1
|
Abbas NAT, Fayed FA, El Sebaey RS, Hassan HA. Telmisartan and candesartan promote browning of white adipose tissue and reverse fatty liver changes in high fat diet fed male albino rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2359-2378. [PMID: 37831115 DOI: 10.1007/s00210-023-02771-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
Obesity is a key risk factor for many diseases, as cardiovascular disorders, diabetes, infertility, osteoarthritis, sleep apnea, non-alcoholic fatty liver disease (NAFLD) as well as increased risk for many cancers. Telmisartan and Candesartan cilexetil are angiotensin II receptor blockers which had proven to involve in pathogenesis of obesity and NAFLD. AIMS This work is designed to explore the possible mitigated effects of Telmisartan and Candesartan cilexetil on weight gain and fatty liver in high fat diet (HFD) fed rats. MAIN METHODS The HFD rat model was achieved with induction of NAFLD. For Seven weeks either telmisartan or candesartan were orally administered at doses of 5 and 10 mg/kg respectively once daily. The effects of both drugs were evaluated by measurements of rat's body weight, food intakes, length, body mass index (BMI), liver weight, inguinal and interscapular fat weights. In addition, we assayed lipid profile, liver functions tests, serum inflammatory cytokines, adipokine and leptin. Lastly, liver and adipose tissue histopathological structures were evaluated. KEY FINDINGS at end of experiment, telmisartan and candesartan were highly effective in decreasing rat's body weight from (213.1±2.68 to 191.2±2.54 and 203.5±5.89 gm , respectively), BMI, liver weight, fat weights in addition reduced serum levels of lipid and liver enzymes. Also, inflammatory cytokines were reduced with repaired histopathological insults in liver by significantly damped NAFLD score from (6.5 ±0.17 to 1±0 and 4 ±0, respectively) and decreased areas of adipocytes from (21239.12 to 5355.7 and 11607.1 um2 , respectively). SIGNIFICANCE Telmisartan and candesartan have therapeutic potential against obesity and NAFLD induced by HFD in rats. All the previous indices showed more improvement in telmisartan than candesartan group.
Collapse
Affiliation(s)
- Noha A T Abbas
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Fawkia A Fayed
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Rabab Saber El Sebaey
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Heba A Hassan
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt.
- Department of Pharmacology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak, 61710, Jordan.
| |
Collapse
|
2
|
Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, Campagnole-Santos MJ. The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7). Physiol Rev 2018; 98:505-553. [PMID: 29351514 PMCID: PMC7203574 DOI: 10.1152/physrev.00023.2016] [Citation(s) in RCA: 722] [Impact Index Per Article: 120.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 05/09/2017] [Accepted: 06/18/2017] [Indexed: 12/16/2022] Open
Abstract
The renin-angiotensin system (RAS) is a key player in the control of the cardiovascular system and hydroelectrolyte balance, with an influence on organs and functions throughout the body. The classical view of this system saw it as a sequence of many enzymatic steps that culminate in the production of a single biologically active metabolite, the octapeptide angiotensin (ANG) II, by the angiotensin converting enzyme (ACE). The past two decades have revealed new functions for some of the intermediate products, beyond their roles as substrates along the classical route. They may be processed in alternative ways by enzymes such as the ACE homolog ACE2. One effect is to establish a second axis through ACE2/ANG-(1-7)/MAS, whose end point is the metabolite ANG-(1-7). ACE2 and other enzymes can form ANG-(1-7) directly or indirectly from either the decapeptide ANG I or from ANG II. In many cases, this second axis appears to counteract or modulate the effects of the classical axis. ANG-(1-7) itself acts on the receptor MAS to influence a range of mechanisms in the heart, kidney, brain, and other tissues. This review highlights the current knowledge about the roles of ANG-(1-7) in physiology and disease, with particular emphasis on the brain.
