1
|
Pinales BE, Palomino CE, Rosas-Acosta G, Francia G, Quintana AM. Dissecting the role of vitamin B 12 metabolism in craniofacial development through analysis of clinical phenotypes and model organism discoveries. Differentiation 2024:100831. [PMID: 39676000 DOI: 10.1016/j.diff.2024.100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Vitamin B12, otherwise known as cobalamin, is an essential water-soluble vitamin that is obtained from animal derived dietary sources. Mutations in the genes that encode proteins responsible for cobalamin uptake, transport, or processing cause inborn errors of cobalamin metabolism, a group of disorders characterized by accumulation of homocysteine and methylmalonic acid, neurodevelopmental defects, ocular dysfunction, anemia, and failure to thrive. Mild to moderate craniofacial phenotypes have been observed but these phenotypes are not completely penetrant and have not been consistently recognized in the literature. However, in the most recent decade, animal models of cblX and cblC, two cobalamin disorder complementation groups, have documented craniofacial phenotypes. These data indicate a function for cobalamin in facial development. In this review, we performed a literature review of all cobalamin complementation groups to identify which groups, and which human variants, are associated with dysmorphic features, microcephaly, or marfanoid phenotypes. We identified dysmorphic facial features in cblC, cblX, cblG, cblF, and cblJ, which are caused by mutations in MMACHC, HCFC1, MTR, LMBRD1, and ABCD4, respectively. Other complementation groups were associated primarily with microcephaly. Animal models (zebrafish and mouse) of cblC and cblX support these clinical phenotypes and have demonstrated neural crest cell deficits that include reduced expression of prdm1a, sox10, and sox9, key molecular markers of neural crest development. Characterization of a zebrafish mmachc germline mutant also suggests atypical chondrocyte development. Collectively, these data demonstrate an essential role for cobalamin in facial development and warrant future mechanistic inquiries that dissect the cellular and molecular mechanisms underlying human facial phenotypes in cobalamin disorders.
Collapse
Affiliation(s)
- Briana E Pinales
- Department of Biological Sciences, University of Texas El Paso, 500 W. University Ave 79968, El Paso, TX, USA
| | - Carlos E Palomino
- Department of Biological Sciences, University of Texas El Paso, 500 W. University Ave 79968, El Paso, TX, USA
| | - German Rosas-Acosta
- Department of Biological Sciences, University of Texas El Paso, 500 W. University Ave 79968, El Paso, TX, USA
| | - Giulio Francia
- Department of Biological Sciences, University of Texas El Paso, 500 W. University Ave 79968, El Paso, TX, USA
| | - Anita M Quintana
- Department of Biological Sciences, University of Texas El Paso, 500 W. University Ave 79968, El Paso, TX, USA.
| |
Collapse
|
2
|
Mucha P, Kus F, Cysewski D, Smolenski RT, Tomczyk M. Vitamin B 12 Metabolism: A Network of Multi-Protein Mediated Processes. Int J Mol Sci 2024; 25:8021. [PMID: 39125597 PMCID: PMC11311337 DOI: 10.3390/ijms25158021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The water-soluble vitamin, vitamin B12, also known as cobalamin, plays a crucial role in cellular metabolism, particularly in DNA synthesis, methylation, and mitochondrial functionality. Its deficiency can lead to hematological and neurological disorders; however, the manifestation of these clinical outcomes is relatively late. It leads to difficulties in the early diagnosis of vitamin B12 deficiency. A prolonged lack of vitamin B12 may have severe consequences including increased morbidity to neurological and cardiovascular diseases. Beyond inadequate dietary intake, vitamin B12 deficiency might be caused by insufficient bioavailability, blood transport disruptions, or impaired cellular uptake and metabolism. Despite nearly 70 years of knowledge since the isolation and characterization of this vitamin, there are still gaps in understanding its metabolic pathways. Thus, this review aims to compile current knowledge about the crucial proteins necessary to efficiently accumulate and process vitamin B12 in humans, presenting these systems as a multi-protein network. The epidemiological consequences, diagnosis, and treatment of vitamin B12 deficiency are also highlighted. We also discuss clinical warnings of vitamin B12 deficiency based on the ongoing test of specific moonlighting proteins engaged in vitamin B12 metabolic pathways.
Collapse
Affiliation(s)
- Patryk Mucha
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (P.M.); (F.K.); (R.T.S.)
| | - Filip Kus
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (P.M.); (F.K.); (R.T.S.)
- Laboratory of Protein Biochemistry, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (P.M.); (F.K.); (R.T.S.)
| | - Marta Tomczyk
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (P.M.); (F.K.); (R.T.S.)
| |
Collapse
|
3
|
Garg S, Miousse IR. Rescue of Methionine Dependence by Cobalamin in a Human Colorectal Cancer Cell Line. Nutrients 2024; 16:997. [PMID: 38613029 PMCID: PMC11013648 DOI: 10.3390/nu16070997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Methionine dependence is a characteristic of most cancer cells where they are unable to proliferate when the essential amino acid methionine is replaced with its precursor homocysteine in the growing media. Normal cells, on the other hand, thrive under these conditions and are referred to as methionine-independent. The reaction that adds a methyl group from 5-methyltetrahydrofolate to homocysteine to regenerate methionine is catalyzed by the enzyme methionine synthase with the cofactor cobalamin (vitamin B12). However, decades of research have shown that methionine dependence in cancer is not due to a defect in the activity of methionine synthase. Cobalamin metabolism has been tied to the dependent phenotype in rare cell lines. We have identified a human colorectal cancer cell line in which the cells regain the ability to proliferation in methionine-free, L-homocystine-supplemented media when cyanocobalamin is supplemented at a level of 1 µg/mL. In human SW48 cells, methionine replacement with L-homocystine does not induce any measurable increase in apoptosis or reactive oxygen species production in this cell line. Rather, proliferation is halted, then restored in the presence of cyanocobalamin. Our data show that supplementation with cyanocobalamin prevents the activation of the integrated stress response (ISR) in methionine-deprived media in this cell line. The ISR-associated cell cycle arrest, characteristic of methionine-dependence in cancer, is also prevented, leading to the continuation of proliferation in methionine-deprived SW48 cells with cobalamin. Our results highlight differences between cancer cell lines in the response to cobalamin supplementation in the context of methionine dependence.
