| | - Simone Circi
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (C.I.); (S.C.); (M.S.); (C.F.); (A.F.); (G.M.); (F.G.); (D.Q.); (B.B.)
| | - Mattia Spano
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (C.I.); (S.C.); (M.S.); (C.F.); (A.F.); (G.M.); (F.G.); (D.Q.); (B.B.)
| | - Caterina Fraschetti
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (C.I.); (S.C.); (M.S.); (C.F.); (A.F.); (G.M.); (F.G.); (D.Q.); (B.B.)
| | - Antonello Filippi
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (C.I.); (S.C.); (M.S.); (C.F.); (A.F.); (G.M.); (F.G.); (D.Q.); (B.B.)
| | - Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Ersparmer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.D.S.); (S.D.G.)
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Ersparmer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.D.S.); (S.D.G.)
| | - Giulia Mazzoccanti
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (C.I.); (S.C.); (M.S.); (C.F.); (A.F.); (G.M.); (F.G.); (D.Q.); (B.B.)
| | - Francesco Gasparrini
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (C.I.); (S.C.); (M.S.); (C.F.); (A.F.); (G.M.); (F.G.); (D.Q.); (B.B.)
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (C.I.); (S.C.); (M.S.); (C.F.); (A.F.); (G.M.); (F.G.); (D.Q.); (B.B.)
| | - Enio Campiglia
- Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy;
| | - Simone Carradori
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (S.C.); (M.L.)
| | - Marcello Locatelli
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (S.C.); (M.L.)
| | - Giuliana Vinci
- Department of Management, Sapienza University of Rome, via del Castro Laurenziano 9, 00161 Rome, Italy; (G.V.); (M.R.); (S.C.)
| | - Mattia Rapa
- Department of Management, Sapienza University of Rome, via del Castro Laurenziano 9, 00161 Rome, Italy; (G.V.); (M.R.); (S.C.)
| | - Salvatore Ciano
- Department of Management, Sapienza University of Rome, via del Castro Laurenziano 9, 00161 Rome, Italy; (G.V.); (M.R.); (S.C.)
| | - Anna Maria Giusti
- Department of Experimental Medicine, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (C.I.); (S.C.); (M.S.); (C.F.); (A.F.); (G.M.); (F.G.); (D.Q.); (B.B.)
| | - Francesca Ghirga
- Center for Life Nano Science@Sapienza, Italian Institute of Technology, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Donatella Capitani
- Institute for Biological Systems, Magnetic Resonance Laboratory “Segre-Capitani”, CNR, Via Salaria Km 29.300, 00015 Monterotondo, Italy;
| | - Luisa Mannina
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (C.I.); (S.C.); (M.S.); (C.F.); (A.F.); (G.M.); (F.G.); (D.Q.); (B.B.)
- Institute for Biological Systems, Magnetic Resonance Laboratory “Segre-Capitani”, CNR, Via Salaria Km 29.300, 00015 Monterotondo, Italy;
- Correspondence: (A.P.S.); (L.M.); Tel.: +39-06-9067-2385 (A.P.S.); +39-064-991-3735 (L.M.)
| |
Collapse
|
8
|
Sá AGA, Moreno YMF, Carciofi BAM. Food processing for the improvement of plant proteins digestibility. Crit Rev Food Sci Nutr 2019; 60:3367-3386. [PMID: 31760758 DOI: 10.1080/10408398.2019.1688249] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Proteins are essential macronutrients for the human diet. They are the primary source of nitrogen and are fundamental for body structure and functions. The plant protein quality (PPQ) refers to the bioavailability, digestibility, and amino acid composition. The digestibility specifies the protein quantity absorbed by an organism relative to the consumed amount and depends on the protein structure, previous processing, and the presence of compounds limiting the digestion. The latter are so-called antinutritional factors (ANF), exemplified by phytates, tannins, trypsin inhibitors, and lectins. Animal proteins are known to have better digestibility than plant proteins due to the presence of ANF in plants. Thus, the inactivation of ANF throughout food processing may increase the PPQ. New food processing, aiming to increase the digestibility of plant proteins, and new sources of proteins are being studied for the animal protein substitution. Here, it is presented the impact of processing on the protein digestibility and reduction of ANF. Several techniques, such as cooking, autoclaving, germination, microwave, irradiation, spray- and freeze-drying, fermentation, and extrusion enhanced the PPQ. The emerging non-thermal technologies impact on protein functionalities but require studies on the protein digestibility. How to accurately determine and how to improve the protein digestibility of a plant source remains a scientific and technological challenge that may be addressed by novel or combining existing processing techniques, as well as by exploring protein-enriched by-products of the food industry.
