1
|
Liu N, Hou L, Chen X, Bao J, Chen F, Cai W, Zhu H, Wang L, Chen X. Arabidopsis TETRASPANIN8 mediates exosome secretion and glycosyl inositol phosphoceramide sorting and trafficking. THE PLANT CELL 2024; 36:626-641. [PMID: 37950906 PMCID: PMC11024842 DOI: 10.1093/plcell/koad285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 11/13/2023]
Abstract
Sphingolipids are components of plant membranes, and their heterogeneous distribution gives different membrane systems distinct properties. For example, glycosyl inositol phosphoceramides (GIPCs), 1 major type of sphingolipids, aggregate in the outer layer of the plasma membrane (PM), as well as in extracellular vesicles (EVs), including the small (30 to 100 nm) EVs termed exosomes. How these sphingolipids are sorted and trafficked is not clear. In this work, we report that Arabidopsis thaliana TETRASPANIN8 (TET8) acts as a sphingolipid carrier and thus regulates the export of GIPCs from the Golgi apparatus. TET8 recognized the coat protein complex I (COPI) subunit γ2-COPI and moved to its proper location in the PM; this recognition required the TET8 C-terminal tail. Deleting the C-terminal tail of TET8 largely restricted its roles in GIPC transport and endosomal trafficking. Further, we show that TET8 affects EV secretion in association with GIPCs. Thus, our findings shed light on GIPC transport and the molecular machinery involved in EV biogenesis.
Collapse
Affiliation(s)
- Ningjing Liu
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lipan Hou
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xin Chen
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jingjing Bao
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Fangyan Chen
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenjuan Cai
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Huixian Zhu
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Lingjian Wang
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaoya Chen
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
2
|
Bashkirov PV, Kuzmin PI, Chekashkina K, Arrasate P, Vera Lillo J, Shnyrova AV, Frolov VA. Reconstitution and real-time quantification of membrane remodeling by single proteins and protein complexes. Nat Protoc 2020; 15:2443-2469. [PMID: 32591769 PMCID: PMC10839814 DOI: 10.1038/s41596-020-0337-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/14/2020] [Indexed: 02/08/2023]
Abstract
Cellular membrane processes, from signal transduction to membrane fusion and fission, depend on acute membrane deformations produced by small and short-lived protein complexes working in conditions far from equilibrium. Real-time monitoring and quantitative assessment of such deformations are challenging; hence, mechanistic analyses of the protein action are commonly based on ensemble averaging, which masks important mechanistic details of the action. In this protocol, we describe how to reconstruct and quantify membrane remodeling by individual proteins and small protein complexes in vitro, using an ultra-short (80- to 400-nm) lipid nanotube (usNT) template. We use the luminal conductance of the usNT as the real-time reporter of the protein interaction(s) with the usNT. We explain how to make and calibrate the usNT template to achieve subnanometer precision in the geometrical assessment of the molecular footprints on the nanotube membrane. We next demonstrate how membrane deformations driven by purified proteins implicated in cellular membrane remodeling can be analyzed at a single-molecule level. The preparation of one usNT takes ~1 h, and the shortest procedure yielding the basic geometrical parameters of a small protein complex takes 10 h.
Collapse
Affiliation(s)
- Pavel V Bashkirov
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russia.
- Department of Molecular and Biological Physics, Moscow Institute of Physics and Technology, Dolgoprudnyy, Russia.
| | - Peter I Kuzmin
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ksenia Chekashkina
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russia
| | - Pedro Arrasate
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, Leioa, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Javier Vera Lillo
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, Leioa, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Anna V Shnyrova
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, Leioa, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Vadim A Frolov
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, Leioa, Spain.
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
3
|
Sansen T, Sanchez-Fuentes D, Rathar R, Colom-Diego A, El Alaoui F, Viaud J, Macchione M, de Rossi S, Matile S, Gaudin R, Bäcker V, Carretero-Genevrier A, Picas L. Mapping Cell Membrane Organization and Dynamics Using Soft Nanoimprint Lithography. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29000-29012. [PMID: 32464046 DOI: 10.1021/acsami.0c05432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Membrane shape is a key feature of many cellular processes, including cell differentiation, division, migration, and trafficking. The development of nanostructured surfaces allowing for the in situ manipulation of membranes in living cells is crucial to understand these processes, but this requires complicated and limited-access technologies. Here, we investigate the self-organization of cellular membranes by using a customizable and benchtop method allowing one to engineer 1D SiO2 nanopillar arrays of defined sizes and shapes on high-performance glass compatible with advanced microscopies. As a result of this original combination, we provide a mapping of the morphology-induced modulation of the cell membrane mechanics, dynamics and steady-state organization of key protein complexes implicated in cellular trafficking and signal transduction.
