1
|
Garmasheva I, Tomila T, Kharkhota M, Oleschenko L. Exopolysaccharides of lactic acid bacteria as protective agents against bacterial and viral plant pathogens. Int J Biol Macromol 2024; 276:133851. [PMID: 39004247 DOI: 10.1016/j.ijbiomac.2024.133851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
In this study, 25 exopolysaccharides produced by lactic acid bacteria (LAB) were screened for their effect on plant pathogens. The molecular masses of EPS were found to be 3,8-5,0 × 104 Da. The GC-MS analysis revealed that EPSs were majorly composed of glucose (85.85-97.98 %). The FT-IR spectra of EPSs were in agreement with the typical absorption peaks of polysaccharides. EPSs showed a hydroxyl radical scavenging ability. The scavenging rate of EPS ranged from 20 to 50 % at a concentration of 5.0 mg/mL. Significant growth delay of phytopathogenic bacteria was observed after 3-6 h of cultivation. Optical density values of indicator cultures growing in the medium with EPS (1 mg/mL) were lower compared to the control by 24-100 % for Pseudomonas fluorescens, 9-46 % for P. syringae, 47-79 % for Pectobacterium carotovorum, 14-90 % for Clavibacter michiganensis, 9-100 % for Xantomonas campestris, and 45-100 % for X. vesicatorium. EPS retained their inhibitory effect on the growth of X. campestris, X. vesicatorium and C. michiganensis strains after 24-48 h of cultivation, but stimulating effect on the growth of some strains also was observed. LAB EPS showed antibiofilm activity against P. carotovorum, P. syringae, and P. fluorescent, decreasing their biofilm formation by 16-50 %, 14-39 %, and 29-59 %, respectively. Also, stimulation of biofilm formation by X. campestris (by 8-29 %), X. vesicatorium (by 3-32 %) and C. michiganensis (by 31-41 %) strains was observed. EPSs showed antiviral activity against tobacco mosaic virus (TMV). At a concentration of 100 μg/mL, they decreased the infective ability of TMV by 61-92 %. This is the first study demonstrating that LAB EPS exhibited in vitro antibacterial and antibiofilm activity against phytopathogenic bacteria and anti-viral activity against TMV. Thus, LAB EPSs could have great potential for plant protection strategies.
Collapse
Affiliation(s)
- Inna Garmasheva
- Department of Physiology of Industrial Microorganisms, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Acad. Zabolotny str., 154, Kyiv 03143, Ukraine.
| | - Tamara Tomila
- Department of Physics, Chemistry and Technology of Nanotextured Ceramics and Nanocomposite Materials, Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, Omeliana Pritsaka str., 3, Kyiv 03142, Ukraine
| | - Maxim Kharkhota
- Laboratory of biological polymer compounds, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Acad. Zabolotny str., 154, Kyiv 03143, Ukraine
| | - Ljubov Oleschenko
- Department of Physiology of Industrial Microorganisms, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Acad. Zabolotny str., 154, Kyiv 03143, Ukraine
| |
Collapse
|
2
|
Yang Y, Ye G, Qi X, Zhou B, Yu L, Song G, Du R. Exploration of Exopolysaccharide from Leuconostoc mesenteroides HDE-8: Unveiling Structure, Bioactivity, and Food Industry Applications. Polymers (Basel) 2024; 16:954. [PMID: 38611212 PMCID: PMC11013467 DOI: 10.3390/polym16070954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
A strain of Leuconostoc mesenteroides HDE-8 was isolated from homemade longan fermentation broth. The exopolysaccharide (EPS) yield of the strain was 25.1 g/L. The EPS was isolated and purified, and the structure was characterized using various techniques, including X-ray diffraction (XRD), nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy, high-performance size exclusion chromatography (HPSEC), and scanning electron microscopy (SEM). The monosaccharide composition of the EPS was glucose, with a molecular weight (Mw) of 1.7 × 106 Da. NMR spectroscopy revealed that the composition of the HDE-8 EPS consisted of D-glucose pyranose linked by α-(1→4) and α-(1→6) bonds. The SEM analysis of the EPS showed an irregular sheet-like structure. Physicochemical analysis demonstrated that EPSs exhibit excellent thermal stability and high viscosity, making them suitable for fermentation in heat-processed and acidic foods. Additionally, milk coagulation tests showed that the presence of EPSs promotes milk coagulation when supplemented with sucrose. It suggests that EPSs have wide-ranging potential applications as food additives, improving the texture and taste of dairy products. This study provides practical guidance for the commercial use of HDE-8 EPSs in the food and related industries.
Collapse
Affiliation(s)
- Yi Yang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Guangbin Ye
- Institute of Life Sciences, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Xintong Qi
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Bosen Zhou
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Liansheng Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Gang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao 066102, China
| | - Renpeng Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao 066102, China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Kim YJ, Yong HI, Chun YG, Kim BK, Lee MH. Physicochemical characterization and environmental stability of a curcumin-loaded Pickering nanoemulsion using a pea protein isolate-dextran conjugate via the Maillard reaction. Food Chem 2024; 436:137639. [PMID: 37890346 DOI: 10.1016/j.foodchem.2023.137639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/17/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023]
Abstract
This study investigated pea protein isolate (PPI) and dextran (DX) conjugates produced via the Maillard reaction as Pickering stabilizers for various food applications. The results found that as heating time increased (0-5 h), the grafting degree heightened. The PPI-DX conjugate exhibited a rough porous surface in contrast to native PPI, accompanied by changes in molecular weight and secondary structure. Additionally, the aggregation of low-solubility PPI was partially inhibited due to the contribution of increased solubility and reduced surface hydrophobicity by glycation. Curcumin-loaded Pickering nanoemulsions stabilized with PPI-DX had smaller droplets and higher curcumin encapsulation (greater than80 %) than PPI-stabilized nanoemulsions. PPI-DX adsorbed on the interface showed improved physical stability compared to PPI alone, even after various pH conditions and three heat treatments. The nanoemulsion stabilized with PPI-DX demonstrated improved apparent viscosity and dispersion stability. These findings highlight the effectiveness of PPI-DX conjugates as stabilizers for developing stable and functional Pickering nanoemulsions.