Collapse
Affiliation(s)
| | - Isabelle R. Miousse
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| |
Collapse
|
4
|
Vasilogianni AM, Alrubia S, El-Khateeb E, Al-Majdoub ZM, Couto N, Achour B, Rostami-Hodjegan A, Barber J. Complementarity of two proteomic data analysis tools in the identification of drug-metabolising enzymes and transporters in human liver. Mol Omics 2024; 20:115-127. [PMID: 37975521 DOI: 10.1039/d3mo00144j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Several software packages are available for the analysis of proteomic LC-MS/MS data, including commercial (e.g. Mascot/Progenesis LC-MS) and open access software (e.g. MaxQuant). In this study, Progenesis and MaxQuant were used to analyse the same data set from human liver microsomes (n = 23). Comparison focussed on the total number of peptides and proteins identified by the two packages. For the peptides exclusively identified by each software package, distribution of peptide length, hydrophobicity, molecular weight, isoelectric point and score were compared. Using standard cut-off peptide scores, we found an average of only 65% overlap in detected peptides, with surprisingly little consistency in the characteristics of peptides exclusively detected by each package. Generally, MaxQuant detected more peptides than Progenesis, and the additional peptides were longer and had relatively lower scores. Progenesis-specific peptides tended to be more hydrophilic and basic relative to peptides detected only by MaxQuant. At the protein level, we focussed on drug-metabolising enzymes (DMEs) and transporters, by comparing the number of unique peptides detected by the two packages for these specific proteins of interest, and their abundance. The abundance of DMEs and SLC transporters showed good correlation between the two software tools, but ABC showed less consistency. In conclusion, in order to maximise the use of MS datasets, we recommend processing with more than one software package. Together, Progenesis and MaxQuant provided excellent coverage, with a core of common peptides identified in a very robust way.
Collapse
Affiliation(s)
- Areti-Maria Vasilogianni
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
- DMPK, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Sarah Alrubia
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Eman El-Khateeb
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
- Certara Inc (Simcyp Division), 1 Concourse Way, Sheffield, UK
| | - Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
| | - Narciso Couto
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
- Certara Inc (Simcyp Division), 1 Concourse Way, Sheffield, UK
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
5
|
Abstract
ABC transporters are essential for cellular physiology. Humans have 48 ABC genes organized into seven distinct families. Of these genes, 44 (in five distinct families) encode for membrane transporters, of which several are involved in drug resistance and disease pathways resulting from transporter dysfunction. Over the last decade, advances in structural biology have vastly expanded our mechanistic understanding of human ABC transporter function, revealing details of their molecular arrangement, regulation, and interactions, facilitated in large part by advances in cryo-EM that have rendered hitherto inaccessible targets amenable to high-resolution structural analysis. As a result, experimentally determined structures of multiple members of each of the five families of ABC transporters in humans are now available. Here we review this recent progress, highlighting the physiological relevance of human ABC transporters and mechanistic insights gleaned from their direct structure determination. We also discuss the impact and limitations of model systems and structure prediction methods in understanding human ABC transporters and discuss current challenges and future research directions.
Collapse
Affiliation(s)
- Amer Alam
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zurich, Switzerland;
| |
Collapse
|
6
|
Yang H, Li M, Zou L, Zou H, Zhao Y, Cui Y, Han J. A regionally adapted HRM-based technique to screen MMACHC carriers for methylmalonic acidemia with homocystinuria in Shandong Province, China. Intractable Rare Dis Res 2023; 12:29-34. [PMID: 36873673 PMCID: PMC9976096 DOI: 10.5582/irdr.2023.01016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 02/27/2023] Open
Abstract
Methylmalonic acidemia with homocystinuria (MMA-cblC) is an autosomal recessive genetic disorder of organic acid metabolism. Shandong, a northern province of China, has a significantly high incidence of about 1/4,000, suggesting a high carrying rate among the local population. The current study established a PCR technique involving high-resolution melting (HRM) to screen for carriers based on hotspot mutation analysis to further develop a preventive strategy to reduce the local incidence of this rare disease. Whole-exome sequencing of 22 families with MMA-cblC and a comprehensive literature review were used to identify MMACHC hotspot mutations in Shandong Province. Subsequently, a PCR-HRM assay based on the selected mutations was established and optimized for large-scale hotspot mutation screening. The accuracy and efficiency of the screening technique was validated using samples from 69 individuals with MMA-cblC and 1,000 healthy volunteers. Six hotspot mutations in the MMACHC gene (c.609G>A, c.658_660delAAG, c.80A>G, c.217C>T, c.567dupT and c.482G>A), which account for 74% of the alleles associated with MMA-cblC, were used to establish a screening technique. The established PCR-HRM assay detected 88 MMACHC mutation alleles in a validation study with 100% accuracy. In the general population in Shandong, the carrying rate of 6 MMACHC hotspot mutations was 3.4%. In conclusion, the 6 hotspots identified cover the majority of the MMACHC mutation spectrum, and the Shandong population has a particularly high carrying rate of MMACHC mutations. The PCR-HRM assay is highly accurate, cost-effective, and easy to use, making it an ideal choice for mass carrier screening.
Collapse
Affiliation(s)
- Haining Yang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, Shandong, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, Shandong, China
| | - Mian Li
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, Shandong, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, Shandong, China
| | - Liang Zou
- Bone Biomechanics Engineering Laboratory of Shandong Province, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Hui Zou
- Ji'nan Maternity and Child Care Hospital, Ji'nan 250000, Shandong, China
| | - Yan Zhao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, Shandong, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, Shandong, China
- Address correspondence to:Jinxiang Han, Yazhou Cui, and Yan Zhao, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences; NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences); Key Lab for Rare & Uncommon Diseases of Shandong Province, 6699 Qingdao Road, Ji'nan 250117, Shandong, China. E-mail: (JH); (YC); (YZ)
| | - Yazhou Cui
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, Shandong, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, Shandong, China
- Address correspondence to:Jinxiang Han, Yazhou Cui, and Yan Zhao, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences; NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences); Key Lab for Rare & Uncommon Diseases of Shandong Province, 6699 Qingdao Road, Ji'nan 250117, Shandong, China. E-mail: (JH); (YC); (YZ)
| | - Jinxiang Han
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, Shandong, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, Shandong, China
- Address correspondence to:Jinxiang Han, Yazhou Cui, and Yan Zhao, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences; NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences); Key Lab for Rare & Uncommon Diseases of Shandong Province, 6699 Qingdao Road, Ji'nan 250117, Shandong, China. E-mail: (JH); (YC); (YZ)
| |
Collapse
|
7
|
McCorvie TJ, Ferreira D, Yue WW, Froese DS. The complex machinery of human cobalamin metabolism. J Inherit Metab Dis 2023; 46:406-420. [PMID: 36680553 DOI: 10.1002/jimd.12593] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Vitamin B12 (cobalamin, Cbl) is required as a cofactor by two human enzymes, 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR) and methylmalonyl-CoA mutase (MMUT). Within the body, a vast array of transporters, enzymes and chaperones are required for the generation and delivery of these cofactor forms. How they perform these functions is dictated by the structure and interactions of the proteins involved, the molecular bases of which are only now being elucidated. In this review, we highlight recent insights into human Cbl metabolism and address open questions in the field by employing a protein structure and interactome based perspective. We discuss how three very similar proteins-haptocorrin, intrinsic factor and transcobalamin-exploit slight structural differences and unique ligand receptor interactions to effect selective Cbl absorption and internalisation. We describe recent advances in the understanding of how endocytosed Cbl is transported across the lysosomal membrane and the implications of the recently solved ABCD4 structure. We detail how MMACHC and MMADHC cooperate to modify and target cytosolic Cbl to the client enzymes MTR and MMUT using ingenious modifications to an ancient nitroreductase fold, and how MTR and MMUT link with their accessory enzymes to sustainably harness the supernucleophilic potential of Cbl. Finally, we provide an outlook on how future studies may combine structural and interactome based approaches and incorporate knowledge of post-translational modifications to bring further insights.