Collapse
Affiliation(s)
- T Sansen
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR 9004-Université de Montpellier, 34293 Montpellier, France
| | - D Sanchez-Fuentes
- Institut d'Électronique et des Systèmes (IES), CNRS UMR 5214-Université de Montpellier, 34097 Montpellier, France
| | - R Rathar
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR 9004-Université de Montpellier, 34293 Montpellier, France
- Institut d'Électronique et des Systèmes (IES), CNRS UMR 5214-Université de Montpellier, 34097 Montpellier, France
| | - A Colom-Diego
- Biochemistry Department and School of Chemistry and Biochemistry and Swiss National Centre for Competence in Research in Chemical Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - F El Alaoui
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR 9004-Université de Montpellier, 34293 Montpellier, France
| | - J Viaud
- Institute of Cardiovascular and Metabolic Diseases (I2MC-UMR1048), Inserm and Université Toulouse 3, Avenue Jean Poulhès BP84225, 31432 Cedex 04 Toulouse, France
| | - M Macchione
- School of Chemistry and Biochemistry and Swiss National Centre for Competence in Research in Chemical Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - S de Rossi
- MRI Imaging Facility, UMS BioCampus Montpellier, 34000 Montpellier, France
| | - S Matile
- School of Chemistry and Biochemistry and Swiss National Centre for Competence in Research in Chemical Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - R Gaudin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR 9004-Université de Montpellier, 34293 Montpellier, France
| | - V Bäcker
- MRI Imaging Facility, UMS BioCampus Montpellier, 34000 Montpellier, France
| | - A Carretero-Genevrier
- Institut d'Électronique et des Systèmes (IES), CNRS UMR 5214-Université de Montpellier, 34097 Montpellier, France
| | - L Picas
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR 9004-Université de Montpellier, 34293 Montpellier, France
| |
Collapse
|
4
|
Surface Sensitive Analysis Device using Model Membrane and Challenges for Biosensor-chip. BIOCHIP JOURNAL 2020. [DOI: 10.1007/s13206-019-4110-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Bieberich E. Sphingolipids and lipid rafts: Novel concepts and methods of analysis. Chem Phys Lipids 2018; 216:114-131. [PMID: 30194926 PMCID: PMC6196108 DOI: 10.1016/j.chemphyslip.2018.08.003] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/20/2018] [Accepted: 08/25/2018] [Indexed: 12/12/2022]
Abstract
About twenty years ago, the functional lipid raft model of the plasma membrane was published. It took into account decades of research showing that cellular membranes are not just homogenous mixtures of lipids and proteins. Lateral anisotropy leads to assembly of membrane domains with specific lipid and protein composition regulating vesicular traffic, cell polarity, and cell signaling pathways in a plethora of biological processes. However, what appeared to be a clearly defined entity of clustered raft lipids and proteins became increasingly fluid over the years, and many of the fundamental questions about biogenesis and structure of lipid rafts remained unanswered. Experimental obstacles in visualizing lipids and their interactions hampered progress in understanding just how big rafts are, where and when they are formed, and with which proteins raft lipids interact. In recent years, we have begun to answer some of these questions and sphingolipids may take center stage in re-defining the meaning and functional significance of lipid rafts. In addition to the archetypical cholesterol-sphingomyelin raft with liquid ordered (Lo) phase and the liquid-disordered (Ld) non-raft regions of cellular membranes, a third type of microdomains termed ceramide-rich platforms (CRPs) with gel-like structure has been identified. CRPs are "ceramide rafts" that may offer some fresh view on the membrane mesostructure and answer several critical questions for our understanding of lipid rafts.