Collapse
Affiliation(s)
- Yun Jeong Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Hae In Yong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yong Gi Chun
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Bum-Keun Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Min Hyeock Lee
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
4
|
Gu J, Jiao Z, Wang T, Zhang B, Zhao H. Glucans with Different Degrees of Polymerization from Leuconostoc mesenteroides CICC6055: Analysis of Physicochemical Properties and Intestinal Prebiotic Function. Int J Mol Sci 2023; 25:258. [PMID: 38203433 PMCID: PMC10779386 DOI: 10.3390/ijms25010258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
This study explored the physicochemical properties and prebiotic activities of glucans and oligoglucans. Oligoglucans were obtained through the fermentation of Leuconostoc mesenteroides CICC6055 and the glucansucrase of strain CICC6055, while glucans were obtained only through fermentation. Thin-layer chromatography and high-performance liquid chromatography identified enzymatically synthesized oligoglucans with a higher yield. Differential scanning calorimetry and derivative thermogravimetry analyses revealed the heat resistance of the glucans and oligoglucans at 280-300 °C. Fourier transform-infrared spectroscopy and nuclear magnetic resonance analyses demonstrated that their main chains were linked with α-1,6-glycosidic bonds accompanied by glucose residue branching. In vitro fermentation experiments demonstrated that they not only improved the contents of short-chain fatty acids but also raised the abundance of predominant flora, such as Bacteroides, Firmicutes, Verrucomicrobia, and Proteobacteria. These results implicate glucansucrase as an efficacious tool for the enzyme synthesis of oligoglucans. Furthermore, both polysaccharides with different degrees of polymerization may be beneficial in maintaining a healthy human gut.
Collapse
Affiliation(s)
| | | | | | | | - Hongfei Zhao
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (J.G.); (Z.J.); (T.W.); (B.Z.)
| |
Collapse
|
5
|
Du Y, Liu L, Yan W, Li Y, Li Y, Cui K, Yu P, Gu Z, Zhang W, Feng J, Li Z, Tang H, Du Y, Zhao H. The anticancer mechanisms of exopolysaccharide from Weissella cibaria D-2 on colorectal cancer via apoptosis induction. Sci Rep 2023; 13:21117. [PMID: 38036594 PMCID: PMC10689803 DOI: 10.1038/s41598-023-47943-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
Exopolysaccharide (EPS) from Weissella cibaria has been devoted to the study of food industry. However, the anticancer activity of W. cibaria derived EPS has not yet been investigated. In this study, we obtained the EPS from W. cibaria D-2 isolated from the feces of healthy infants and found that D-2-EPS, a homopolysaccharide with porous web like structure, could effectively inhibit the proliferation, migration, invasion and induce cell cycle arrest in G0/G1 phase of colorectal cancer (CRC) cells. In HT-29 tumor xenografts, D-2-EPS significantly retarded tumor growth without obvious cytotoxicity to normal organs. Furthermore, we revealed that D-2-EPS promoted the apoptosis of CRC cells by increasing the levels of Fas, FasL and activating Caspase-8/Caspase-3, indicating that D-2-EPS might induce apoptosis through the extrinsic Fas/FasL pathway. Taken together, the D-2-EPS has the potential to be developed as a nutraceutical or drug to prevent and treat colorectal cancer.
Collapse
Affiliation(s)
- Yurong Du
- Oncology Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Lei Liu
- Oncology Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Weiliang Yan
- Oncology Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Yang Li
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China
| | - Yuanzhe Li
- Department of Pediatrics, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Kang Cui
- Oncology Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Pu Yu
- Oncology Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Zhuoyu Gu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - WanCun Zhang
- Department of Pediatrics, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhen Li
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 451464, Henan, China
| | - Hao Tang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 451464, Henan, China
| | - Yabing Du
- Oncology Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
| | - Huan Zhao
- Oncology Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
6
|
In Vitro Evaluation of Postbiotics Produced from Bacterial Isolates Obtained from Rainbow Trout and Nile Tilapia against the Pathogens Yersinia ruckeri and Aeromonas salmonicida subsp. salmonicida. Foods 2023; 12:foods12040861. [PMID: 36832935 PMCID: PMC9957526 DOI: 10.3390/foods12040861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The use of antibiotics in aquaculture leads to the proliferation of multidrug-resistant bacteria, and an urgent need for developing new alternatives to prevent and control disease has, thus, arisen. In this scenario, postbiotics represent a promising tool to achieve this purpose; thus, in this study, isolation and selection of bacteria to further produce and evaluate their postbiotics antibacterial activity against fish pathogens was executed. In this respect, bacterial isolates from rainbow trout and Nile tilapia were obtained and tested in vitro against Yersinia ruckeri and Aeromonas salmonicida subsp. salmonicida. From 369 obtained isolates, 69 were selected after initial evaluation. Afterwards, additional screening was carried out by spot-on-lawn assay to finally select twelve isolates; four were identified as Pediococcus acidilactici, seven as Weissella cibaria, and one as Weissella paramesenteroides by matrix assisted laser desorption/ionization, time-of-flight mass spectrometry (MALDI-TOF MS). Selected bacteria were used to obtain postbiotic products to test their antagonistic activity through coculture challenge and broth microdilution assays. The influence of incubation time prior to postbiotic production on antagonistic behavior was also recorded. Two isolates identified as W. cibaria were able to significantly reduce (p < 0.05) A. salmonicida subsp. salmonicida's growth in the coculture challenge up to 4.49 ± 0.05 Log CFU/mL, and even though the reduction in Y. ruckeri was not as effective, some inhibition on the pathogen's growth was reported; at the same time, most of the postbiotic products obtained showed more antibacterial activity when obtained from broth cultures incubated for 72 h. Based on the results obtained, the preliminary identification of the isolates that expressed the highest inhibitory activity was confirmed by partial sequencing as W. cibaria. Through our study, it can be concluded that postbiotics produced by these strains are useful to inhibit the growth of the pathogens and could, thereby, be applicable in further research to develop suitable tools as feed additives for disease control and prevention in aquaculture.