Collapse
Affiliation(s)
- Robson Augusto Souza Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Walkyria Oliveira Sampaio
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Andreia C Alzamora
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Daisy Motta-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Natalia Alenina
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Michael Bader
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Maria Jose Campagnole-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| |
Collapse
|
3
|
Yao F, Zhang M, Chen L. Adipose Tissue-Specialized Immunologic Features Might Be the Potential Therapeutic Target of Prospective Medicines for Obesity. J Diabetes Res 2017; 2017:4504612. [PMID: 28466023 PMCID: PMC5390594 DOI: 10.1155/2017/4504612] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/03/2017] [Accepted: 03/13/2017] [Indexed: 12/19/2022] Open
Abstract
Excessive lipid accumulation in adipose tissue is either the source of obesity or the cause and result of chronic local inflammation, and recent studies indicate that the accumulation may induce many other specialized immunologic features with macrophages and epidemic diseases. We analyze the effective stages of immune cells in adipose tissue, including macrophage recruitment, macrophage polarization, and macrophage-like phenotype preadipocyte possession to find optimal sites as drug targets. Subsequently, some main signaling pathways are summarized in this review, including the AMP-activated protein kinase (AMPK) pathway, the JNK signaling pathway, and a novel one, the Notch signaling pathway. We illustrate all these points in order to determine the general pathogenesis of chronic low-grade local inflammation in adipose tissue and the related signaling pathways. In addition, signal-associated prospective compounds, such as berberine, are summarized and discussed with potential targets in pathogenesis. This might provide some possible thoughts and novel therapies for studying chronic inflammatory diseases, such as insulin resistance and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Fan Yao
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Ming Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Li Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- School of Nursing, Jilin University, Changchun 130021, China
- *Li Chen:
| |
Collapse
|
4
|
Zhou JJ, Gao Y, Kosten TA, Zhao Z, Li DP. Acute stress diminishes M-current contributing to elevated activity of hypothalamic-pituitary-adrenal axis. Neuropharmacology 2016; 114:67-76. [PMID: 27908768 DOI: 10.1016/j.neuropharm.2016.11.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/17/2016] [Accepted: 11/26/2016] [Indexed: 11/16/2022]
Abstract
Acute stress stimulates corticotrophin-releasing hormone (CRH)-expressing neurons in the hypothalamic paraventricular nucleus (PVN), which is an essential component of hypothalamic-pituitary-adrenal (HPA) axis. However, the cellular and molecular mechanisms remain unclear. The M-channel is a voltage-dependent K+ channel involved in stabilizing the neuronal membrane potential and regulating neuronal excitability. In this study, we tested our hypothesis that acute stress suppresses expression of Kv7 channels to stimulate PVN-CRH neurons and the HPA axis. Rat PVN-CRH neurons were identified by expressing enhanced green fluorescent protein driven by Crh promoter. Acute restraint stress attenuated the excitatory effect of Kv7 blocker XE-991 on the firing activity of PVN-CRH neurons and blunted the increase in plasma corticosterone (CORT) levels induced by microinjection of XE-991 into the PVN. Furthermore, acute stress significantly decreased the M-currents in PVN-CRH neurons and reduced PVN expression of Kv7.3 subunit in the membrane. In addition, acute stress significantly increased phosphorylated AMP-activated protein kinase (AMPK) levels in the PVN tissue. Intracerebroventricular injection of the AMPK inhibitor dorsomorphin restored acute stress-induced elevation of CORT levels and reduction of membrane Kv7.3 protein level in the PVN. Dorsomorphin treatment increased the M-currents and reduced the firing activity of PVN-CRH neurons in acutely stressed rats. Collectively, these data suggest that acute stress diminishes Kv7 channels to stimulate PVN-CRH neurons and the HPA axis potentially via increased AMPK activity.
