1
|
Hazzaa SM, Elsayed Arafat ESED, Abdo Ismail AEH, Eltorgoman AEA, Abdelaziz SA, Kombr YFA, Zidan RA, Assar MF. H 2S releasing Sodium sulfide protects from acute stress-induced hypertension by increasing the activity of endothelial nitric oxide synthase enzyme. Tissue Cell 2021; 72:101550. [PMID: 33915356 DOI: 10.1016/j.tice.2021.101550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 11/27/2022]
Abstract
Acute stress is a feature of our daily events that affects cardiovascular system and predisposes to hypertension. H2S is now considered as a vasorelaxant gasotransmitter although it was considered as a toxic agent. In present work we studied the effect of H2S releasing Na2S in acute stress induced hypertension and cardiac damage. Rats were divided into five groups: control, Na2S, acute stress, half dose of Na2S (6 mg/kg), and finally full dose of Na2S (12 mg/kg) to acute stressed rats. BP was measured then blood samples were taken for estimation of cortisol, cardiac enzymes markers, IL-6 and H2S. Finally, animals were sacrificed, hearts and thoracic aortae were excised for histological assessment, estimation of MDA, SOD and RNA extraction of CSE. Acute stress significantly elevated BP, cortisol, cardiac enzymes markers, IL-6, and tissue levels of MDA. It also, induced cardiac cell damage with congested B.V., extravasation of blood and decreased eNOs. Moreover, acute stress reduced H2S levels, RNA expression of CSE and SOD in cardiac tissues. Na2S significantly decreased BP, serum levels of cortisol, cardiac enzymes markers, IL-6, and tissue levels of MDA. Also, Na2S elevated serum H2S, RNA expression of CSE, SOD in cardiac tissue and increased eNOs activity.
Collapse
Affiliation(s)
- Suzan Moustafa Hazzaa
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Egypt; Department of Medical Physiology, Faculty of Medicine, Imam Mohammed Ibn Saud Islamic University, Saudi Arabia.
| | | | | | | | | | - Yasmin Fekry Abd Kombr
- Department of Chemistry, Biochemistry Division, Faculty of Science, Menoufia University, Egypt.
| | | | - Mohamed Farag Assar
- Department of Chemistry, Biochemistry Division, Faculty of Science, Menoufia University, Egypt.
| |
Collapse
|
2
|
Zhang Y, Li S, Wu J, Peng Y, Bai J, Ning B, Wang X, Fang Y, Han D, Ren S, Li S, Chen R, Li K, Du H, Gao Z. The orphan nuclear receptor Nur77 plays a vital role in BPA-induced PC12 cell apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112026. [PMID: 33582411 DOI: 10.1016/j.ecoenv.2021.112026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is a typical environmental endocrine disruptor that can migrate into organisms through skin contact, breathing, diet and various other approaches. The reproductive toxicity and neurotoxicity of BPA has been confirmed by several toxicological studies. However, the neurotoxicity of BPA is still controversial. In the present study, we used PC12 cells as a model to investigate the mechanism of BPA-induced neuronal apoptosis. BPA exposure reduced cell viability, altered cell morphology and aggravated intracellular Lactate dehydrogenase (LDH) release, intracellular Ca2+ concentration, Reactive oxygen species (ROS) levels, apoptosis and the reduction in the mitochondrial transmembrane potential (ΔΨm). Moreover, the results of the Western blot (WB) and Real-time quantitative polymerase chain reaction (RT-qPCR) assays indicated that the expression levels of Nur77 in the BPA group were down-regulated and accompanied by the downregulation of the NF-κb/Bcl-2 proteins and the upregulation of cleaved-caspase 3, which is a marker of apoptosis. However, these changes were significantly reversed with the upregulation of the Nur77 protein by introducing plasmids carrying the nur77 gene. These results indicated that BPA-induced apoptosis was closely related to Nur77-mediated inhibition of the NF-κb/Bcl-2 pathway.