Collapse
Affiliation(s)
- Erhard Bieberich
- Department of Physiology at the University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
6
|
Hu MC, Bobulescu IA, Quiñones H, Gisler SM, Moe OW. Dopamine reduces cell surface Na +/H + exchanger-3 protein by decreasing NHE3 exocytosis and cell membrane recycling. Am J Physiol Renal Physiol 2017; 313:F1018-F1025. [PMID: 28768665 DOI: 10.1152/ajprenal.00251.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/14/2017] [Accepted: 07/24/2017] [Indexed: 01/06/2023] Open
Abstract
The intrarenal autocrine-paracrine dopamine (DA) system mediates a significant fraction of the natriuresis in response to a salt load. DA inhibits a number of Na+ transporters to effect sodium excretion, including the proximal tubule Na+/H+ exchanger-3 (NHE3). DA represent a single hormone that regulates NHE3 at multiple levels, including translation, degradation, endocytosis, and protein phosphorylation. Because cell surface NHE3 protein is determined by the balance between exocytotic insertion and endocytotic retrieval, we examined whether DA acutely affects the rate of NHE3 exocytosis in a cell culture model. DA inhibited NHE3 exocytosis at a dose-dependent manner with a half maximal around 10-6 M. The DA effect on NHE3 exocytosis was blocked by inhibition of protein kinase A and by brefeldin A, which inhibits endoplasmic reticulum-to-Golgi transport. NHE3 directly interacts with the ε-subunit of coatomer protein based on yeast-two-hybrid and coimmunoprecipitation. Because NHE3 has been shown to be recycled back to the cell membrane after endocytosis, we measured NHE3 recycling using a biochemical reinsertion assay and showed that reinsertion of NHE3 back to the membrane is also inhibited by DA. In conclusion, among the many mechanisms by which DA reduces apical membrane NHE3 and induces proximal tubule natriuresis, one additional mechanism is inhibition of exocytotic insertion and reinsertion of NHE3 in the apical cell surface.
Collapse
Affiliation(s)
- Ming Chang Hu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; .,Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - I Alexandru Bobulescu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Henry Quiñones
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Serge M Gisler
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Orson W Moe
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas; and.,Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
7
|
Abstract
According to the standard model of G protein-coupled receptor (GPCR) signaling, GPCRs are localized to the cell membrane where they respond to extracellular signals. Stimulation of GPCRs leads to the activation of heterotrimeric G proteins and their intracellular signaling pathways. However, this model fails to accommodate GPCRs, G proteins, and their downstream effectors that are found on the nuclear membrane or in the nucleus. Evidence from isolated nuclei indicates the presence of GPCRs on the nuclear membrane that can activate similar G protein-dependent signaling pathways in the nucleus as at the cell surface. These pathways also include activation of cyclic adenosine monophosphate, calcium and nitric oxide synthase signaling in cardiomyocytes. In addition, a number of distinct heterotrimeric and monomeric G proteins have been found in the nucleus of various cell types. This review will focus on understanding the function of nuclear G proteins with a focus on cardiac signaling where applicable.
Collapse
|
8
|
Abstract
As a major actor of cellular trafficking, COPI coat proteins assemble on membranes and locally bend them to bud 60 nm-size coated particles. Budding requires the energy of the coat assembly to overcome the one necessary to deform the membrane which primarily depends on the bending modulus and surface tension, γ. Using a COPI-induced oil nanodroplet formation approach, we modulated the budding of nanodroplets using various amounts and types of surfactant. We found a Heaviside-like dependence between the budding efficiency and γ: budding was only dependent on γ and occurred beneath 1.3 mN/m. With the sole contribution of γ to the membrane deformation energy, we assessed that COPI supplies ~1500 kBT for budding particles from membranes, which is consistent with common membrane deformation energies. Our results highlight how a simple remodeling of the composition of membranes could mechanically modulate budding in cells.
Collapse
|
9
|
Ryu YS, Yoo D, Wittenberg NJ, Jordan LR, Lee SD, Parikh AN, Oh SH. Lipid Membrane Deformation Accompanied by Disk-to-Ring Shape Transition of Cholesterol-Rich Domains. J Am Chem Soc 2015; 137:8692-5. [PMID: 26053547 DOI: 10.1021/jacs.5b04559] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During vesicle budding or endocytosis, biomembranes undergo a series of lipid- and protein-mediated deformations involving cholesterol-enriched lipid rafts. If lipid rafts of high bending rigidities become confined to the incipient curved membrane topology such as a bud-neck interface, they can be expected to reform as ring-shaped rafts. Here, we report on the observation of a disk-to-ring shape morpho-chemical transition of a model membrane in the absence of geometric constraints. The raft shape transition is triggered by lateral compositional heterogeneity and is accompanied by membrane deformation in the vertical direction, which is detected by height-sensitive fluorescence interference contrast microscopy. Our results suggest that a flat membrane can become curved simply by dynamic changes in local chemical composition and shape transformation of cholesterol-rich domains.