Collapse
Affiliation(s)
- Jing-Jing Zhou
- Department of Critical Care, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yonggang Gao
- Department of Preventive Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China
| | - Therese A Kosten
- Department of Psychology, University of Houston, Houston, TX, USA
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China.
| | - De-Pei Li
- Department of Critical Care, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Bao L, Hu L, Zhang Y, Wang YI. Hypolipidemic effects of flavonoids extracted from Lomatogonium rotatum. Exp Ther Med 2016; 11:1417-1424. [PMID: 27073459 DOI: 10.3892/etm.2016.3038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 09/15/2015] [Indexed: 12/16/2022] Open
Abstract
Contained in the Mongolian volumes of Chinese Materia Medica, Lomatogonium rotatum Fries ex Nym. may reduce blood lipid levels and prevent obesity; however, its exact mechanism of action remains unclear. The present study investigated the hypolipidemic and obesity-inhibiting effects of four similarly structured flavonoids extracted from L. rotatum. According to a well-established method, flavonoids such as decussatin were extracted from the whole herb of L. rotatum, and male Wistar rats were subsequently fed a high-fructose diet supplemented with flavonoids (20 mg/kg) for 12 weeks. The levels of total cholesterol, triglyceride (TG), low-density lipoprotein-cholesterol and high-density lipoprotein-cholesterol (HDL-C) were detected. In addition, hepatic and epididymal adipose tissues were weighed, and levels of blood glucose, alanine aminotransferase, aspartate aminotransferase, non-esterified fatty acid, insulin and leptin were determined. The mRNA expression levels of fatty acid synthase (FAS) were analyzed using a reverse transcription polymerase chain reaction; whereas FAS, adenosine monophosphate-activated protein kinase (AMPK) and threonine-172 phosphorylated AMPK protein levels were detected by western blotting. The epididymal adipose tissues of rats fed with flavonoids were lighter, as compared with those fed with fructose in the model group. Following a 12-week administration of flavonoids, the serum levels of fasting blood glucose, feeding blood glucose and leptin were decreased. Furthermore, flavonoid treatment reduced TG and cholesterol levels in the blood and increased serum HDL-C levels, as compared with the model group. High-fructose diet administration significantly increased FAS mRNA and protein expression levels, whereas the FAS protein levels of flavonoid-treated rats were markedly reduced. The flavonoid compounds also enhanced threonine-172 phosphorylation of AMPK in the liver lysate, and all flavonoids successfully downregulated leptin levels and the majority decreased the relative weights of epididymal adipose tissue. Therefore, flavonoids may function in a similar way to epigallocatechin gallate, which has previously been shown to inhibit FAS activity by stimulating AMPK in hepatocyte cells via the liver kinase B1 pathway.
Collapse
Affiliation(s)
- Lidao Bao
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010059, P.R. China
| | - Lixia Hu
- Department of Hepatobiliary Surgery, Binzhou People's Hospital, Binzhou, Shandong 256610, P.R. China
| | - Ying Zhang
- Department of Respiratory, Binzhou People's Hospital, Binzhou, Shandong 256610, P.R. China
| | - Y I Wang
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010059, P.R. China
| |
Collapse
|
6
|
de Cavanagh EMV, Inserra F, Ferder L. Angiotensin II blockade: how its molecular targets may signal to mitochondria and slow aging. Coincidences with calorie restriction and mTOR inhibition. Am J Physiol Heart Circ Physiol 2015; 309:H15-44. [PMID: 25934099 DOI: 10.1152/ajpheart.00459.2014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 04/30/2015] [Indexed: 02/07/2023]
Abstract
Caloric restriction (CR), renin angiotensin system blockade (RAS-bl), and rapamycin-mediated mechanistic target of rapamycin (mTOR) inhibition increase survival and retard aging across species. Previously, we have summarized CR and RAS-bl's converging effects, and the mitochondrial function changes associated with their physiological benefits. mTOR inhibition and enhanced sirtuin and KLOTHO signaling contribute to the benefits of CR in aging. mTORC1/mTORC2 complexes contribute to cell growth and metabolic regulation. Prolonged mTORC1 activation may lead to age-related disease progression; thus, rapamycin-mediated mTOR inhibition and CR may extend lifespan and retard aging through mTORC1 interference. Sirtuins by deacetylating histone and transcription-related proteins modulate signaling and survival pathways and mitochondrial functioning. CR regulates several mammalian sirtuins favoring their role in aging regulation. KLOTHO/fibroblast growth factor 23 (FGF23) contribute to control Ca(2+), phosphate, and vitamin D metabolism, and their dysregulation may participate in age-related disease. Here we review how mTOR inhibition extends lifespan, how KLOTHO functions as an aging suppressor, how sirtuins mediate longevity, how vitamin D loss may contribute to age-related disease, and how they relate to mitochondrial function. Also, we discuss how RAS-bl downregulates mTOR and upregulates KLOTHO, sirtuin, and vitamin D receptor expression, suggesting that at least some of RAS-bl benefits in aging are mediated through the modulation of mTOR, KLOTHO, and sirtuin expression and vitamin D signaling, paralleling CR actions in age retardation. Concluding, the available evidence endorses the idea that RAS-bl is among the interventions that may turn out to provide relief to the spreading issue of age-associated chronic disease.