Collapse
Affiliation(s)
- Amanda Gomes Almeida Sá
- Department of Chemical Engineering and Food Engineering, Graduate Program in Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Yara Maria Franco Moreno
- Department of Nutrition, Graduate Program in Nutrition, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Bruno Augusto Mattar Carciofi
- Department of Chemical Engineering and Food Engineering, Graduate Program in Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
9
|
Gulati P, Sabillón L, Rose DJ. Effects of processing method and solute interactions on pepsin digestibility of cooked proso millet flour. Food Res Int 2018; 109:583-588. [DOI: 10.1016/j.foodres.2018.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/19/2018] [Accepted: 05/03/2018] [Indexed: 01/15/2023]
|
10
|
Bustos AY, Gerez CL, Mohtar Mohtar LG, Paz Zanini VI, Nazareno MA, Taranto MP, Iturriaga LB. Lactic Acid Fermentation Improved Textural Behaviour, Phenolic Compounds and Antioxidant Activity of Chia
( Salvia hispanica L.) Dough. Food Technol Biotechnol 2017; 55:381-389. [PMID: 29089851 DOI: 10.17113/ftb.55.03.17.5133] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this work, autochthonous lactic acid bacteria (LAB) were isolated from chia (Salvia hispanica L.) dough and selected on the basis of the kinetics of acidification and proteolytic activity. Strain no. C8, identified as Lactobacillus plantarum C8, was selected and used as starter to obtain chia sourdough. Lactic acid fermentation increased the organic acid mass fractions (lactic, acetic and phenyl lactic acids to 12.3 g, 1.0 g and 23.8 µg per kg of dough respectively), and antioxidant activities, which increased by approx. 33-40% compared to unfermented chia flour dough. In addition, total phenolic content increased 25% and its composition was strongly modified after 24 h of fermentation by L. plantarum C8. Chlorogenic acid was only found in the fermented dough (2.5 mg/g), while ferulic acid was detected from the beginning of fermentation, being 32% higher in chia sourdough (5.6 mg/g). The use of fermented chia sourdough improved the overall characteristics of white bread, including physical (e.g. reduced hardness and chewiness of the crumb) and antioxidant properties (25% on average), compared to the white bread. These results indicate that the use of chia sourdough could be a promising alternative to improve the technological and antioxidant properties of wheat bread. In addition, this work has shown, for the first time, that lactic acid bacterium is able to ferment chia dough, improving its overall characteristics.
Collapse
Affiliation(s)
- Ana Yanina Bustos
- Research and Transference Centre of Santiago del Estero (CITSE - CONICET - UNSE), RN9,
km 1125, AR-4206 Santiago del Estero, Argentina.,San Pablo T University, Av. Solano Vera and Villa Nougués, AR-4129 Tucumán, Argentina
| | - Carla Luciana Gerez
- Reference Centre for Lactobacilli (CERELA-CONICET), Chacabuco 145,
AR-4000 San Miguel de Tucumán, Argentina
| | - Lina Goumana Mohtar Mohtar
- Research and Transference Centre of Santiago del Estero (CITSE - CONICET - UNSE), RN9,
km 1125, AR-4206 Santiago del Estero, Argentina
| | - Verónica Irene Paz Zanini
- Institute of Bionanotechnology (INBIONATEC-CONICET), RN9, km 1125,
AR-4206 Santiago del Estero, Argentina
| | - Mónica Azucena Nazareno
- Research and Transference Centre of Santiago del Estero (CITSE - CONICET - UNSE), RN9,
km 1125, AR-4206 Santiago del Estero, Argentina
| | - María Pía Taranto
- Reference Centre for Lactobacilli (CERELA-CONICET), Chacabuco 145,
AR-4000 San Miguel de Tucumán, Argentina
| | - Laura Beatriz Iturriaga