Collapse
Affiliation(s)
- Thomas J McCorvie
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Douglas Ferreira
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Wyatt W Yue
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, University of Zürich, Zürich, Switzerland
| |
Collapse
|
8
|
Kawaguchi K, Imanaka T. Substrate Specificity and the Direction of Transport in the ABC Transporters ABCD1–3 and ABCD4. Chem Pharm Bull (Tokyo) 2022; 70:533-539. [DOI: 10.1248/cpb.c21-01021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kosuke Kawaguchi
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Tsuneo Imanaka
- Faculty of Pharmaceutical Sciences, Hiroshima International University
| |
Collapse
|
9
|
Miyamoto A, Yamanaka T, Suzuki S, Kunii K, Kurono K, Yoshimi A, Hidaka M, Ogasawara S, Nanatani K, Abe K. Oligomeric state of the aspartate:alanine transporter (AspT) from Tetragenococcus halophilus. J Biochem 2022; 172:217-224. [PMID: 35818339 PMCID: PMC9527358 DOI: 10.1093/jb/mvac057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/30/2022] [Indexed: 11/12/2022] Open
Abstract
The aspartate:alanine exchanger family of membrane transporters includes industrially important transporters such as succinate exporter and glutamate exporter. No high-resolution structure is available from this family so far, and the transport mechanism of these transporters also remains unclear. In the present study, we focus on the oligomeric status of the aspartate:alanine antiporter (AspT) of Tetragenococcus halophilus, which is the prototype of this family. To investigate the oligomeric structure of AspT, we established a system that produces high yields of highly purified AspT and determined the oligomeric structure of AspT by analysis with size exclusion chromatography coupled with multi-angle light scattering and blue native PAGE and by comparison of the wild-type AspT with a single-cysteine mutant that forms spontaneous inter-molecular thiol crosslinking. All the results consistently support the notion that AspT is a homodimer in solutions and in membranes.
Collapse
Affiliation(s)
- Akari Miyamoto
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845 Japan
| | - Takashi Yamanaka
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845 Japan
| | - Satomi Suzuki
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845 Japan
| | - Kota Kunii
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845 Japan
| | - Kenichiro Kurono
- LS-Project, Shoko Science Co., Ltd., Aoba-ku, Yokohama, 225-0012 Japan
| | - Akira Yoshimi
- Microbial Genomics Laboratory, New Industry Creation Hatchery Center, Tohoku University, Sendai, Miyagi, 980-8579, Japan
| | - Masafumi Hidaka
- Laboratory of Molecular Enzymology, Department of Molecular Cell Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845 Japan
| | - Satoshi Ogasawara
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, 263-8522 Japan.,Molecular Chirality Research Center, Chiba University, Chiba, 263-8522 Japan.,Membrane Protein Research and Molecular Chirality Research Centers, Chiba University, Chiba 263-8522, Japan
| | - Kei Nanatani
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845 Japan.,Structural Biology Group, Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Miyagi, 980-8573, Japan
| | - Keietsu Abe
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845 Japan.,Microbial Genomics Laboratory, New Industry Creation Hatchery Center, Tohoku University, Sendai, Miyagi, 980-8579, Japan
| |
Collapse
|
10
|
Hannibal L, Jacobsen DW. Intracellular processing of vitamin B 12 by MMACHC (CblC). VITAMINS AND HORMONES 2022; 119:275-298. [PMID: 35337623 DOI: 10.1016/bs.vh.2022.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Vitamin B12 (cobalamin, Cbl, B12) is a water-soluble micronutrient synthesized exclusively by a group of microorganisms. Human beings are unable to make B12 and thus obtain the vitamin via intake of animal products, fermented plant-based foods or supplements. Vitamin B12 obtained from the diet comprises three major chemical forms, namely hydroxocobalamin (HOCbl), methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl). The most common form of B12 present in supplements is cyanocobalamin (CNCbl). Yet, these chemical forms cannot be utilized directly as they come, but instead, they undergo chemical processing by the MMACHC protein, also known as CblC. Processing of dietary B12 by CblC involves removal of the upper-axial ligand (beta-ligand) yielding the one-electron reduced intermediate cob(II)alamin. Newly formed cob(II)alamin undergoes trafficking and delivery to the two B12-dependent enzymes, cytosolic methionine synthase (MS) and mitochondrial methylmalonyl-CoA mutase (MUT). The catalytic cycles of MS and MUT incorporate cob(II)alamin as a precursor to regenerate the coenzyme forms MeCbl and AdoCbl, respectively. Mutations and epimutations in the MMACHC gene result in cblC disease, the most common inborn error of B12 metabolism, which manifests with combined homocystinuria and methylmalonic aciduria. Elevation of metabolites homocysteine and methylmalonic acid occurs because the lack of an active CblC blocks formation of the indispensable precursor cob(II)alamin that is necessary to activate MS and MUT. Thus, in patients with cblC disease, vitamin B12 is absorbed and present in circulation in normal to high concentrations, yet, cells are unable to make use of it. Mutations in seemingly unrelated genes that modify MMACHC gene expression also result in clinical phenotypes that resemble cblC disease. We review current knowledge on structural and functional aspects of intracellular processing of vitamin B12 by the versatile protein CblC, its partners and possible regulators.
Collapse
Affiliation(s)
- Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany.
| | - Donald W Jacobsen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
11
|
Nijland M, Martínez Felices JM, Slotboom DJ, Thangaratnarajah C. Membrane transport of cobalamin. VITAMINS AND HORMONES 2022; 119:121-148. [PMID: 35337617 DOI: 10.1016/bs.vh.2022.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A wide variety of organisms encode cobalamin-dependent enzymes catalyzing essential metabolic reactions, but the cofactor cobalamin (vitamin B12) is only synthesized by a subset of bacteria and archaea. The biosynthesis of cobalamin is complex and energetically costly, making cobalamin variants and precursors metabolically valuable. Auxotrophs for these molecules have evolved uptake mechanisms to compensate for the lack of a synthesis pathway. Bacterial transport of cobalamin involves the passage over one or two lipidic membranes in Gram-positive and -negative bacteria, respectively. In higher eukaryotes, a complex system of carriers, receptors and transporters facilitates the delivery of the essential molecule to the tissues. Biochemical and genetic approaches have identified different transporter families involved in cobalamin transport. The majority of the characterized cobalamin transporters are active transport systems that belong to the ATP-binding cassette (ABC) superfamily of transporters. In this chapter, we describe the different cobalamin transport systems characterized to date that are present in bacteria and humans, as well as yet-to-be-identified transporters.
