1
|
Li N, Wang Y, Meng Y, Lv Y, Zhang S, Wei S, Ma P, Hu Y, Lin H. Structural and functional characterization of a new thermophilic-like OYE from Aspergillus flavus. Appl Microbiol Biotechnol 2024; 108:134. [PMID: 38229304 DOI: 10.1007/s00253-023-12963-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 01/18/2024]
Abstract
Old yellow enzymes (OYEs) have been proven as powerful biocatalysts for the asymmetric reduction of activated alkenes. Fungi appear to be valuable sources of OYEs, but most of the fungal OYEs are unexplored. To expand the OYEs toolbox, a new thermophilic-like OYE (AfOYE1) was identified from Aspergillus flavus strain NRRL3357. The thermal stability analysis showed that the T1/2 of AfOYE1 was 60 °C, and it had the optimal temperature at 45 °C. Moreover, AfOYE1 exhibited high reduction activity in a wide pH range (pH 5.5-8.0). AfOYE1 could accept cyclic enones, acrylamide, nitroalkenes, and α, β-unsaturated aldehydes as substrates and had excellent enantioselectivity toward prochiral alkenes (> 99% ee). Interestingly, an unexpected (S)-stereoselectivity bioreduction toward 2-methylcyclohexenone was observed. The further crystal structure of AfOYE1 revealed that the "cap" region from Ala132 to Thr182, the loop of Ser316 to Gly325, α short helix of Arg371 to Gln375, and the C-terminal "finger" structure endow the catalytic cavity of AfOYE1 quite deep and narrow, and flavin mononucleotide (FMN) heavily buried at the bottom of the active site tunnel. Furthermore, the catalytic mechanism of AfOYE1 was also investigated, and the results confirmed that the residues His211, His214, and Tyr216 compose its catalytic triad. This newly identified thermophilic-like OYE would thus be valuable for asymmetric alkene hydrogenation in industrial processes. KEY POINTS: A new thermophilic-like OYE AfOYE1 was identified from Aspergillus flavus, and the T1/2 of AfOYE1 was 60 °C AfOYE1 catalyzed the reduction of 2-methylcyclohexenone with (S)-stereoselectivity The crystal structure of AfOYE1 was revealedv.
Collapse
Affiliation(s)
- Na Li
- College of Biological Engineering, Henan Unsssiversity of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China
| | - Yuan Wang
- College of Biological Engineering, Henan Unsssiversity of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China
| | - Yinyin Meng
- Henan International Joint Laboratory of Biocatalysis and Bio-Based Products, College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Yangyong Lv
- College of Biological Engineering, Henan Unsssiversity of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China
| | - Shuaibing Zhang
- College of Biological Engineering, Henan Unsssiversity of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China
| | - Shan Wei
- College of Biological Engineering, Henan Unsssiversity of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China
| | | | - Yuansen Hu
- College of Biological Engineering, Henan Unsssiversity of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China.
| | - Hui Lin
- Henan International Joint Laboratory of Biocatalysis and Bio-Based Products, College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China.
| |
Collapse
|
2
|
Li Z, Wang Z, Meng G, Lu H, Huang Z, Chen F. Identification of an Ene Reductase from Yeast Kluyveromyces Marxianus
and Application in the Asymmetric Synthesis of (R
)-Profen Esters. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhining Li
- Engineering Center of Catalysis and Synthesis for Chiral Molecules; Department of Chemistry; Fudan University; 220 Handan Road Shanghai 200433 P. R. China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs; 220 Handan Road Shanghai 200433 P. R. China
| | - Zexu Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules; Department of Chemistry; Fudan University; 220 Handan Road Shanghai 200433 P. R. China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs; 220 Handan Road Shanghai 200433 P. R. China
| | - Ge Meng
- Engineering Center of Catalysis and Synthesis for Chiral Molecules; Department of Chemistry; Fudan University; 220 Handan Road Shanghai 200433 P. R. China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs; 220 Handan Road Shanghai 200433 P. R. China
| | - Hong Lu
- State Key Laboratory of Genetic Engineering; School of Life Sciences; Fudan University, 2005 Songhu Road; Shanghai 200438 P. R. China
- Shanghai Engineering Research Center of Industrial Microorganisms; 2005 Songhu Road Shanghai 200438 P. R. China
| | - Zedu Huang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules; Department of Chemistry; Fudan University; 220 Handan Road Shanghai 200433 P. R. China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs; 220 Handan Road Shanghai 200433 P. R. China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules; Department of Chemistry; Fudan University; 220 Handan Road Shanghai 200433 P. R. China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs; 220 Handan Road Shanghai 200433 P. R. China
| |
Collapse
|