Collapse
|
7
|
Rajoka MSR, Mehwish HM, Kitazawa H, Barba FJ, Berthelot L, Umair M, Zhu Q, He Z, Zhao L. Techno-functional properties and immunomodulatory potential of exopolysaccharide from Lactiplantibacillus plantarum MM89 isolated from human breast milk. Food Chem 2022; 377:131954. [PMID: 34973591 DOI: 10.1016/j.foodchem.2021.131954] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/18/2022]
Abstract
An exopolysaccharide, designated as MM89-EPS, was isolated from Lactiplantibacillus plantarum MM89. It was comprised of glucose and mannose molecules with an average molecular weight of 138 kDa. FTIR and NMR spectra showed that MM89-EPS had characteristic polysaccharide functional groups. MM89-EPS displayed excellent water solubility and capacities to retain water and oil due to its porous structure. MM89-EPS exhibited no significant cytotoxicity on RAW264.7 cells and showed strong immunomodulatory activity by increasing phagocytosis, acid phosphatase activity, and cytokine production in RAW264.7 cells. Furthermore, an in vivo study revealed that splenic indices, intestinal IgA levels, serum cytokine levels, and lymphocyte proliferation were increased in an MM89-EPS-treated cyclophosphamide-induced immunosuppressed mouse model. To summarize, our results indicate that MM89-EPS can efficiently enhance the immunostimulatory activity of immune cells and an immunosuppressed mouse model. Hence, MM89-EPS may be use as a potential source of immunomodulatory agent in various food products.
Collapse
Affiliation(s)
- Muhammad Shahid Riaz Rajoka
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China; School of Pharmaceutical Science, Health Science Center, Shenzhen University, Shenzhen 518060, PR China; Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Hafiza Mahreen Mehwish
- School of Pharmaceutical Science, Health Science Center, Shenzhen University, Shenzhen 518060, PR China; Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan.
| | - Francisco J Barba
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, 46100 València, Spain.
| | - Laureline Berthelot
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.
| | - Muhammad Umair
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Qinchang Zhu
- School of Pharmaceutical Science, Health Science Center, Shenzhen University, Shenzhen 518060, PR China.
| | - Zhendan He
- School of Pharmaceutical Science, Health Science Center, Shenzhen University, Shenzhen 518060, PR China; College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, PR China.
| | - Liqing Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
8
|
Deng H, Konopka CJ, Prabhu S, Sarkar S, Medina NG, Fayyaz M, Arogundade OH, Vidana Gamage HE, Shahoei SH, Nall D, Youn Y, Dobrucka IT, Audu CO, Joshi A, Melvin WJ, Gallagher KA, Selvin PR, Nelson ER, Dobrucki LW, Swanson KS, Smith AM. Dextran-Mimetic Quantum Dots for Multimodal Macrophage Imaging In Vivo, Ex Vivo, and In Situ. ACS NANO 2022; 16:1999-2012. [PMID: 35107994 PMCID: PMC8900655 DOI: 10.1021/acsnano.1c07010] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Macrophages are white blood cells with diverse functions contributing to a healthy immune response as well as the pathogenesis of cancer, osteoarthritis, atherosclerosis, and obesity. Due to their pleiotropic and dynamic nature, tools for imaging and tracking these cells at scales spanning the whole body down to microns could help to understand their role in disease states. Here we report fluorescent and radioisotopic quantum dots (QDs) for multimodal imaging of macrophage cells in vivo, ex vivo, and in situ. Macrophage specificity is imparted by click-conjugation to dextran, a biocompatible polysaccharide that natively targets these cell types. The emission spectral band of the crystalline semiconductor core was tuned to the near-infrared for optical imaging deep in tissue, and probes were covalently conjugated to radioactive iodine for nuclear imaging. The performance of these probes was compared with all-organic dextran probe analogues in terms of their capacity to target macrophages in visceral adipose tissue using in vivo positron emission tomography/computed tomography (PET/CT) imaging, in vivo fluorescence imaging, ex vivo fluorescence, post-mortem isotopic analyses, and optical microscopy. All probe classes exhibited equivalent physicochemical characteristics in aqueous solution and similar in vivo targeting specificity. However, dextran-mimetic QDs provided enhanced signal-to-noise ratio for improved optical quantification, long-term photostability, and resistance to chemical fixation. In addition, the vascular circulation time for the QD-based probes was extended 9-fold compared with dextran, likely due to differences in conformational flexibility. The enhanced photophysical and photochemical properties of dextran-mimetic QDs may accelerate applications in macrophage targeting, tracking, and imaging across broad resolution scales, particularly advancing capabilities in single-cell and single-molecule imaging and quantification.
Collapse
Affiliation(s)
- Hongping Deng
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Christian J Konopka
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Suma Prabhu
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Suresh Sarkar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Natalia Gonzalez Medina
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Muhammad Fayyaz
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Opeyemi H Arogundade
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hashni Epa Vidana Gamage
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sayyed Hamed Shahoei
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Duncan Nall
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yeoan Youn
- Center for Biophysics and Quantitative Biology and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Iwona T Dobrucka
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Christopher O Audu
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Amrita Joshi
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - William J Melvin
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Katherine A Gallagher
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Paul R Selvin
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Lawrence W Dobrucki
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carle Illinois College of Medicine, Urbana, Illinois 61801, United States
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Andrew M Smith
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carle Illinois College of Medicine, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Li J, Ai L, Xu F, Hu X, Yao Y, Wang L. Structural characterization of exopolysaccharides from Weissella cibaria NC516.11 in distiller grains and its improvement in gluten-free dough. Int J Biol Macromol 2021; 199:17-23. [PMID: 34952097 DOI: 10.1016/j.ijbiomac.2021.12.089] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/03/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022]
Abstract
In this study, an exopolysaccharide (EPS) was produced by Weissella cibaria NC516.11 isolated from distiller grains of Chinese Baijiu. The structural characterization of EPS determined using fourier transform infrared spectra and nuclear magnetic resonance spectra demonstrated that W. cibaria NC516.11 had α-(1 → 6) (93.46%) d-glucose linkages with a few α-(1 → 3) (6.54%) d-glucose linked branches. The monosaccharide composition of the EPS was glucose, and its molecular weight was 2.82 × 106 Da. Scanning electron microscopy showed that the microstructure of EPS had a three-dimensional structure at low magnification and a particle structure that protruded from the surface at high magnification. The addition of EPS into dough can promote the cross-linking of starch molecules and increase the water-holding capacity. Dynamic rheology indicated that the aqueous solution of EPS is a pseudoplastic fluid, and the higher the concentration of EPS, the greater the viscosity. The addition of EPS to the gluten-free dough showed G' > G", which could increase the viscoelastic properties of the dough and enhance the gluten network.