Collapse
Affiliation(s)
- Mark Nijland
- University of Groningen, Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, Groningen, Netherlands
| | - Jose M Martínez Felices
- University of Groningen, Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, Groningen, Netherlands
| | - Dirk J Slotboom
- University of Groningen, Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, Groningen, Netherlands.
| | - Chancievan Thangaratnarajah
- University of Groningen, Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, Groningen, Netherlands
| |
Collapse
|
12
|
Guéant JL, Guéant-Rodriguez RM, Kosgei VJ, Coelho D. Causes and consequences of impaired methionine synthase activity in acquired and inherited disorders of vitamin B 12 metabolism. Crit Rev Biochem Mol Biol 2021; 57:133-155. [PMID: 34608838 DOI: 10.1080/10409238.2021.1979459] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Methyl-Cobalamin (Cbl) derives from dietary vitamin B12 and acts as a cofactor of methionine synthase (MS) in mammals. MS encoded by MTR catalyzes the remethylation of homocysteine to generate methionine and tetrahydrofolate, which fuel methionine and cytoplasmic folate cycles, respectively. Methionine is the precursor of S-adenosyl methionine (SAM), the universal methyl donor of transmethylation reactions. Impaired MS activity results from inadequate dietary intake or malabsorption of B12 and inborn errors of Cbl metabolism (IECM). The mechanisms at the origin of the high variability of clinical presentation of impaired MS activity are classically considered as the consequence of the disruption of the folate cycle and related synthesis of purines and pyrimidines and the decreased synthesis of endogenous methionine and SAM. For one decade, data on cellular and animal models of B12 deficiency and IECM have highlighted other key pathomechanisms, including altered interactome of MS with methionine synthase reductase, MMACHC, and MMADHC, endoplasmic reticulum stress, altered cell signaling, and genomic/epigenomic dysregulations. Decreased MS activity increases catalytic protein phosphatase 2A (PP2A) and produces imbalanced phosphorylation/methylation of nucleocytoplasmic RNA binding proteins, including ELAVL1/HuR protein, with subsequent nuclear sequestration of mRNAs and dramatic alteration of gene expression, including SIRT1. Decreased SAM and SIRT1 activity induce ER stress through impaired SIRT1-deacetylation of HSF1 and hypomethylation/hyperacetylation of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α), which deactivate nuclear receptors and lead to impaired energy metabolism and neuroplasticity. The reversibility of these pathomechanisms by SIRT1 agonists opens promising perspectives in the treatment of IECM outcomes resistant to conventional supplementation therapies.
Collapse
Affiliation(s)
- Jean-Louis Guéant
- UMR Inserm 1256 N-GERE (Nutrition, Génetique et Exposition aux Risques Environmentaux), Université de Lorraine, Vandoeuvre-lès-Nancy, France.,Departments of Digestive Diseases and Molecular Medicine and National Center of Inborn Errors of Metabolism, University Hospital Center, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Rosa-Maria Guéant-Rodriguez
- UMR Inserm 1256 N-GERE (Nutrition, Génetique et Exposition aux Risques Environmentaux), Université de Lorraine, Vandoeuvre-lès-Nancy, France.,Departments of Digestive Diseases and Molecular Medicine and National Center of Inborn Errors of Metabolism, University Hospital Center, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Viola J Kosgei
- UMR Inserm 1256 N-GERE (Nutrition, Génetique et Exposition aux Risques Environmentaux), Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - David Coelho
- UMR Inserm 1256 N-GERE (Nutrition, Génetique et Exposition aux Risques Environmentaux), Université de Lorraine, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
13
|
Rudnik S, Damme M. The lysosomal membrane-export of metabolites and beyond. FEBS J 2021; 288:4168-4182. [PMID: 33067905 DOI: 10.1111/febs.15602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/01/2020] [Accepted: 10/15/2020] [Indexed: 01/01/2023]
Abstract
Lysosomes are degradative organelles in eukaryotic cells mediating the hydrolytic catabolism of various macromolecules to small basic building blocks. These low-molecular-weight metabolites are transported across the lysosomal membrane and reused in the cytoplasm and other organelles for biosynthetic pathways. Even though in the past 20 years our understanding of the lysosomal membrane regarding various transporters, other integral and peripheral membrane proteins, the lipid composition, but also its turnover has dramatically improved, there are still many unresolved questions concerning key aspects of the function of the lysosomal membrane. These include a possible function of lysosomes as a cellular storage compartment, yet unidentified transporters mediating the export such as various amino acids, mechanisms mediating the transport of lysosomal membrane proteins from the Golgi apparatus to lysosomes, and the turnover of lysosomal membrane proteins. Here, we review the current knowledge about the lysosomal membrane and identify some of the open questions that need to be solved in the future for a comprehensive and complete understanding of how lysosomes communicate with other organelles, cellular processes, and pathways.
Collapse
Affiliation(s)
- Sönke Rudnik
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Markus Damme
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
14
|
LMBD1 protein participates in cell mitosis by regulating microtubule assembly. Biochem J 2021; 478:2321-2337. [PMID: 34076705 DOI: 10.1042/bcj20210070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/14/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022]
Abstract
LMBD1 was previously demonstrated to regulate the endocytosis of insulin receptor on the cell surface and to mediate the export of cobalamin from the lysosomes to the cytosol, but little is known about its function in mitosis. In this study, interactome analysis data indicate that LMBD1 is involved in cytoskeleton regulation. Both immunoprecipitation and GST pulldown assays demonstrated the association of LMBD1 with tubulin. Immunofluorescence staining also showed the colocalization of LMBD1 with microtubule in both interphase and mitotic cells. LMBD1 specifically accelerates microtubule assembly dynamics in vitro and antagonizes the microtubule-disruptive effect of vinblastine. In addition, LMBRD1-knockdown impairs mitotic spindle formation, inhibits tubulin polymerization, and diminishes the mitosis-associated tubulin acetylation. The reduced acetylation can be reversed by ectopic expression of LMBD1 protein. These results suggest that LMBD1 protein stabilizes microtubule intermediates. Furthermore, embryonic fibroblasts derived from Lmbrd1 heterozygous knockout mice showed abnormality in microtubule formation, mitosis, and cell growth. Taken together, LMBD1 plays a pivotal role in regulating microtubule assembly that is essential for the process of cell mitosis.
Collapse
|
15
|
Kitai K, Kawaguchi K, Tomohiro T, Morita M, So T, Imanaka T. The lysosomal protein ABCD4 can transport vitamin B 12 across liposomal membranes in vitro. J Biol Chem 2021; 296:100654. [PMID: 33845046 PMCID: PMC8113721 DOI: 10.1016/j.jbc.2021.100654] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/26/2021] [Accepted: 04/08/2021] [Indexed: 12/27/2022] Open
Abstract
Vitamin B12 (cobalamin) is an essential micronutrient for human health, and mutation and dysregulation of cobalamin metabolism are associated with serious diseases, such as methylmalonic aciduria and homocystinuria. Mutations in ABCD4 or LMBRD1, which encode the ABC transporter ABCD4 and lysosomal membrane protein LMBD1, respectively, lead to errors in cobalamin metabolism, with the phenotype of a failure to release cobalamin from lysosomes. However, the mechanism of transport of cobalamin across the lysosomal membrane remains unknown. We previously demonstrated that LMBD1 is required for the translocation of ABCD4 from the endoplasmic reticulum to lysosomes. This suggests that ABCD4 performs an important function in lysosomal membrane cobalamin transport. In this study, we expressed human ABCD4 and LMBD1 in methylotrophic yeast and purified them. We prepared ABCD4 and/or LMBD1 containing liposomes loaded with cobalamin and then quantified the release of cobalamin from the liposomes by reverse-phase HPLC. We observed that ABCD4 was able to transport cobalamin from the inside to the outside of liposomes dependent on its ATPase activity and that LMBD1 exhibited no cobalamin transport activity. These results suggest that ABCD4 may be capable of transporting cobalamin from the lysosomal lumen to the cytosol. Furthermore, we examined a series of ABCD4 missense mutations to understand how these alterations impair cobalamin transport. Our findings give insight into the molecular mechanism of cobalamin transport by which ABCD4 involves and its importance in cobalamin deficiency.