Collapse
Affiliation(s)
- Yingchun Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China; Nankai University School of Medicine, Nan Kai University, 94 Weijin Road, Tianjin 300071, PR China
| | - Shuang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China; Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Tianjin 300072, PR China.
| | - Jin Wu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Yuan Peng
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Jialei Bai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Baoan Ning
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Xinxing Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Yanjun Fang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Dianpeng Han
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Shuyue Ren
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Sen Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Ruipeng Chen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China
| | - Hongwei Du
- Nankai University School of Medicine, Nan Kai University, 94 Weijin Road, Tianjin 300071, PR China
| | - Zhixian Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, 1 Da Li Road, Tianjin 300050, PR China.
| |
Collapse
|
3
|
Shen C, Liu W, Zhang S, Pu L, Deng B, Zeng Q, Chen Z, Wang X. Downregulation of miR-541 induced by heat stress contributes to malignant transformation of human bronchial epithelial cells via HSP27. ENVIRONMENTAL RESEARCH 2020; 184:108954. [PMID: 32145546 DOI: 10.1016/j.envres.2019.108954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Environmental factors are one of the important factors affecting the occurrence of lung cancer. However, few studies have been done on the relationship between hot environment and lung cancer. In the present study, we demonstrated that heat stress leads to anchorage-independent proliferation, mitochondrial apoptosis, and autophagy of Beas-2B cells, which are normal lung bronchial epithelial cells. Heat shock protein 27 (HSP27) promoted heat stress-induced anchorage-independent proliferation and autophagy, but suppressed mitochondrial apoptosis, indicating that HSP27 might act as an oncogene in the malignant transformation of lung epithelial cells. We also showed that HSP27 promoted autophagy of these cells under heat stress via autophagy related 7 (ATG7) and ETS Transcription Factor ELK1 (ELK1), a transcription factor of ATG7, under heat stress. In addition, we showed that HSP27 translation could be repressed by microRNA miR-541, and the biological effects of miR-541 were the opposite to HSP27, suggesting that HSP27 is a downstream target of miR-541. In this study, we characterized a new mechanism whereby HSP27 promotes cell transformation during the onset of lung cancer. Our studies provide new insights into the molecular mechanisms underlying the lung carcinogenic effect of heat exposure. Specifically, heat stress promotes translation of HSP27 by inhibiting miR-541 accumulation, ultimately resulting in activation of autophagy, inhibition of mitochondrial apoptotic pathway and malignant transformation of Human Bronchial Epithelial Cells. This study identifies miR-541 as a potential prognostic biomarker or therapeutic target to improve theory of environmental carcinogenesis.
Collapse
Affiliation(s)
- Chengfeng Shen
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China.
| | - Weili Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Shuang Zhang
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China.
| | - Lingling Pu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Bingnan Deng
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Qiang Zeng
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Zhaoli Chen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Xinxing Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
4
|
Liu ZJ, Liu H, Wu C, Xue K. Effect of sepsis on the action potential and cardiac serotonin response in rats. Exp Ther Med 2019; 18:2207-2212. [PMID: 31452710 DOI: 10.3892/etm.2019.7810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/16/2019] [Indexed: 01/22/2023] Open
Abstract
The current study aimed to investigate the effect of sepsis on rat serotonin (5-HT) responses and cardiac action potentials. A total of 20 rats were randomly divided into a sepsis and control group (each, n=10). Rat hearts were harvested and perfused using the Langendorff method 18-h after the induction of sepsis, which was assessed using cecal puncture. Cardiac action potential was subsequently measured using a multichannel electrophysiology instrument. Immunohistochemistry and quantitative analysis were performed to identify the effect of sepsis on myocardial 5-HT expression. The results revealed that mitochondrial changes were present in septic rat hearts. Heart rate (361.10±12.29 bpm vs. 348.60±12.38 bpm; P<0.05) was significantly higher, atrial action potential duration (106.40±2.95 ms vs. 86.60±4.12 ms; P<0.01) was significantly longer and the area (0.62±0.06 µm2 vs. 0.39±0.05 µm2; P<0.05) and number (0.92±0.02/field vs. 0.46±0.01/field; P<0.01) of myocardial cells were significantly higher in the septic compared with the control group. These results demonstrated that 5-HT prolongs the atrial action potential, increases heart rate and aggravates myocardial injury, indicating that it may therefore be one of the factors that leads to cardiac dysfunction in sepsis.