Collapse
Affiliation(s)
- Jun Li
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, No. 3 Wenyuan Road, Nanjing, Jiangsu 210023, China
| | - Lianzhong Ai
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Feiran Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xintian Hu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, No. 3 Wenyuan Road, Nanjing, Jiangsu 210023, China
| | - Yijun Yao
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, No. 3 Wenyuan Road, Nanjing, Jiangsu 210023, China
| | - Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, No. 3 Wenyuan Road, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
10
|
Abstract
Dextran is an exopolysaccharide (EPS) synthesized by lactic acid bacteria (LAB) or their enzymes in the presence of sucrose. Dextran is composed of a linear chain of d-glucoses linked by α-(1→6) bonds, with possible branches of d-glucoses linked by α-(1→4), α-(1→3), or α-(1→2) bonds, which can be low (<40 kDa) or high molecular weight (>40 kDa). The characteristics of dextran in terms of molecular weight and branches depend on the producing strain, so there is a great variety in its properties. Dextran has commercial interest because its solubility, viscosity, and thermal and rheological properties allow it to be used in food, pharmaceutical, and research areas. The aim of this review article is to compile the latest research (in the past decade) using LAB to synthesize high or low molecular weight dextran. In addition, studies using modified enzymes to produce dextran with specific structural characteristics (molecular weights and branches) are addressed. On the other hand, special attention is paid to LAB extracted from unconventional sources to expose their capacities as dextran producers and their possible application to compete with the only commercial strain (Leuconostoc mesenteroides NRRL B512).
Collapse
|
11
|
Lobo RE, Figueroa T, Navarro D, Gómez MI, Font de Valdez G, Torino MI. Techno-functional properties of HoPS from lactic acid bacteria of different origins as potential food additives. Food Chem 2021; 356:129627. [PMID: 33839531 DOI: 10.1016/j.foodchem.2021.129627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/05/2021] [Accepted: 03/13/2021] [Indexed: 12/14/2022]
Abstract
Homopolysaccharides (HoPS) produced by lactic acid bacteria (LAB) are highly versatile, biocompatible and safe compounds. In this work, six HoPS from different species of Weisella and Leuconostoc were identified as thermally stable dextrans, with endothermic crystalline deformations between 214 and 239 °C. These dextrans proved to have greater solubility and capacities to retain water and oil than similar polymers in other reports. Furthermore, a surface morphology study presented cubic grumps, stratify mesh with irregular grumps, and highly compact filaments. Assays in vitro revealed moderate antioxidant, browning and foaming activities as well as technological properties, such as anti-syneresis, emulsifying and flocculating activities, even at low concentrations. Taking into account bipolymers' microstructure, functionalities and performance in both, aqueous and hydrophobic matrixes, plus their capacity to maintain themselves at elevated temperatures, we consider these HoPS beneficial and natural food additives.
Collapse
Affiliation(s)
- René Emanuel Lobo
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Batalla de Chacabuco 145, San Miguel de Tucumán 4000, Tucumán, Argentina.
| | - Theo Figueroa
- Ludwig-Maximilians Universität (LMU), Department Biology I - Botanic, Faculty of Biology, LMU Biocenter, Großhaderner Str. 2-4, 82152 Planegg - Martinsried, Munich, Germany.
| | - Diego Navarro
- Departamento de Química Orgánica (CIHIDECAR), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428, Buenos Aires, Argentina.
| | - María Inés Gómez
- Instituto de Química Inorgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Batalla de Ayacucho 471, San Miguel de Tucumán 4000 Tucumán, Argentina.
| | - Graciela Font de Valdez
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Batalla de Chacabuco 145, San Miguel de Tucumán 4000, Tucumán, Argentina.
| | - María Inés Torino
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Batalla de Chacabuco 145, San Miguel de Tucumán 4000, Tucumán, Argentina.
| |
Collapse
|
12
|
Contributions of exopolysaccharides from lactic acid bacteria as biotechnological tools in food, pharmaceutical, and medical applications. Int J Biol Macromol 2021; 173:79-89. [PMID: 33482209 DOI: 10.1016/j.ijbiomac.2021.01.110] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/10/2020] [Accepted: 01/16/2021] [Indexed: 01/08/2023]
Abstract
Exopolysaccharides (EPS) are important bioproducts produced by some genera of lactic acid bacteria. EPS are famous for their shelf-life improving properties, techno-functional enhancing abilities in food and dairy industries, besides their beneficial health effects. Furthermore, exopolysaccharides have many prospective and well-established contributions in the field of drugs and diagnostic industry. In this review, classification of EPS produced by LAB was presented. Moreover, current and potential applications of EPS in food, dairy, baking industries, cereal-based, and functional products were described. Also, some clinical and pharmaceutical applications of EPS such as intelligent drug delivery systems (microsystems and nanosystems for sustained delivery), interpenetrating polymer networks (IPNs), anticancer drug-targeting, recombinant macromolecular biopharmaceuticals, gene delivery, tissue engineering, and role of EPS in diagnostics were highlighted. Finally, future prospects concerning enhancing EPS production, minimizing costs of their production, and exploring their contribution in further applications were discussed.
Collapse
|
13
|
Dextran degradation by sonoenzymolysis: Degradation rate, molecular weight, mass fraction, and degradation kinetics. Int J Biol Macromol 2020; 169:60-66. [PMID: 33338523 DOI: 10.1016/j.ijbiomac.2020.12.091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 11/21/2022]
Abstract
To study dextran degradation by sonoenzymolysis, the degradation rate, the change of molecular weight, the mass fractions of fragments of certain molecular weight, and the degradation kinetics were analyzed and compared with the corresponding parameters under ultrasonic and enzymolysis treatments. The degradation rate improved greatly and the time required to stabilize the rate was shortened compared with ultrasonic treatment, for example, more than 120 min was needed at 4 W/mL for ultrasonic treatment before stabilization with the degradation rate of 77.41%, whereas 80 min was needed for sonoenzymolysis treatment with the degradation rate of 91.44%. A lower molecular weight limit was established (7.15 × 104 Da at 4 W/mL for sonoenzymolysis treatment compared with 19.61 × 104 Da at 4 W/mL for ultrasonic treatment), with decreased time to approach the new limiting molecular weight (80 min compared with more than 120 min). The mass fraction of 104-105 Da fragment increased (61.02% at 4 W/mL for sonoenzymolysis treatment compared with 42.98% at 4 W/mL for ultrasonic treatment) and the dextran degradation kinetics for sonoenzymolysis under lower ultrasonic intensity fitted the Malhotra model well. Sonoenzymolysis treatment at the ultrasonic intensity of 4 W/mL for 80 min resulted in more 104-105 Da fragments in a shorter time. The results indicated that sonoenzymolysis can be applied as an efficient method to obtain clinical dextran.