Collapse
Affiliation(s)
- Katsuki Kitai
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kosuke Kawaguchi
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| | - Takenori Tomohiro
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Masashi Morita
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Takanori So
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Tsuneo Imanaka
- Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Japan
| |
Collapse
|
16
|
Pillai NR, Miller D, Pierpont EI, Berry SA, Aggarwal A. Cobalamin J disease detected on newborn screening: Novel variant and normal neurodevelopmental course. Am J Med Genet A 2021; 185:1870-1874. [PMID: 33729671 DOI: 10.1002/ajmg.a.62170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 11/07/2022]
Abstract
Cobalamin J disease (CblJ) is an ultra-rare autosomal recessive disorder of intracellular cobalamin metabolism associated with combined methylmalonic acidemia and homocystinuria. It is caused by pathogenic variants in ABCD4, which encodes an ATP-binding cassette (ABC) transporter that affects the lysosomal release of cobalamin (Cbl) into the cytoplasm. Only six cases of CblJ have been reported in the literature. Described clinical features include feeding difficulties, failure to thrive, hypotonia, seizures, developmental delay, and hematological abnormalities. Information on clinical outcomes is extremely limited, and no cases of presymptomatic diagnosis have been reported. We describe a now 17-month-old male with CblJ detected by newborn screening and confirmed by biochemical, molecular, and complementation studies. With early detection and initiation of treatment, this patient has remained asymptomatic with normal growth parameters and neurodevelopmental function. To the best of our knowledge, this report represents the first asymptomatic and neurotypical patient with CblJ.
Collapse
Affiliation(s)
- Nishitha R Pillai
- Division of Genetics and Metabolism, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dana Miller
- M Health Fairview, Minneapolis, Minnesota, USA
| | - Elizabeth I Pierpont
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, Minneapolis, Minnesota, USA
| | - Susan A Berry
- Division of Genetics and Metabolism, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anjali Aggarwal
- Division of Genetics and Metabolism, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
17
|
Szakacs G, Abele R. An inventory of lysosomal ABC transporters. FEBS Lett 2020; 594:3965-3985. [DOI: 10.1002/1873-3468.13967] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Gergely Szakacs
- Institute of Enzymology Research Centre of Natural Sciences Eötvös Loránd Research Network Budapest Hungary
- Institute of Cancer Research Medical University of Vienna Vienna Austria
| | - Rupert Abele
- Institute of Biochemistry Goethe‐University Frankfurt am Main Frankfurt am Main Germany
| |
Collapse
|
18
|
Effect of imbalance in folate and vitamin B12 in maternal/parental diet on global methylation and regulatory miRNAs. Sci Rep 2019; 9:17602. [PMID: 31772242 PMCID: PMC6879517 DOI: 10.1038/s41598-019-54070-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/08/2019] [Indexed: 12/24/2022] Open
Abstract
DNA methylation, a central component of the epigenetic network is altered in response to nutritional influences. In one-carbon cycle, folate acts as a one-carbon carrier and vitamin B12 acts as co-factor for the enzyme methionine synthase. Both folate and vitamin B12 are the important regulators of DNA methylation which play an important role in development in early life. Previous studies carried out in this regard have shown the individual effects of these vitamins but recently the focus has been to study the combined effects of both the vitamins during pregnancy. Therefore, this study was planned to elucidate the effect of the altered dietary ratio of folate and B12 on the expression of transporters, related miRNAs and DNA methylation in C57BL/6 mice. Female mice were fed diets with 9 combinations of folate and B12 for 4 weeks. They were mated and off-springs born (F1) were continued on the same diet for 6 weeks post-weaning. Maternal and fetal (F2) tissues were collected at day 20 of gestation. Deficient state of folate led to an increase in the expression of folate transporters in both F1 and F2 generations, however, B12 deficiency (BDFN) also led to an increase in the expression in both the generations. B12 transporters/proteins were found to be increased with B12 deficiency in F1 and F2 generations except for TC-II in the kidney which was found to be decreased in the F1 generation. miR-483 was found to be increased with all conditions of folate and B12 in both F1 and F2 generations, however, deficient conditions of B12 led to an increase in the expression of miR-221 in both F1 and F2 generations. The level of miR-133 was found to be increased in BDFN group in F1 generation however; in F2 generation the change in expression was tissue and sex-specific. Global DNA methylation was decreased with deficiency of both folate and B12 in maternal tissues (F1) but increased with folate deficiency in placenta (F1) and under all conditions in fetal tissues (F2). DNA methyltransferases were overall found to be increased with deficiency of folate and B12 in both F1 and F2 generations. Results suggest that the dietary ratio of folate and B12 resulted in altered expression of transporters, miRNAs, and genomic DNA methylation in association with DNMTs.
Collapse
|
19
|
Loss of abcd4 in zebrafish leads to vitamin B12-deficiency anemia. Biochem Biophys Res Commun 2019; 514:1264-1269. [DOI: 10.1016/j.bbrc.2019.05.099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 11/24/2022]
|
20
|
Abstract
The transport of specific molecules across lipid membranes is an essential function of all living organisms. The processes are usually mediated by specific transporters. One of the largest transporter families is the ATP-binding cassette (ABC) family. More than 40 ABC transporters have been identified in human, which are divided into 7 subfamilies (ABCA to ABCG) based on their gene structure, amino acid sequence, domain organization, and phylogenetic analysis. Of them, at least 11 ABC transporters including P-glycoprotein (P-GP/ABCB1), multidrug resistance-associated proteins (MRPs/ABCCs), and breast cancer resistance protein (BCRP/ABCG2) are involved in multidrug resistance (MDR) development. These ABC transporters are expressed in various tissues such as the liver, intestine, kidney, and brain, playing important roles in absorption, distribution, and excretion of drugs. Some ABC transporters are also involved in diverse cellular processes such as maintenance of osmotic homeostasis, antigen processing, cell division, immunity, cholesterol, and lipid trafficking. Several human diseases such as cystic fibrosis, sitosterolemia, Tangier disease, intrahepatic cholestasis, and retinal degeneration are associated with mutations in corresponding transporters. This chapter will describe function and expression of several ABC transporters (such as P-GP, BCRP, and MRPs), their substrates and inhibitors, as well as their clinical significance.