Collapse
Affiliation(s)
| | | | | | | | - Sin-Doo Lee
- §School of Electrical Engineering, Seoul National University, Seoul, Republic of Korea 151-742
| | | | | |
Collapse
|
10
|
Guet D, Mandal K, Pinot M, Hoffmann J, Abidine Y, Sigaut W, Bardin S, Schauer K, Goud B, Manneville JB. Mechanical role of actin dynamics in the rheology of the Golgi complex and in Golgi-associated trafficking events. Curr Biol 2014; 24:1700-11. [PMID: 25042587 DOI: 10.1016/j.cub.2014.06.048] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/06/2014] [Accepted: 06/18/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND In vitro studies have shown that physical parameters, such as membrane curvature, tension, and composition, influence the budding and fission of transport intermediates. Endocytosis in living cells also appears to be regulated by the mechanical load experienced by the plasma membrane. In contrast, how these parameters affect intracellular membrane trafficking in living cells is not known. To address this question, we investigate here the impact of a mechanical stress on the organization of the Golgi complex and on the formation of transport intermediates from the Golgi complex. RESULTS Using confocal microscopy, we visualize the deformation of Rab6-positive Golgi membranes applied by an internalized microsphere trapped in optical tweezers and simultaneously measure the corresponding forces. Our results show that the force necessary to deform Golgi membranes drops when actin dynamics is altered and correlates with myosin II activity. We also show that the applied stress has a long-range effect on Golgi membranes, perturbs the dynamics of Golgi-associated actin, and induces a sharp decrease in the formation of Rab6-positive vesicles from the Golgi complex as well as tubulation of Golgi membranes. CONCLUSIONS We suggest that acto-myosin contractility strongly contributes to the local rigidity of the Golgi complex and regulates the mechanics of the Golgi complex to control intracellular membrane trafficking.
Collapse
Affiliation(s)
- David Guet
- CNRS-Institut Curie, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Kalpana Mandal
- CNRS-Institut Curie, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Mathieu Pinot
- CNRS-Institut Curie, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Jessica Hoffmann
- CNRS-Institut Curie, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Yara Abidine
- CNRS-Institut Curie, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Walter Sigaut
- CNRS-Institut Curie, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Sabine Bardin
- CNRS-Institut Curie, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Kristine Schauer
- CNRS-Institut Curie, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Bruno Goud
- CNRS-Institut Curie, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
| | | |
Collapse
|
11
|
Kapus A, Janmey P. Plasma membrane--cortical cytoskeleton interactions: a cell biology approach with biophysical considerations. Compr Physiol 2013; 3:1231-81. [PMID: 23897686 DOI: 10.1002/cphy.c120015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
From a biophysical standpoint, the interface between the cell membrane and the cytoskeleton is an intriguing site where a "two-dimensional fluid" interacts with an exceedingly complex three-dimensional protein meshwork. The membrane is a key regulator of the cytoskeleton, which not only provides docking sites for cytoskeletal elements through transmembrane proteins, lipid binding-based, and electrostatic interactions, but also serves as the source of the signaling events and molecules that control cytoskeletal organization and remolding. Conversely, the cytoskeleton is a key determinant of the biophysical and biochemical properties of the membrane, including its shape, tension, movement, composition, as well as the mobility, partitioning, and recycling of its constituents. From a cell biological standpoint, the membrane-cytoskeleton interplay underlies--as a central executor and/or regulator--a multitude of complex processes including chemical and mechanical signal transduction, motility/migration, endo-/exo-/phagocytosis, and other forms of membrane traffic, cell-cell, and cell-matrix adhesion. The aim of this article is to provide an overview of the tight structural and functional coupling between the membrane and the cytoskeleton. As biophysical approaches, both theoretical and experimental, proved to be instrumental for our understanding of the membrane/cytoskeleton interplay, this review will "oscillate" between the cell biological phenomena and the corresponding biophysical principles and considerations. After describing the types of connections between the membrane and the cytoskeleton, we will focus on a few key physical parameters and processes (force generation, curvature, tension, and surface charge) and will discuss how these contribute to a variety of fundamental cell biological functions.