Collapse
|
14
|
Overview of exopolysaccharides produced by Weissella genus - A review. Int J Biol Macromol 2020; 164:2964-2973. [PMID: 32853618 DOI: 10.1016/j.ijbiomac.2020.08.185] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 12/14/2022]
Abstract
Exopolysaccharides (EPS) from lactic acid bacteria (LAB) are much diversed in structure, composition and applications which also adding a great commercial potential due to its generally recognized as safe (GRAS) status. LAB genus such as Lactobacillus, Leuconostoc, Streptococcus, Weissella, Lactococcus are known to produce EPS. Among this genus, Weissella is enormously reported for diversity and high production of EPS with wide range of industrial applications and bio-functional properties. This review summarize in detail about the Weissella EPS from genus to functional application. Physico-chemical characterization from production, purification step to structural elucidation of Weissella EPS is comprehensively discussed along with their properties. Weissella genus has revealed various EPS with significant functional potentials, making massive application in food and pharma industries as viscosifiers, biothickener, emulsifiers and stabilizers. In addition to this, biological properties of these EPS revealed multiple health promoting properties which can be explored for further applications in food and pharmaceutical sectors.
Collapse
|
15
|
Probiotic potential of Weissella strains isolated from horse feces. Microb Pathog 2019; 132:117-123. [PMID: 31009656 DOI: 10.1016/j.micpath.2019.04.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 01/02/2023]
Abstract
In this study, we isolated four Weissella confusa strains from the healthy horse feces to test their potential as equine probiotics. The identification and characteristics of these isolates were determined as per standard methods. Resistance and susceptibility of the isolated strains were tested to low pHs, different heat treatments, commonly used antibiotics and against the pathogenic strains of Salmonella, Pasteurella, Staphylococcus aureus, and Escherichia coli. After 3 h cultural in different pH medium, the 4 strains still had a certain amount of survival above pH 3.0. WH2 and WH4 were still viable at pH2.5. All the isolated strains showed proper growth at 60 °C while no strain survived at 80 °C. The inhibition of α-amylase, the scavenging ability of free radical DPPH· and hydroxyl free radical HO·were also investigated. The results showed that WH4 had highest inhibition rate of α-amylase activity and DPPH· free radical scavenging rate, and the inhibition rate of α-amylase activity was 24.09% and the DPPH· free radical scavenging rate was 35.78%. The inhibition rate ofα-amylase activity and DPPH· scavenging rate of free radicals in the other three strains were about 10%. The clearance rate of hydroxyl radical (HO·) in 4 strains was between 12% and 15%. The antibiotic susceptibilities varied for these four Weisella strains but all of them showed resistance against the frequently used equine antibiotics. All the four strains successfully suppressed the growth of standard strains in in vitro bacteriostasis experiment, which included Salmonella enteritidis (NTNC13349), Escherichia coli (C83902) and Staphylococcus aureus (BNCC186335). they also successfully suppressed the growth of state key laboratory isolating pathogens, which are Pasterurella multocida and Salmonella. Our findings suggest that the isolated strains of Weissella confusa can act as potential equine probiotics and should be explored further.
Collapse
|
16
|
Tingirikari JMR. Microbiota-accessible pectic poly- and oligosaccharides in gut health. Food Funct 2019; 9:5059-5073. [PMID: 30280147 DOI: 10.1039/c8fo01296b] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Diverse human intestinal microbiota are regarded as a prerequisite for a healthy intestine. Commercial prebiotic products have a limited ability to provide microbial diversity in the human gut, because they mostly comprise oligomers of the same monosaccharide residues and a small fraction of them can reach the distal colon. Therefore, the demand for diverse prebiotic ingredients and dietary fibers with improved functional properties is increasing tremendously. The main sources of carbohydrates in our diet are plant-derived polysaccharides, which are consumed by the bacteria present in the intestine. Among these, pectin-derived poly- and oligosaccharides serve as the best alternative, as they are resistant to human gastric juice and are fermented slowly in the large intestine to impart a prebiotic effect. The main components of pectin are polygalacturonic acids in association with neutral polysaccharides such as arabinan, arabinogalactan, and galactan. The present review deals with the health-related functional properties of pectic poly- and oligosaccharides and their applications in the food industry. Different mechanisms involved in the hydrolysis of these carbohydrates by the intestinal bacteria and in maintaining the microbial diversity of the intestine are also discussed. It also emphasizes the current methods for the production and purification of different pectins and their oligosaccharides.
Collapse
Affiliation(s)
- Jagan Mohan Rao Tingirikari
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh 534101, India.
| |
Collapse
|
17
|
Ye G, Li G, Wang C, Ling B, Yang R, Huang S. Extraction and characterization of dextran from Leuconostoc pseudomesenteroides YB-2 isolated from mango juice. Carbohydr Polym 2018; 207:218-223. [PMID: 30600002 DOI: 10.1016/j.carbpol.2018.11.092] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/08/2018] [Accepted: 11/28/2018] [Indexed: 01/08/2023]
Abstract
An exopolysaccharide (EPS)-producing strain of YB-2 isolated from mango juice was identified as Leuconostoc pseudomesenteroides. The molecular weight (Mw) of this EPS was 7.67×105 Da. Gas chromatography (GC) analysis confirmed the presence of only glucose monomers. Fourier transform infrared (FT-IR) spectroscopy and nuclear magnetic resonance (NMR) spectra displayed the glucan nature of the EPS with 96.8% α-(1→6) and 3.2% branching α-(1→3) linkages. Scanning electron microscopy (SEM) showed smooth surfaces and compact structure. The water solubility index (WSI) and water-holding capacity (WHC) of dextran were 97.48±2.46% and 287.51±7.93%, respectively. The rheological analysis of dextran elucidated a non-Newtonian pseudoplastic behavior. The dextran revealed an inhibitory activity against Escherichia coli and Staphylococcus aureus with minimal inhibitory concentrations (MIC) of 2.0 mg/mL and 3.0 mg/mL, respectively.