Collapse
Affiliation(s)
- Zheng-Jiang Liu
- Department of Cardiology, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong 511500, P.R. China
| | - Hua Liu
- Department of Cardiology, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong 511500, P.R. China
| | - Changdong Wu
- Intensive Medicine Unit, The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region 830001, P.R. China
| | - Kedong Xue
- Intensive Medicine Unit, The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region 830001, P.R. China
| |
Collapse
|
5
|
Wang X, Wang S, Liu W, Wang T, Wang J, Gao X, Duan R, Li Y, Pu L, Deng B, Chen Z. Epigenetic upregulation of miR-126 induced by heat stress contributes to apoptosis of rat cardiomyocytes by promoting Tomm40 transcription. J Mol Cell Cardiol 2019; 129:39-48. [DOI: 10.1016/j.yjmcc.2018.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/22/2018] [Accepted: 10/04/2018] [Indexed: 10/28/2022]
|
6
|
Qin QJ, Cui LQ, Li P, Wang YB, Zhang XZ, Guo ML. Rhynchophylline ameliorates myocardial ischemia/reperfusion injury through the modulation of mitochondrial mechanisms to mediate myocardial apoptosis. Mol Med Rep 2019; 19:2581-2590. [PMID: 30720139 PMCID: PMC6423601 DOI: 10.3892/mmr.2019.9908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/18/2019] [Indexed: 01/22/2023] Open
Abstract
Rhynchophylline (RP), the primary active ingredient of Uncaria rhynchophylla, has an anti-hypertensive effect and protects against ischemia-induced neuronal damage. The present study aimed to examine the roles and mechanisms of RP in myocardial ischemia-reperfusion (MI/R) injury of rat cardiomyocytes. Cell viability, reactive oxygen species, mitochondrial membrane potential (MMP) and cell apoptosis were examined by a Cell Counting Kit-8 assay and flow cytometry, respectively. An ELISA was performed to assess the expression of oxidative stress markers. Spectrophotometry was used to detect the degree of mitochondrial permeability transition pore (mPTP) openness. Western blotting and reverse transcription- quantitative polymerase chain reaction assays were used to evaluate the associated protein and mRNA expression, respectively. The present results demonstrated that RP increased the cell viability of MI/R-induced cardiomyocytes, and suppressed the MI/R-induced apoptosis of cardiomyocytes. Additionally, RP modulated the Ca2+ and MMP levels in MI/R-induced cardiomyocytes. Furthermore, RP decreased the oxidative stress and mPTP level of MI/R-induced cardiomyocytes. It was additionally observed that RP affected the apoptosis-associated protein expression and regulated the mitochondrial-associated gene expression in MI/R-induced cardiomyocytes. In conclusion, RP ameliorated MI/R injury through the modulation of mitochondrial mechanisms. The potential effects of RP on the protection of MI/R-induced apoptosis of cardiomyocytes suggest that RP may be an effective target for MI/R therapy.
Collapse
Affiliation(s)
- Qiao-Ji Qin
- Emergency Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Li-Qiang Cui
- Department of Anesthesiology, Chengyang People's Hospital, Qingdao, Shandong 266109, P.R. China
| | - Peng Li
- Emergency Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yong-Bin Wang
- Emergency Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xue-Zhi Zhang
- Emergency Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Ming-Lei Guo
- Emergency Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
7
|
Nie X, Tan J, Dai Y, Mao W, Chen Y, Qin G, Li G, Shen C, Zhao J, Chen J. Nur77 downregulation triggers pulmonary artery smooth muscle cell proliferation and migration in mice with hypoxic pulmonary hypertension via the Axin2-β-catenin signaling pathway. Vascul Pharmacol 2016; 87:230-241. [DOI: 10.1016/j.vph.2016.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 11/03/2016] [Indexed: 01/15/2023]
|
8
|
ZhiQing Z, XinXing W, Jingbo G, Rui Z, Xiujie G, Yun Z, Lei W, Xue L, LingJia Q. Effects of HIP in protection of HSP70 for stress-induced cardiomyocytes injury and its glucorticoid receptor pathway. Cell Stress Chaperones 2014; 19:865-75. [PMID: 24789270 PMCID: PMC4389846 DOI: 10.1007/s12192-014-0510-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 01/16/2023] Open
Abstract
Moderate levels of stress can be beneficial to health, while stress overload can cause injury or contribute to diseases. Despite a number of studies of adaptation or stress damage, the mechanisms of adaptation and stress damage remain far from clear. The effect and mechanisms of adaptation on cardiomyocytes damage caused by stress overload are discussed in this study. Data showed that mild repeated stress mitigated stress overload-induced cardiomyocyte injury both in an animal model of restraint stress and in H9C2 cells with GC (glucocorticoid) treatment. HSP70, HIP expression and interaction between HSP70 and HIP increased during adaptation induced by mild stress both in animals and H9C2 cells. Overexpression or inhibition of HSP70 in H9C2 cells with pCDNA-3.1-Hsp70 or KNK437 (HSP70 inhibitor) showed that HSP70 can protect H9C2 cells from GC-induced cell damage. A luciferase assay showed that Hsp70 plays its protective role through inhibition of GR transcription activity dependent on the interaction with HIP. These results indicated that HSP70 may promote adaptation with its interacting protein HIP, and increased levels of HSP70 and its interacting protein HIP during adaptation may play a protective role on stress-overload-induced cardiomyocyte injury.