Collapse
Affiliation(s)
- Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
21
|
Feng H, Zhang S, Wan JMF, Gui L, Ruan M, Li N, Zhang H, Liu Z, Wang H. Polysaccharides extracted from Phellinus linteus ameliorate high-fat high-fructose diet induced insulin resistance in mice. Carbohydr Polym 2018; 200:144-153. [PMID: 30177151 DOI: 10.1016/j.carbpol.2018.07.086] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/10/2018] [Accepted: 07/27/2018] [Indexed: 01/19/2023]
|
22
|
Abstract
Nine compounds are classified as water-soluble vitamins, eight B vitamins and one vitamin C. The vitamins are mandatory for the function of numerous enzymes and lack of one or more of the vitamins may lead to severe medical conditions. All the vitamins are supplied by food in microgram to milligram quantities and in addition some of the vitamins are synthesized by the intestinal microbiota. In the gastrointestinal tract, the vitamins are liberated from binding proteins and for some of the vitamins modified prior to absorption. Due to their solubility in water, they all require specific carriers to be absorbed. Our current knowledge concerning each of the vitamins differs in depth and focus and is influenced by the prevalence of conditions and diseases related to lack of the individual vitamin. Because of that we have chosen to cover slightly different aspects for the individual vitamins. For each of the vitamins, we summarize the physiological role, the steps involved in the absorption, and the factors influencing the absorption. In addition, for some of the vitamins, the molecular base for absorption is described in details, while for others new aspects of relevance for human deficiency are included. © 2018 American Physiological Society. Compr Physiol 8:1291-1311, 2018.
Collapse
Affiliation(s)
- Hamid M Said
- University of California-School of Medicine, Irvine, California, USA.,VA Medical Center, Long Beach, California, USA
| | - Ebba Nexo
- Department of Clinical Medicine, Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
23
|
Gupta K, Li J, Liko I, Gault J, Bechara C, Wu D, Hopper JTS, Giles K, Benesch JLP, Robinson CV. Identifying key membrane protein lipid interactions using mass spectrometry. Nat Protoc 2018; 13:1106-1120. [PMID: 29700483 PMCID: PMC6049616 DOI: 10.1038/nprot.2018.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With the recent success in determining membrane protein structures, further detailed understanding of the identity and function of the bound lipidome is essential. Using an approach that combines high-energy native mass spectrometry (HE-nMS) and solution-phase lipid profiling, this protocol can be used to determine the identity of the endogenous lipids that directly interact with a protein. Furthermore, this method can identify systems in which such lipid binding has a major role in regulating the oligomeric assembly of membrane proteins. The protocol begins with recording of the native mass spectrum of the protein of interest, under successive delipidation conditions, to determine whether delipidation leads to disruption of the oligomeric state. Subsequently, we propose using a bipronged strategy: first, an HE-nMS platform is used that allows dissociation of the detergent micelle at the front end of the instrument. This allows for isolation of the protein-lipid complex at the quadrupole and successive fragmentation at the collision cell, which leads to identification of the bound lipid masses. Next, simultaneous coupling of this with in-solution LC-MS/MS-based identification of extracted lipids reveals the complete identity of the interacting lipidome that copurifies with the proteins. Assimilation of the results of these two sets of experiments divulges the complete identity of the set of lipids that directly interact with the membrane protein of interest, and can further delineate its role in maintaining the oligomeric state of the protein. The entire procedure takes 2 d to complete.
Collapse
Affiliation(s)
- Kallol Gupta
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Jingwen Li
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Idlir Liko
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Joseph Gault
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Cherine Bechara
- Department of Chemistry, University of Oxford, Oxford, UK
- Institut de Genomique Fonctionnelle, CNRS UMR-5203, INSERM U1191, University of Montpellier, Montpellier, France
| | - Di Wu
- Department of Chemistry, University of Oxford, Oxford, UK
| | | | | | | | | |
Collapse
|
24
|
Surendran S, Adaikalakoteswari A, Saravanan P, Shatwaan IA, Lovegrove JA, Vimaleswaran KS. An update on vitamin B12-related gene polymorphisms and B12 status. GENES AND NUTRITION 2018; 13:2. [PMID: 29445423 PMCID: PMC5801754 DOI: 10.1186/s12263-018-0591-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022]
Abstract
Background Vitamin B12 is an essential micronutrient in humans needed for health maintenance. Deficiency of vitamin B12 has been linked to dietary, environmental and genetic factors. Evidence for the genetic basis of vitamin B12 status is poorly understood. However, advancements in genomic techniques have increased the knowledge-base of the genetics of vitamin B12 status. Based on the candidate gene and genome-wide association (GWA) studies, associations between genetic loci in several genes involved in vitamin B12 metabolism have been identified. Objective The objective of this literature review was to identify and discuss reports of associations between single-nucleotide polymorphisms (SNPs) in vitamin B12 pathway genes and their influence on the circulating levels of vitamin B12. Methods Relevant articles were obtained through a literature search on PubMed through to May 2017. An article was included if it examined an association of a SNP with serum or plasma vitamin B12 concentration. Beta coefficients and odds ratios were used to describe the strength of an association, and a P < 0.05 was considered as statistically significant. Two reviewers independently evaluated the eligibility for the inclusion criteria and extracted the data. Results From 23 studies which fulfilled the selection criteria, 16 studies identified SNPs that showed statistically significant associations with vitamin B12 concentrations. Fifty-nine vitamin B12-related gene polymorphisms associated with vitamin B12 status were identified in total, from the following populations: African American, Brazilian, Canadian, Chinese, Danish, English, European ancestry, Icelandic, Indian, Italian, Latino, Northern Irish, Portuguese and residents of the USA. Conclusion Overall, the data analyzed suggests that ethnic-specific associations are involved in the genetic determination of vitamin B12 concentrations. However, despite recent success in genetic studies, the majority of identified genes that could explain variation in vitamin B12 concentrations were from Caucasian populations. Further research utilizing larger sample sizes of non-Caucasian populations is necessary in order to better understand these ethnic-specific associations.