Collapse
Affiliation(s)
- Guangbin Ye
- Youjiang Medical University for Nationalities, Guangxi, Baise, 533000, PR China; Medical College of Guangxi University, Guangxi, Nanning, 530004, PR China
| | - Genliang Li
- Youjiang Medical University for Nationalities, Guangxi, Baise, 533000, PR China
| | - Changli Wang
- Youjiang Medical University for Nationalities, Guangxi, Baise, 533000, PR China
| | - Bo Ling
- Youjiang Medical University for Nationalities, Guangxi, Baise, 533000, PR China
| | - Ruirui Yang
- Youjiang Medical University for Nationalities, Guangxi, Baise, 533000, PR China
| | - Suoyi Huang
- Youjiang Medical University for Nationalities, Guangxi, Baise, 533000, PR China; Key Laboratory of Guangxi's College for the Study of Characteristic Medicine in Youjiang River Basin, Youjiang Medical University for Nationalities, Guangxi, Baise, 533000, PR China.
| |
Collapse
|
18
|
Ye G, Chen Y, Wang C, Yang R, Bin X. Purification and characterization of exopolysaccharide produced by Weissella cibaria YB-1 from pickle Chinese cabbage. Int J Biol Macromol 2018; 120:1315-1321. [PMID: 30194998 DOI: 10.1016/j.ijbiomac.2018.09.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 10/28/2022]
Abstract
An exopolysaccharide (EPS) was produced by Weissella cibaria YB-1 isolated from pickle Chinese cabbage. The EPS was purified and characterized. The monosaccharide composition of the EPS was glucose, and its molecular mass was 3.89 × 106 Da, as determined by gas chromatography (GC) and high performance liquid chromatography (HPLC). The structural characterization of purified EPS determined by Fourier transform infrared (FT-IR) spectra and nuclear magnetic resonance (NMR) spectra demonstrated that W. cibaria YB-1 synthesized a linear dextran that predominately had α-(1 → 6) glycosidic linkages with only a few α-(1 → 3) (4.3%) linked branches. The water solubility index (WSI), water holding capacity (WHC) and emulsifying activity (EA) of YB-1 dextran were 95.23 ± 4.45, 287.84 ± 16.23 and 84.43 ± 3.65%, respectively. The in-vitro antioxidant activities of the dextran showed good scavenging effects on superoxide anion radical and hydroxyl radical.
Collapse
Affiliation(s)
- Guangbin Ye
- Youjiang Medical University for Nationalities, Baise 533000, Guangxi, PR China; College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Yuanhong Chen
- Youjiang Medical University for Nationalities, Baise 533000, Guangxi, PR China
| | - Changli Wang
- Youjiang Medical University for Nationalities, Baise 533000, Guangxi, PR China
| | - Ruirui Yang
- Youjiang Medical University for Nationalities, Baise 533000, Guangxi, PR China
| | - Xiaoyun Bin
- Youjiang Medical University for Nationalities, Baise 533000, Guangxi, PR China.
| |
Collapse
|
19
|
Characterization of Antibacterial Cell-Free Supernatant from Oral Care Probiotic Weissella cibaria, CMU. Molecules 2018; 23:molecules23081984. [PMID: 30096901 PMCID: PMC6222630 DOI: 10.3390/molecules23081984] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/04/2018] [Accepted: 08/05/2018] [Indexed: 12/19/2022] Open
Abstract
Recently, studies have explored the use of probiotics like the Weissella cibaria strain, CMU (oraCMU), for use as preventive dental medicine instead of chemical oral care methods. The present study was conducted to investigate the antibacterial properties of the cell-free supernatant (CFS) from this bacterium. Cell morphology using the scanning electron microscope, and the antibacterial effect of CFS under various growth conditions were evaluated. The production of hydrogen peroxide, organic acids, fatty acids, and secretory proteins was also studied. Most of the antibacterial effects of oraCMU against periodontal pathogens were found to be acid- and hydrogen peroxide-dose-dependent effects. Lactic acid, acetic acid, and citric acid were the most common organic acids. Among the 37 fatty acids, only 0.02% of oleic acid (C18:1n-9, cis) was detected. Proteomic analysis of the oraCMU secretome identified a total of 19 secreted proteins, including N-acetylmuramidase. This protein may be a potential anti-microbial agent effective against Porphyromonas gingivalis.
Collapse
|
20
|
Tang X, Liu N, Huang W, Cheng X, Wang F, Zhang B, Chen J, Jiang H, Omedi JO, Li Z. Syneresis rate, water distribution, and microstructure of wheat starch gel during freeze‐thaw process: Role of a high molecular weight dextran produced by
Weissella confusa
QS
813 from traditional sourdough. Cereal Chem 2018. [DOI: 10.1094/cchem-08-17-0174-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Xiaojuan Tang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
| | - Na Liu
- MagiBake International Inc. Wuxi China
| | - Weining Huang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
| | | | - Feng Wang
- MagiBake International Inc. Wuxi China
| | - Binle Zhang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
| | - Jiafang Chen
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
| | - Hui Jiang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
| | - Jacob O. Omedi
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
| | - Zhibin Li
- Fujian Wheat City Food Development Co., Ltd. Jinjiang Quanzhou China
| |
Collapse
|
21
|
Lim SB, Tingirikari JMR, Seo JS, Li L, Shim S, Seo JH, Han NS. Isolation of lactic acid bacteria starters from Jeung- pyun for sourdough fermentation. Food Sci Biotechnol 2017; 27:73-78. [PMID: 30263726 DOI: 10.1007/s10068-017-0274-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 08/07/2017] [Accepted: 09/21/2017] [Indexed: 11/28/2022] Open
Abstract
Lactic acid bacteria (LAB) are key for the fermentation of sourdoughs to improve the quality and nutritive value of bread. The aim of this study was to isolate the LAB starter for sourdough fermentation from Jeung-pyun, a Korean traditional rice cake. Among the twenty two LAB screened, five isolates were selected based on exo-polysaccharide production. Among them, three isolates showed cell growth greater than 8.5 Log CFU/g, maximum increase in the volume of dough, and dextran concentration up to 0.16%. During the sourdough fermentation, pH and total titratable acidity (TTA) were changed, as the three isolates synthesized lactic acid and acetic acid with fermentation quotients less than 2.0. They were identified as Leuconostoc lactis EFEL005, Lactobacillus brevis EFEL004, and Le. citreum EFEL006. They displayed good fermentation properties (growth, dextran production, pH, and TTA) in dough and they are regarded as potential starters to be used in sourdough fermentation.