Collapse
MESH Headings
- Adaptation, Physiological
- Animals
- Benzhydryl Compounds/pharmacology
- Cell Line
- Disease Models, Animal
- Glucocorticoids/toxicity
- HSP70 Heat-Shock Proteins/antagonists & inhibitors
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/metabolism
- Heart Diseases/genetics
- Heart Diseases/metabolism
- Heart Diseases/pathology
- Heart Diseases/prevention & control
- Hydrocortisone/blood
- Male
- Molecular Chaperones/genetics
- Molecular Chaperones/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Pyrrolidinones/pharmacology
- RNA Interference
- Rats, Wistar
- Receptors, Glucocorticoid/agonists
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Restraint, Physical
- Signal Transduction/drug effects
- Stress, Psychological/complications
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
- Stress, Psychological/pathology
- Time Factors
- Transfection
Collapse
Affiliation(s)
- Zhang ZhiQing
- />Institute of Health & Environmental Medicine, Tianjin, 300050 People’s Republic of China
| | - Wang XinXing
- />Institute of Basic Medical Sciences, Beijing, 100850 People’s Republic of China
| | - Gong Jingbo
- />Institute of Basic Medical Sciences, Beijing, 100850 People’s Republic of China
| | - Zhan Rui
- />Institute of Basic Medical Sciences, Beijing, 100850 People’s Republic of China
| | - Gao Xiujie
- />Institute of Health & Environmental Medicine, Tianjin, 300050 People’s Republic of China
| | - Zhao Yun
- />Institute of Basic Medical Sciences, Beijing, 100850 People’s Republic of China
| | - Wu Lei
- />Institute of Health & Environmental Medicine, Tianjin, 300050 People’s Republic of China
| | - Leng Xue
- />Institute of Medical Equipment, Tianjin, 300161 People’s Republic of China
| | - Qian LingJia
- />Institute of Basic Medical Sciences, Beijing, 100850 People’s Republic of China
| |
Collapse
|
9
|
Ustunel I, Acar N, Gemici B, Ozbey O, Edizer I, Soylu H, Tepekoy F, Izgut-Uysal VN. The effects of water immersion and restraint stress on the expressions of apelin, apelin receptor (APJR) and apoptosis rate in the rat heart. Acta Histochem 2014; 116:675-81. [PMID: 24411164 DOI: 10.1016/j.acthis.2013.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/03/2013] [Accepted: 12/05/2013] [Indexed: 02/01/2023]
Abstract
Apelin has been identified as an endogenous ligand of the orphan G-protein-coupled apelin receptor (APJR). These receptors are widely expressed in the central nervous system and periphery and play a role in the regulation of fluid and glucose homeostasis, feeding behavior, vessel formation, cell proliferation and immunity. We aimed to investigate whether water immersion and restraint stress have effects on apelin and APJR expression and apoptosis in heart tissue of male Wistar rats. The cardiac tissues were obtained from control, water immersion and restraint stress (WIRS) and apelin antagonist (F13A)+WIRS groups of rats and embedded in paraffin wax. Immunohistochemical staining methods were used to localize apelin, APJR and TUNEL immunopositive cells. H-SCORE was used for semi-quantitative determinations. Apelin protein levels were determined by Western blot in the cardiac tissues and plasma corticosteroid levels were measured by enzyme immunoassay (EIA). Apelin immunolocalization was found especially in endothelial cells and mast cells and faintly in cardiomyocytes, APJR immunostaining was shown in endothelial cells and cardiomyocytes, and TUNEL reaction was observed in endothelial cells and in some fibroblasts. Apelin expression was significantly increased in the WIRS and F13A+WIRS groups compared to the control group. The APJR reaction was similar in all groups. The number of TUNEL-positive cells was significantly higher in the F13A+WIRS group than that of the control group. Our study showed that WIRS for 6h increased plasma corticosterone levels and cardiac apelin expression in rats. The increased levels of apelin inhibited stress-induced apoptosis in heart. These results may be important for the therapeutic approach to a variety of stress-related heart disease.