Collapse
Affiliation(s)
- András Kapus
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital and Department of Surgery, University of Toronto, Ontario, Canada.
| | | |
Collapse
|
12
|
Cao C, Lu C, Xu J, Zhang J, Zhang J, Li M. Expression of Rab25 correlates with the invasion and metastasis of gastric cancer. Chin J Cancer Res 2013; 25:192-9. [PMID: 23592900 DOI: 10.3978/j.issn.1000-9604.2013.03.01] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/19/2013] [Indexed: 01/07/2023] Open
Abstract
The objective of this study was to determine the expression of the important vesicle trafficking-regulating factor Rab25 in human gastric cancer tissues, to analyze the correlation between Rab25 protein expression with gastric cancer occurrence and development, and to discuss the correlation of Rab25 protein expression with gastric cancer cell metastasis. The overall aim was to provide experimental evidence that can be used to design future biological treatments of human gastric cancer. Human gastric cancer tissue and the adjacent normal gastric tissue were surgically removed, and immunohistochemistry and Western blotting were used to detect Rab25 protein expression. The correlation between Rab25 protein expression with the development and pathological characteristics of gastric cancer was analyzed. Using RNAi, Rab25 expression was reduced in the gastric cancer cell line MGC80-3, and the changes in MGC80-3 cell invasiveness were then monitored. Immunohistochemistry showed that the Rab25 protein expression rates were 78.21% and 23.08% in gastric carcinoma and the adjacent normal gastric tissue, respectively. Immunohistochemistry and Western blot results showed that Rab25 protein expression in gastric cancer was significantly higher than in adjacent normal gastric tissues (P<0.01). Less differentiated gastric cancer cells had higher expression of Rab25 protein (P<0.01). Gastric carcinomas from patients with a late pathological stage (III-IV) had significantly higher Rab25 protein expression than early stage (I-II) patients (P<0.01). Gastric carcinomas from patients with lymph node metastasis had significantly higher Rab25 protein expression than lymph node metastasis-free patients (P<0.01). Gastric carcinomas from patients with distant metastases had significantly higher Rab25 protein expression than the distant metastasis-negative patients (P<0.01). Rab25 protein expression in gastric cancer was not affected by the patients(,) sex, age, or tumor size (P>0.05). MGC80-3 cells transfected with Rab25 siRNA had significantly lower Rab25 protein expression (P<0.01) and a significantly lower number of cells that passed through a Transwell chamber compared with non-transfected controls and the transfected control group (P<0.01). Rab25 protein expression is associated with the development of gastric cancer. siRNA knockdown of Rab25 protein expression in MGC80-3 gastric cancer cells reduced MGC80-3 cell invasiveness and provided experimental evidence for potential future biological treatment strategies of human gastric cancer.
Collapse
Affiliation(s)
- Chuanwu Cao
- Department of Interventional Radiology, Shanghai 10 People's Hospital, Tongji University, Shanghai 200072, China
| | | | | | | | | | | |
Collapse
|
13
|
van der Mark VA, Elferink RPJO, Paulusma CC. P4 ATPases: flippases in health and disease. Int J Mol Sci 2013; 14:7897-922. [PMID: 23579954 PMCID: PMC3645723 DOI: 10.3390/ijms14047897] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 03/28/2013] [Accepted: 04/07/2013] [Indexed: 12/26/2022] Open
Abstract
P4 ATPases catalyze the translocation of phospholipids from the exoplasmic to the cytosolic leaflet of biological membranes, a process termed “lipid flipping”. Accumulating evidence obtained in lower eukaryotes points to an important role for P4 ATPases in vesicular protein trafficking. The human genome encodes fourteen P4 ATPases (fifteen in mouse) of which the cellular and physiological functions are slowly emerging. Thus far, deficiencies of at least two P4 ATPases, ATP8B1 and ATP8A2, are the cause of severe human disease. However, various mouse models and in vitro studies are contributing to our understanding of the cellular and physiological functions of P4-ATPases. This review summarizes current knowledge on the basic function of these phospholipid translocating proteins, their proposed action in intracellular vesicle transport and their physiological role.