Collapse
Affiliation(s)
- Sae Bom Lim
- 1Brain Korea 21 Center for Bio-resource Development, Division of Animal, Horticulture, and Food Sciences, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Jagan Mohan Rao Tingirikari
- 1Brain Korea 21 Center for Bio-resource Development, Division of Animal, Horticulture, and Food Sciences, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Ji Sun Seo
- 1Brain Korea 21 Center for Bio-resource Development, Division of Animal, Horticulture, and Food Sciences, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Ling Li
- 2Zhejiang Provincial Key Lab for Chem and Bio Processing Technology of Farm Produces, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023 Zhejiang China
| | - Sangmin Shim
- Research Institute of Food and Biotechnology, SPC Group, Seoul, 08826 Republic of Korea
| | - Jin-Ho Seo
- 4Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, 08826 Republic of Korea
| | - Nam Soo Han
- 1Brain Korea 21 Center for Bio-resource Development, Division of Animal, Horticulture, and Food Sciences, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| |
Collapse
|
22
|
Abstract
Among other fermentation processes, lactic acid fermentation is a valuable process which enhances the safety, nutritional and sensory properties of food. The use of starters is recommended compared to spontaneous fermentation, from a safety point of view but also to ensure a better control of product functional and sensory properties. Starters are used for dairy products, sourdough, wine, meat, sauerkraut and homemade foods and beverages from dairy or vegetal origin. Among lactic acid bacteria, Lactobacillus, Lactococcus, Leuconostoc, Streptococcus and Pediococcus are the majors genera used as starters whereas Weissella is not. Weissella spp. are frequently isolated from spontaneous fermented foods and participate to the characteristics of the fermented product. They possess a large set of functional and technological properties, which can enhance safety, nutritional and sensory characteristics of food. Particularly, Weissella cibaria and Weissella confusa have been described as high producers of exo-polysaccharides, which exhibit texturizing properties. Numerous bacteriocins have been purified from Weissella hellenica strains and may be used as bio-preservative. Some Weissella strains are able to decarboxylate polymeric phenolic compounds resulting in a better bioavailability. Other Weissella strains showed resistance to low pH and bile salts and were isolated from healthy human feces, suggesting their potential as probiotics. Despite all these features, the use of Weissella spp. as commercial starters remained non-investigated. Potential biogenic amine production, antibiotic resistance pattern or infection hazard partly explains this neglecting. Besides, Weissella spp. are not recognized as GRAS (Generally Recognized As Safe). However, Weissella spp. are potential powerful starters for food fermentation as well as Lactococcus, Leuconostoc or Lactobacillus species.
Collapse
|
23
|
Baruah R, Deka B, Kashyap N, Goyal A. Dextran Utilization During Its Synthesis by Weissella cibaria RBA12 Can Be Overcome by Fed-Batch Fermentation in a Bioreactor. Appl Biochem Biotechnol 2017; 184:1-11. [PMID: 28573604 DOI: 10.1007/s12010-017-2522-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/19/2017] [Indexed: 11/24/2022]
Abstract
Weissella cibaria RBA12 produced a maximum of 9 mg/ml dextran (with 90% efficiency) using shake flask culture under the optimized concentration of medium components viz. 2% (w/v) of each sucrose, yeast extract, and K2HPO4 after incubation at optimized conditions of 20 °C and 180 rpm for 24 h. The optimized medium and conditions were used for scale-up of dextran production from Weissella cibaria RBA12 in 2.5-l working volume under batch fermentation in a bioreactor that yielded a maximum of 9.3 mg/ml dextran (with 93% efficiency) at 14 h. After 14 h, dextran produced was utilized by the bacterium till 18 h in its stationary phase under sucrose depleted conditions. Dextran utilization was further studied by fed-batch fermentation using sucrose feed. Dextran on production under fed-batch fermentation in bioreactor gave 35.8 mg/ml after 32 h. In fed-batch mode, there was no decrease in dextran concentration as observed in the batch mode. This showed that the utilization of dextran by Weissella cibaria RBA12 is initiated when there is sucrose depletion and therefore the presence of sucrose can possibly overcome the dextran hydrolysis. This is the first report of utilization of dextran, post-sucrose depletion by Weissella sp. studied in bioreactor.
Collapse
Affiliation(s)
- Rwivoo Baruah
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Barsha Deka
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Niharika Kashyap
- Center for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India. .,Center for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
24
|
Efficient Production of Prebiotic Gluco-oligosaccharides in Orange Juice Using Immobilized and Co-immobilized Dextransucrase. Appl Biochem Biotechnol 2017; 183:1265-1281. [PMID: 28477145 DOI: 10.1007/s12010-017-2496-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
Abstract
Dextransucrase from Leuconostoc mesenteroides NRRL B-512F was subjected to immobilization and co-immobilization with dextranase from Chaetomium erraticum. Immobilization has enhanced the operational and storage stability of dextransucrase. Two hundred milligrammes (2.4 IU/mg) of alginate beads (immobilized and co-immobilized) were found to be optimum for the production of gluco-oligosaccharides (GOS) in orange juice with a high degree of polymerization. The pulp of the orange juice did not interfere in the reaction. In the batch process, co-immobilized dextransucrase (41 g/L) produced a significantly higher amount of GOS than immobilized dextransucrase (37 g/L). Alginate entrapment enhanced the thermal stability of dextransucrase for up to 3 days in orange juice at 30 °C. The production of GOS in semi-continuous process was 39 g/L in co-immobilized dextransucrase and 33 g/L in immobilized dextransucrase. Thus, immobilization technology offers a great scope in terms of reusability and efficient production of a value added functional health drink.
Collapse
|
25
|
Abriouel H, Lerma LL, Casado Muñoz MDC, Montoro BP, Kabisch J, Pichner R, Cho GS, Neve H, Fusco V, Franz CMAP, Gálvez A, Benomar N. The controversial nature of the Weissella genus: technological and functional aspects versus whole genome analysis-based pathogenic potential for their application in food and health. Front Microbiol 2015; 6:1197. [PMID: 26579103 PMCID: PMC4621295 DOI: 10.3389/fmicb.2015.01197] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/15/2015] [Indexed: 11/21/2022] Open
Abstract
Despite the use of several Weissella (W.) strains for biotechnological and probiotic purposes, certain species of this genus were found to act as opportunistic pathogens, while strains of W. ceti were recognized to be pathogenic for farmed rainbow trout. Herein, we investigated the pathogenic potential of weissellas based on in silico analyses of the 13 whole genome sequences available to date in the NCBI database. Our screening allowed us to find several virulence determinants such as collagen adhesins, aggregation substances, mucus-binding proteins, and hemolysins in some species. Moreover, we detected several antibiotic resistance-encoding genes, whose presence could increase the potential pathogenicity of some strains, but should not be regarded as an excluding trait for beneficial weissellas, as long as these genes are not present on mobile genetic elements. Thus, selection of weissellas intended to be used as starters or for biotechnological or probiotic purposes should be investigated regarding their safety aspects on a strain to strain basis, preferably also by genome sequencing, since nucleotide sequence heterogeneity in virulence and antibiotic resistance genes makes PCR-based screening unreliable for safety assessments. In this sense, the application of W. confusa and W. cibaria strains as starter cultures or as probiotics should be approached with caution, by carefully selecting strains that lack pathogenic potential.