Collapse
Affiliation(s)
- S Surendran
- 1Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, PO Box 226, Whiteknights, Reading, RG6 6AP UK
| | - A Adaikalakoteswari
- 2Warwick Medical School - Population Evidence and Technologies, University of Warwick, Coventry, CV4 7AL UK.,3UK Academic Department of Diabetes and Metabolism, George Eliot Hospital, Nuneaton, UK
| | - P Saravanan
- 2Warwick Medical School - Population Evidence and Technologies, University of Warwick, Coventry, CV4 7AL UK.,3UK Academic Department of Diabetes and Metabolism, George Eliot Hospital, Nuneaton, UK
| | - I A Shatwaan
- 1Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, PO Box 226, Whiteknights, Reading, RG6 6AP UK
| | - J A Lovegrove
- 1Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, PO Box 226, Whiteknights, Reading, RG6 6AP UK
| | - K S Vimaleswaran
- 1Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, PO Box 226, Whiteknights, Reading, RG6 6AP UK
| |
Collapse
|
25
|
Intestinal Absorption of Water-Soluble Vitamins: Cellular and Molecular Mechanisms. PHYSIOLOGY OF THE GASTROINTESTINAL TRACT 2018. [DOI: 10.1016/b978-0-12-809954-4.00054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
26
|
McDonald MK, Fritz JA, Jia D, Scheuchner D, Snyder FF, Stanislaus A, Curle J, Li L, Stabler SP, Allen RH, Mains PE, Gravel RA. Identification of ABC transporters acting in vitamin B 12 metabolism in Caenorhabditis elegans. Mol Genet Metab 2017; 122:160-171. [PMID: 29153845 DOI: 10.1016/j.ymgme.2017.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 01/19/2023]
Abstract
Vitamin B12 (cobalamin, Cbl) is a micronutrient essential to human health. Cbl is not utilized as is but must go through complex subcellular and metabolic processing to generate two cofactor forms: methyl-Cbl for methionine synthase, a cytosolic enzyme; and adenosyl-Cbl for methylmalonyl-CoA mutase, a mitochondrial enzyme. Some 10-12 human genes have been identified responsible for the intracellular conversion of Cbl to cofactor forms, including genes that code for ATP-binding cassette (ABC) transporters acting at the lysosomal and plasma membranes. However, the gene for mitochondrial uptake is not known. We hypothesized that ABC transporters should be candidates for other uptake and efflux functions, including mitochondrial transport, and set out to screen ABC transporter mutants for blocks in Cbl utilization using the nematode roundworm Caenorhabditis elegans. Thirty-seven mutant ABC transporters were screened for the excretion of methylmalonic acid (MMA), which should result from loss of Cbl transport into the mitochondria. One mutant, wht-6, showed elevated MMA excretion and reduced [14C]-propionate incorporation, pointing to a functional block in methylmalonyl-CoA mutase. In contrast, the wht-6 mutant appeared to have a normal cytosolic pathway based on analysis of cystathionine excretion, suggesting that cytosolic methionine synthase was functioning properly. Further, the MMA excretion in wht-6 could be partially reversed by including vitamin B12 in the assay medium. The human ortholog of wht-6 is a member of the G family of ABC transporters. We propose wht-6 as a candidate for the transport of Cbl into mitochondria and suggest that a member of the corresponding ABCG family of ABC transporters has this role in humans. Our ABC transporter screen also revealed that mrp-1 and mrp-2 mutants excreted lower MMA than wild type, suggesting they were concentrating intracellular Cbl, consistent with the cellular efflux defect proposed for the mammalian MRP1 ABC transporter.
Collapse
Affiliation(s)
- Megan K McDonald
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, T2N 4N1, Canada
| | - Julie-Anne Fritz
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, T2N 4N1, Canada
| | - Dongxin Jia
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, T2N 4N1, Canada
| | - Deborah Scheuchner
- Department of Medical Genetics, University of Calgary, Calgary, T2N 4N1, Canada
| | - Floyd F Snyder
- Department of Medical Genetics, University of Calgary, Calgary, T2N 4N1, Canada
| | - Avalyn Stanislaus
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Jared Curle
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Sally P Stabler
- Division of Hematology, University of Colorado Denver, Aurora, CO, USA
| | - Robert H Allen
- Division of Hematology, University of Colorado Denver, Aurora, CO, USA
| | - Paul E Mains
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, T2N 4N1, Canada
| | - Roy A Gravel
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, T2N 4N1, Canada.
| |
Collapse
|
27
|
Fettelschoss V, Burda P, Sagné C, Coelho D, De Laet C, Lutz S, Suormala T, Fowler B, Pietrancosta N, Gasnier B, Bornhauser B, Froese DS, Baumgartner MR. Clinical or ATPase domain mutations in ABCD4 disrupt the interaction between the vitamin B 12-trafficking proteins ABCD4 and LMBD1. J Biol Chem 2017; 292:11980-11991. [PMID: 28572511 DOI: 10.1074/jbc.m117.784819] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/24/2017] [Indexed: 01/19/2023] Open
Abstract
Vitamin B12 (cobalamin (Cbl)), in the cofactor forms methyl-Cbl and adenosyl-Cbl, is required for the function of the essential enzymes methionine synthase and methylmalonyl-CoA mutase, respectively. Cbl enters mammalian cells by receptor-mediated endocytosis of protein-bound Cbl followed by lysosomal export of free Cbl to the cytosol and further processing to these cofactor forms. The integral membrane proteins LMBD1 and ABCD4 are required for lysosomal release of Cbl, and mutations in the genes LMBRD1 and ABCD4 result in the cobalamin metabolism disorders cblF and cblJ. We report a new (fifth) patient with the cblJ disorder who presented at 7 days of age with poor feeding, hypotonia, methylmalonic aciduria, and elevated plasma homocysteine and harbored the mutations c.1667_1668delAG [p.Glu556Glyfs*27] and c.1295G>A [p.Arg432Gln] in the ABCD4 gene. Cbl cofactor forms are decreased in fibroblasts from this patient but could be rescued by overexpression of either ABCD4 or, unexpectedly, LMBD1. Using a sensitive live-cell FRET assay, we demonstrated selective interaction between ABCD4 and LMBD1 and decreased interaction when ABCD4 harbored the patient mutations p.Arg432Gln or p.Asn141Lys or when artificial mutations disrupted the ATPase domain. Finally, we showed that ABCD4 lysosomal targeting depends on co-expression of, and interaction with, LMBD1. These data broaden the patient and mutation spectrum of cblJ deficiency, establish a sensitive live-cell assay to detect the LMBD1-ABCD4 interaction, and confirm the importance of this interaction for proper intracellular targeting of ABCD4 and cobalamin cofactor synthesis.
Collapse
Affiliation(s)
- Victoria Fettelschoss
- Division of Metabolism and Children's Research Center, University Children's Hospital, CH-8032 Zurich, Switzerland
| | - Patricie Burda
- Division of Metabolism and Children's Research Center, University Children's Hospital, CH-8032 Zurich, Switzerland
| | - Corinne Sagné
- Neurophotonics Laboratory UMR 8250, Paris Descartes University, CNRS, Sorbonne Paris Cité, F-75006 Paris, France
| | - David Coelho
- UMR-S UL-INSERM U954 Nutrition-Genetics-Environmental Risk Exposure and Reference Centre of Inborn Metabolism Diseases, Medical Faculty of Nancy University and University Hospital Centre, Nancy, France
| | - Corinne De Laet
- Nutrition and Metabolism Unit, Queen Fabiola Children's University Hospital, Free University of Brussels (ULB), 1020 Brussels, Belgium
| | - Seraina Lutz
- Division of Metabolism and Children's Research Center, University Children's Hospital, CH-8032 Zurich, Switzerland
| | - Terttu Suormala
- Division of Metabolism and Children's Research Center, University Children's Hospital, CH-8032 Zurich, Switzerland
| | - Brian Fowler
- Division of Metabolism and Children's Research Center, University Children's Hospital, CH-8032 Zurich, Switzerland
| | - Nicolas Pietrancosta
- CBMIT team, UMR 8601, Paris Descartes University, CNRS, Sorbonne Paris Cité, F-75006 Paris, France
| | - Bruno Gasnier
- Neurophotonics Laboratory UMR 8250, Paris Descartes University, CNRS, Sorbonne Paris Cité, F-75006 Paris, France
| | - Beat Bornhauser
- Department of Oncology, Children's Research Center, University Children's Hospital, CH-8032 Zurich, Switzerland
| | - D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital, CH-8032 Zurich, Switzerland; Rare Disease Initiative Zurich (radiz), Clinical Research Priority Program for Rare Diseases, University of Zurich, CH-8006 Zurich, Switzerland.