Collapse
|
10
|
Dai Y, Sun Q, Zhang X, Hu Y, Zhou M, Shi J. Cyclosporin A ameliorates early brain injury after subarachnoid hemorrhage through inhibition of a Nur77 dependent apoptosis pathway. Brain Res 2014; 1556:67-76. [DOI: 10.1016/j.brainres.2014.01.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 01/25/2014] [Accepted: 01/30/2014] [Indexed: 12/25/2022]
|
11
|
Xinxing W, Wei L, Lei W, Rui Z, Baoying J, Lingjia Q. A neuroendocrine mechanism of co-morbidity of depression-like behavior and myocardial injury in rats. PLoS One 2014; 9:e88427. [PMID: 24551098 PMCID: PMC3923793 DOI: 10.1371/journal.pone.0088427] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 01/08/2014] [Indexed: 11/19/2022] Open
Abstract
Depression is generally a recurrent psychiatric disorder. Evidence shows that depression and cardiovascular diseases are common comorbid conditions, but the specific pathological mechanisms remain unclear. The purpose of this study is to determine the effects of depression induced by chronic unpredictable mild stress (CUMS) on myocardial injury and to further elucidate the biological mechanism of depression. Rats were used as a model. The CUMS procedure lasted for a total of 8 weeks. After 4 weeks of CUMS, treated rats exhibited a reduced sucrose preference and changes in scores on an open field test, body weight and content of 5-HT in the brain as compared with the values of these variables in controls. These changes indicated depression-like changes in CUMS rats and demonstrated the feasibility of the depression model. In addition, pathological changes in the myocardium and increased cardiomyocyte apoptosis demonstrated that myocardial injury had occurred after 6 weeks of CUMS and had increased significantly by the end of 8 weeks of CUMS. Plasma serotonin (5-HT), norepinephrine (NE) and epinephrine (E), all depression-related neuroendocrine factors, were measured by HPLC-ECD techniques, and the content of plasma corticosterone (GC) was evaluated by an I(125)-cortisol radioactivity immunoassay in control and CUMS rats. The results indicated that 5-HT had decreased, whereas NE, E and GC had increased in CUMS rats, and these factors might be associated with depression-induced myocardial injury. The effects of 5-HT, NE and GC on the survival rate of cultured cardiomyocytes were determined using an orthogonal design. The results showed that 5-HT was a more important factor affecting cell survival than GC or NE. The results suggested that normal blood levels of 5-HT had a cytoprotective effect. The neuroendocrine disorders characterized by decreased 5-HT combined with increased GC and NE mediated the occurrence of depression-induced myocardial injury.
Collapse
Affiliation(s)
- Wang Xinxing
- Beijing Institute of Basic Medical Sciences, Beijing, China
- * E-mail: (WX); (JB); (QL)
| | - Liu Wei
- Institute of Health & Environmental Medicine, Tianjin, China
| | - Wu Lei
- Institute of Health & Environmental Medicine, Tianjin, China
| | - Zhan Rui
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jin Baoying
- Tianjin Occupational Disease Prevention Hospital (Hospital Workers), Tianjin, China
- * E-mail: (WX); (JB); (QL)
| | - Qian Lingjia
- Beijing Institute of Basic Medical Sciences, Beijing, China
- * E-mail: (WX); (JB); (QL)
| |
Collapse
|
12
|
Niu G, Lu L, Gan J, Zhang D, Liu J, Huang G. Dual roles of orphan nuclear receptor TR3/Nur77/NGFI-B in mediating cell survival and apoptosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 313:219-58. [PMID: 25376494 DOI: 10.1016/b978-0-12-800177-6.00007-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As a transcriptional factor, Nur77 has sparked interests across different research fields in recent years. A number of studies have demonstrated the functional complexity of Nur77 in mediating survival/apoptosis in a variety of cells, including tumor cells. Conflicting observations also exist in clinical reports, in that TR3 behaves like an oncogene in tumors of the GI tract, lung, and breast, that is negatively associated with tumor stage and patient prognosis; while functions as a tumor suppressor gene in malignancies of the hematological and lymphatic system, skin, and ovary whose malfunction results in carcinogenesis. This chapter summarizes the apparent opposing effects of Nur77 on cells and explicates the mechanisms that determine the functional preference of Nur77. We conclude that in addition to cell type and agent context, other factors such as cellular localization, signaling pathway, and posttranslational modification also determine the final effects of Nur77 on cells.
Collapse
Affiliation(s)
- Gengming Niu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Lu
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Jun Gan
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Di Zhang
- Main Library, Shanghai Jiao Tong University, Shanghai, China
| | - Jingzheng Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guangjian Huang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|