Collapse
Affiliation(s)
- Hikmate Abriouel
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| | - Leyre Lavilla Lerma
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| | - María Del Carmen Casado Muñoz
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| | - Beatriz Pérez Montoro
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| | - Jan Kabisch
- Department of Microbiology and Biotechnology, Federal Research Institute of Nutrition and Food, Max Rubner-Institut , Kiel, Germany
| | - Rohtraud Pichner
- Department of Microbiology and Biotechnology, Federal Research Institute of Nutrition and Food, Max Rubner-Institut , Kiel, Germany
| | - Gyu-Sung Cho
- Department of Microbiology and Biotechnology, Federal Research Institute of Nutrition and Food, Max Rubner-Institut , Kiel, Germany
| | - Horst Neve
- Department of Microbiology and Biotechnology, Federal Research Institute of Nutrition and Food, Max Rubner-Institut , Kiel, Germany
| | - Vincenzina Fusco
- Institute of Sciences of Food Production, National Research Council of Italy , Bari, Italy
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Federal Research Institute of Nutrition and Food, Max Rubner-Institut , Kiel, Germany
| | - Antonio Gálvez
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| | - Nabil Benomar
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| |
Collapse
|
26
|
Torino MI, Font de Valdez G, Mozzi F. Biopolymers from lactic acid bacteria. Novel applications in foods and beverages. Front Microbiol 2015; 6:834. [PMID: 26441845 PMCID: PMC4566036 DOI: 10.3389/fmicb.2015.00834] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/29/2015] [Indexed: 02/03/2023] Open
Abstract
Lactic acid bacteria (LAB) are microorganisms widely used in the fermented food industry worldwide. Certain LAB are able to produce exopolysaccharides (EPS) either attached to the cell wall (capsular EPS) or released to the extracellular environment (EPS). According to their composition, LAB may synthesize heteropolysaccharides or homopolysaccharides. A wide diversity of EPS are produced by LAB concerning their monomer composition, molecular mass, and structure. Although EPS-producing LAB strains have been traditionally applied in the manufacture of dairy products such as fermented milks and yogurts, their use in the elaboration of low-fat cheeses, diverse type of sourdough breads, and certain beverages are some of the novel applications of these polymers. This work aims to collect the most relevant issues of the former reviews concerning the monomer composition, structure, and yields and biosynthetic enzymes of EPS from LAB; to describe the recently characterized EPS and to present the application of both EPS-producing strains and their polymers in the fermented (specifically beverages and cereal-based) food industry.
Collapse
Affiliation(s)
- María I. Torino
- Technology Department, Centro de Referencia para Lactobacilos – Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de TucumánArgentina
| | | | - Fernanda Mozzi
- Technology Department, Centro de Referencia para Lactobacilos – Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de TucumánArgentina
| |
Collapse
|
27
|
Fusco V, Quero GM, Cho GS, Kabisch J, Meske D, Neve H, Bockelmann W, Franz CMAP. The genus Weissella: taxonomy, ecology and biotechnological potential. Front Microbiol 2015; 6:155. [PMID: 25852652 PMCID: PMC4362408 DOI: 10.3389/fmicb.2015.00155] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/10/2015] [Indexed: 01/20/2023] Open
Abstract
Bacteria assigned to the genus Weissella are Gram-positive, catalase-negative, non-endospore forming cells with coccoid or rod-shaped morphology (Collins et al., 1993; Björkroth et al., 2009, 2014) and belong to the group of bacteria generally known as lactic acid bacteria. Phylogenetically, the Weissella belong to the Firmicutes, class Bacilli, order Lactobacillales and family Leuconostocaceae (Collins et al., 1993). They are obligately heterofermentative, producing CO2 from carbohydrate metabolism with either d(-)-, or a mixture of d(-)- and l(+)- lactic acid and acetic acid as major end products from sugar metabolism. To date, there are 19 validly described Weissella species known. Weissella spp. have been isolated from and occur in a wide range of habitats, e.g., on the skin and in the milk and feces of animals, from saliva, breast milk, feces and vagina of humans, from plants and vegetables, as well as from a variety of fermented foods such as European sourdoughs and Asian and African traditional fermented foods. Thus, apart from a perceived technical role of certain Weissella species involved in such traditional fermentations, specific Weissella strains are also receiving attention as potential probiotics, and strain development of particularly W. cibaria strains is receiving attention because of their high probiotic potential for controlling periodontal disease. Moreover, W. confusa and W. cibaria strains are known to produce copius amounts of novel, non-digestible oligosaccharides and extracellular polysaccharides, mainly dextran. These polymers are receiving increased attention for their potential application as prebiotics and for a wide range of industrial applications, predominantly for bakeries and for the production of cereal-based fermented functional beverages. On the detrimental side, strains of certain Weissella species, e.g., of W. viridescens, W. cibaria and W. confusa, are known as opportunistic pathogens involved in human infections while strains of W. ceti have been recently recongnized as etiological agent of "weissellosis," which is a disease affecting farmed rainbow trouts. Bacteria belonging to this species thus are important both from a technological, as well as from a medical point of view, and both aspects should be taken into account in any envisaged biotechnological applications.
Collapse
Affiliation(s)
- Vincenzina Fusco
- National Research Council of Italy, Institute of Sciences of Food ProductionBari, Italy
| | - Grazia M. Quero
- National Research Council of Italy, Institute of Sciences of Food ProductionBari, Italy
| | - Gyu-Sung Cho
- Department of Microbiology and Biotechnology, Max Rubner-InstitutKiel, Germany
| | - Jan Kabisch
- Department of Microbiology and Biotechnology, Max Rubner-InstitutKiel, Germany
| | - Diana Meske
- Department of Microbiology and Biotechnology, Max Rubner-InstitutKiel, Germany
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-InstitutKiel, Germany
| | - Wilhelm Bockelmann
- Department of Microbiology and Biotechnology, Max Rubner-InstitutKiel, Germany
| | | |
Collapse
|