Collapse
Affiliation(s)
- Vincent A van der Mark
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands.
| | | | | |
Collapse
|
14
|
Manneville JB, Leduc C, Sorre B, Drin G. Studying in vitro membrane curvature recognition by proteins and its role in vesicular trafficking. Methods Cell Biol 2012; 108:47-71. [PMID: 22325597 DOI: 10.1016/b978-0-12-386487-1.00003-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In recent years, the interest for proteins that exert key functions in vesicular trafficking through their ability to sense or induce positive membrane curvature has expanded. In this chapter, we first present simple protocols to determine whether a protein targets positively curved membranes with liposomes of well-defined size. Next we describe more sophisticated approaches based on the controlled deformation of giant liposomes. These approaches allow visualization and quantification of protein binding to membrane regions of high curvature by real-time fluorescence microscopy. Last we describe several functional assays to measure how membrane curvature controls the activation state of Arf1 via ArfGAP1 or the asymmetric tethering between flat and curved membranes via the golgin GMAP-210.
Collapse
Affiliation(s)
- Jean-Baptiste Manneville
- Unité Mixte de Recherche 144, CNRS and Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | |
Collapse
|
15
|
Durchfort N, Verhoef S, Vaughn MB, Shrestha R, Adam D, Kaplan J, Ward DM. The enlarged lysosomes in beige j cells result from decreased lysosome fission and not increased lysosome fusion. Traffic 2011; 13:108-19. [PMID: 21985295 DOI: 10.1111/j.1600-0854.2011.01300.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chediak-Higashi syndrome is an autosomal recessive disorder that affects vesicle morphology. The Chs1/Lyst protein is a member of the BEige And CHediak family of proteins. The absence of Chs1/Lyst gives rise to enlarged lysosomes. Lysosome size is regulated by a balance between vesicle fusion and fission and can be reversibly altered by acidifying the cytoplasm using Acetate Ringer's or by incubating with the drug vacuolin-1. We took advantage of these procedures to determine rates of lysosome fusion and fission in the presence or absence of Chs1/Lyst. Here, we show by microscopy, flow cytometry and in vitro fusion that the absence of the Chs1/Lyst protein does not increase the rate of lysosome fusion. Rather, our data indicate that loss of this protein decreases the rate of lysosome fission. We further show that overexpression of the Chs1/Lyst protein gives rise to a faster rate of lysosome fission. These results indicate that Chs1/Lyst regulates lysosome size by affecting fission.
Collapse
Affiliation(s)
- Nina Durchfort
- Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Popoff V, Adolf F, Brügger B, Wieland F. COPI budding within the Golgi stack. Cold Spring Harb Perspect Biol 2011; 3:a005231. [PMID: 21844168 DOI: 10.1101/cshperspect.a005231] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Golgi serves as a hub for intracellular membrane traffic in the eukaryotic cell. Transport within the early secretory pathway, that is within the Golgi and from the Golgi to the endoplasmic reticulum, is mediated by COPI-coated vesicles. The COPI coat shares structural features with the clathrin coat, but differs in the mechanisms of cargo sorting and vesicle formation. The small GTPase Arf1 initiates coating on activation and recruits en bloc the stable heptameric protein complex coatomer that resembles the inner and the outer shells of clathrin-coated vesicles. Different binding sites exist in coatomer for membrane machinery and for the sorting of various classes of cargo proteins. During the budding of a COPI vesicle, lipids are sorted to give a liquid-disordered phase composition. For the release of a COPI-coated vesicle, coatomer and Arf cooperate to mediate membrane separation.
Collapse
Affiliation(s)
- Vincent Popoff
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
17
|
Field MC, Sali A, Rout MP. Evolution: On a bender--BARs, ESCRTs, COPs, and finally getting your coat. J Cell Biol 2011; 193:963-72. [PMID: 21670211 PMCID: PMC3115789 DOI: 10.1083/jcb.201102042] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 05/05/2011] [Indexed: 11/22/2022] Open
Abstract
Tremendous variety in form and function is displayed among the intracellular membrane systems of different eukaryotes. Until recently, few clues existed as to how these internal membrane systems had originated and diversified. However, proteomic, structural, and comparative genomics studies together have revealed extensive similarities among many of the protein complexes used in controlling the morphology and trafficking of intracellular membranes. These new insights have had a profound impact on our understanding of the evolutionary origins of the internal architecture of the eukaryotic cell.
Collapse
Affiliation(s)
- Mark C Field
- Department of Pathology, University of Cambridge, Cambridge CB2 1QT, England, UK.
| | | | | |
Collapse
|