- Research and Transference Centre of Santiago del Estero (CITSE - CONICET - UNSE), RN9,
km 1125, AR-4206 Santiago del Estero, Argentina
| |
Collapse
|
11
|
Starkute V, Bartkiene E, Bartkevics V, Rusko J, Zadeike D, Juodeikiene G. Amino acids profile and antioxidant activity of different Lupinus angustifolius seeds after solid state and submerged fermentations. Journal of Food Science and Technology 2016; 53:4141-4148. [PMID: 28115754 DOI: 10.1007/s13197-016-2384-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/28/2016] [Accepted: 10/17/2016] [Indexed: 12/01/2022]
Abstract
The objective of this study was to investigate the amino acids profile, total phenolic compounds (TPC) content, antioxidant activity after submerged (SmF) and solid state (SSF) fermentations of different Lupinus angustifolius seeds by the Lactobacillus sakei KTU05-6. Additionally, the impact of different lupin seeds as fermentation media for LAB biomass and d/l-lactic acid production was analysed. The d/l ratio for SmF and SSF treated lupin samples varied from 0.15 to 0.45 and from 0.12 to 0.46, 16 respectively. Nutritional analysis highlighted a substantial increase in the TPC content and antioxidant activity up to 31.5-48.8% for SSF treated L. angustifolius samples compared to unfermented. The interaction between analysed factors (lupin variety and fermentation conditions) had a significant influence on essential and nonessential amino acids profile.
Collapse
Affiliation(s)
- Vytaute Starkute
- Lithuanian University of Health Sciences, Tilzes g. 18, LT-47181 Kaunas, Lithuania
| | - Elena Bartkiene
- Lithuanian University of Health Sciences, Tilzes g. 18, LT-47181 Kaunas, Lithuania
| | - Vadims Bartkevics
- University of Latvia, Jelgavas iela 1, LV-1004 Riga, Latvia ; Institute of Food Safety, Animal Health and Environment, Lejupes iela 3, Riga, LV-1076 Latvia
| | - Janis Rusko
- Institute of Food Safety, Animal Health and Environment, Lejupes iela 3, Riga, LV-1076 Latvia
| | - Daiva Zadeike
- Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas, Lithuania
| | - Grazina Juodeikiene
- Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas, Lithuania
| |
Collapse
|
12
|
Mercier S, Villeneuve S, Moresoli C, Mondor M, Marcos B, Power KA. Flaxseed-Enriched Cereal-Based Products: A Review of the Impact of Processing Conditions. Compr Rev Food Sci Food Saf 2014; 13:400-412. [DOI: 10.1111/1541-4337.12075] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/25/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Samuel Mercier
- Dept. of Chemical and Biotechnological Engineering; Univ. de Sherbrooke; 2500 Université blvd Sherbrooke Quebec J1K 2R1 Canada
| | - Sébastien Villeneuve
- Agriculture and Agri-Food Canada; Food Research and Development Centre; 3600 Casavant Blvd West Saint-Hyacinthe Quebec J2S 8E3 Canada
| | - Christine Moresoli
- Dept. of Chemical Engineering; Univ. of Waterloo; 200 Univ. Ave. West Waterloo Ontario N2L 3G1 Canada
| | - Martin Mondor
- Agriculture and Agri-Food Canada; Food Research and Development Centre; 3600 Casavant Blvd West Saint-Hyacinthe Quebec J2S 8E3 Canada
| | - Bernard Marcos
- Dept. of Chemical and Biotechnological Engineering; Univ. de Sherbrooke; 2500 Université blvd Sherbrooke Quebec J1K 2R1 Canada
| | - Krista A. Power
- Agriculture and Agri-Food Canada; Guelph Food Research Centre; 93 Stone Rd. W Guelph Ontario N1G 5C9 Canada
| |
Collapse
|
13
|
Bartkiene E, Jakobsone I, Juodeikiene G, Vidmantiene D, Pugajeva I, Bartkevics V. Effect of fermented Helianthus tuberosus L. tubers on acrylamide formation and quality properties of wheat bread. Lebensm Wiss Technol 2013. [DOI: 10.1016/j.lwt.2013.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|