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital, CH-8032 Zurich, Switzerland; Rare Disease Initiative Zurich (radiz), Clinical Research Priority Program for Rare Diseases, University of Zurich, CH-8006 Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, CH-8006 Zurich, Switzerland.
| |
Collapse
|
28
|
Abstract
Lysosomes are cytoplasmic organelles that contain a variety of different hydrolases. A genetic deficiency in the enzymatic activity of one of these hydrolases will lead to the accumulation of the material meant for lysosomal degradation. Examples include glycogen in the case of Pompe disease, glycosaminoglycans in the case of the mucopolysaccharidoses, glycoproteins in the cases of the oligosaccharidoses, and sphingolipids in the cases of Niemann-Pick disease types A and B, Gaucher disease, Tay-Sachs disease, Krabbe disease, and metachromatic leukodystrophy. Sometimes, the lysosomal storage can be caused not by the enzymatic deficiency of one of the hydrolases, but by the deficiency of an activator protein, as occurs in the AB variant of GM2 gangliosidosis. Still other times, the accumulated lysosomal material results from failed egress of a small molecule as a consequence of a deficient transporter, as in cystinosis or Salla disease. In the last couple of decades, enzyme replacement therapy has become available for a number of lysosomal storage diseases. Examples include imiglucerase, taliglucerase and velaglucerase for Gaucher disease, laronidase for Hurler disease, idursulfase for Hunter disease, elosulfase for Morquio disease, galsulfase for Maroteaux-Lamy disease, alglucosidase alfa for Pompe disease, and agalsidase alfa and beta for Fabry disease. In addition, substrate reduction therapy has been approved for certain disorders, such as eliglustat for Gaucher disease. The advent of treatment options for some of these disorders has led to newborn screening pilot studies, and ultimately to the addition of Pompe disease and Hurler disease to the Recommended Uniform Screening Panel (RUSP) in 2015 and 2016, respectively.
Collapse
Affiliation(s)
- Carlos R. Ferreira
- Division of Genetics and Metabolism, Children’s National Health System, Washington, DC, USA
- George Washington University School of Medicine & Health Sciences, Washington, DC, USA
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - William A. Gahl
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
29
|
Methionine synthase and methionine synthase reductase interact with MMACHC and with MMADHC. Biochim Biophys Acta Mol Basis Dis 2017; 1863:103-112. [DOI: 10.1016/j.bbadis.2016.10.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/01/2016] [Accepted: 10/18/2016] [Indexed: 01/02/2023]
|
30
|
Abstract
ATP-binding cassette (ABC) transporters, belonging to the family D, are expressed in peroxisomes, endoplasmic reticulum or lysosomes. ABCD transporters play a role in transport of lipids, bile acids and vitamin B12 and associate with peroxisomal disorders. ABCD1 performs transport of coenzyme A esters of very-long-chain fatty acids (VLCFA) in peroxisomes and a number of mutations in ABCD1 gene were linked to an X-linked adrenoleucodystrophy (X-ALD). The role of ABCD transporters in tumour growth has not been studied in detail, but there is some evidence that ABCDs levels differ between undifferentiated stem or tumour cells and differentiated cells suggesting a possible link to tumorigenesis. In this mini-review, we discuss the available information about the role of ABCD transporters in cancer.
Collapse
|
31
|
Translocation of the ABC transporter ABCD4 from the endoplasmic reticulum to lysosomes requires the escort protein LMBD1. Sci Rep 2016; 6:30183. [PMID: 27456980 PMCID: PMC4960490 DOI: 10.1038/srep30183] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 06/30/2016] [Indexed: 11/29/2022] Open
Abstract
We previously demonstrated that ABCD4 does not localize to peroxisomes but rather, the endoplasmic reticulum (ER), because it lacks the NH2-terminal hydrophilic region required for peroxisomal targeting. It was recently reported that mutations in ABCD4 result in a failure to release vitamin B12 from lysosomes. A similar phenotype is caused by mutations in LMBRD1, which encodes the lysosomal membrane protein LMBD1. These findings suggested to us that ABCD4 translocated from the ER to lysosomes in association with LMBD1. In this report, it is demonstrated that ABCD4 interacts with LMBD1 and then localizes to lysosomes, and this translocation depends on the lysosomal targeting ability of LMBD1. Furthermore, endogenous ABCD4 was localized to both lysosomes and the ER, and its lysosomal localization was disturbed by knockout of LMBRD1. To the best of our knowledge, this is the first report demonstrating that the subcellular localization of the ABC transporter is determined by its association with an adaptor protein.
Collapse
|
32
|
Buers I, Pennekamp P, Nitschke Y, Lowe C, Skryabin BV, Rutsch F. Lmbrd1 expression is essential for the initiation of gastrulation. J Cell Mol Med 2016; 20:1523-33. [PMID: 27061115 PMCID: PMC4956942 DOI: 10.1111/jcmm.12844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/24/2016] [Indexed: 01/06/2023] Open
Abstract
The rare inborn cblF defect of cobalamin metabolism is caused by mutations in the limb region 1 (LMBR1) domain containing 1 gene (LMBRD1). This defect is characterized by massive accumulation of free cobalamin in lysosomes and loss of mitochondrial succinyl‐CoA synthesis and cytosolic methionine synthesis. Affected children suffer from heart defects, developmental delay and megaloblastic anemia. LMBRD1 encodes for LMBD1, a predicted lysosomal cobalamin transport protein. In this study, we determine the physiological function of LMBRD1 during embryogenesis by generating Lmbrd1 deficient mice using the Cre/LoxP system. Complete loss of Lmbrd1 function is accompanied by early embryonic death in mice. Whole mount in situ hybridization studies against bone morphogenetic protein 4 and Nodal show that initial formation of the proximal–distal axis is unaffected in early embryonic stages whereas the initiation of gastrulation is disturbed shown by the expression pattern of even skipped homeotic gene 1 and fibroblast growth factor 8 in Lmbrd1 deficient mice. We conclude that intact function of LMBD1 is essential for the initiation of gastrulation.
Collapse
Affiliation(s)
- Insa Buers
- Department of General Pediatrics, Müenster University Children's Hospital, Müenster, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, Müenster University Children's Hospital, Müenster, Germany
| | - Yvonne Nitschke
- Department of General Pediatrics, Müenster University Children's Hospital, Müenster, Germany
| | - Chrishanthi Lowe
- Department of General Pediatrics, Müenster University Children's Hospital, Müenster, Germany
| | - Boris V Skryabin
- Institute of Experimental Pathology, Müenster University, Müenster, Germany.,Department of Medicine (TRAM), University Hospital of Müenster, Münster, Germany
| | - Frank Rutsch
- Department of General Pediatrics, Müenster University Children's Hospital, Müenster, Germany
| |
Collapse
|