Collapse
Affiliation(s)
- Elena M V de Cavanagh
- Center of Hypertension, Cardiology Department, Austral University Hospital, Derqui, Argentina; School of Biomedical Sciences, Austral University, Buenos Aires, Argentina; and
| | - Felipe Inserra
- Center of Hypertension, Cardiology Department, Austral University Hospital, Derqui, Argentina; School of Biomedical Sciences, Austral University, Buenos Aires, Argentina; and
| | - León Ferder
- Department of Physiology and Pharmacology, Ponce School of Medicine, Ponce, Puerto Rico
| |
Collapse
|
7
|
Chronic activation of central AMPK attenuates glucose-stimulated insulin secretion and exacerbates hepatic insulin resistance in diabetic rats. Brain Res Bull 2014; 108:18-26. [PMID: 25149877 DOI: 10.1016/j.brainresbull.2014.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 01/04/2023]
Abstract
We investigated the effects of chronic AMP-activated kinase (AMPK) activation in the hypothalamus on energy and glucose metabolism in 90% pancreatectomized diabetic rats. Diabetic rats fed a high fat diet were divided into 3 groups and intracerebroventricular (ICV) administered with one of the following: 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR, AMPK activator; 80 μg/day), AICAR+compound C (AMPK inhibitor; 6.2 μg/day), or an artificial cerebrospinal fluid (control) by means of osmotic pumps for 4 weeks. In the hypothalamus, central AICAR activated the phosphorylation of AMPK whereas adding compound C suppressed the activation. AICAR increased body weight and epididymal and retroperitoneal fat mass by increasing energy intake for the first 2 weeks and decreasing energy expenditure, whereas compound C reversed the AICAR effect on energy metabolism. Indirect calorimetry revealed that ICV-AICAR decreased carbohydrate oxidation, but not fat oxidation, compared to the control. During euglycemic hyperinsulinemic clamp, central AICAR increased hepatic glucose output at hyperinsulinemic states. ICV-AICAR increased expressions of hepatic genes involved in fatty acid synthesis and decreased expression of hepatic genes related to thermogenesis whereas compound C nullified the AICAR effect. Insulin secretion in the first and second phases decreased in AICAR-treated rats at hyperglycemic clamp, but compound C nullified the decrease. However, central AICAR did not alter β-cell mass via its proliferation or apoptosis. In conclusion, chronic hypothalamic AMPK activation impaired energy metabolism and glucose homeostasis by increasing food intake, increasing hepatic glucose output and decreasing insulin secretion in diabetic rats. The impairment of energy and glucose homeostasis by AMPK activation was nullified by an AMPK inhibitor.
Collapse
|
8
|
Batandier C, Poulet L, Hininger I, Couturier K, Fontaine E, Roussel AM, Canini F. Acute stress delays brain mitochondrial permeability transition pore opening. J Neurochem 2014; 131:314-22. [PMID: 24989320 DOI: 10.1111/jnc.12811] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/28/2014] [Accepted: 06/28/2014] [Indexed: 12/15/2022]
Abstract
Since emotional stress elicits brain activation, mitochondria should be a key component of stressed brain response. However, few studies have focused on mitochondria functioning in these conditions. In this work, we aimed to determine the effects of an acute restraint stress on rat brain mitochondrial functions, with a focus on permeability transition pore (PTP) functioning. Rats were divided into two groups, submitted or not to an acute 30-min restraint stress (Stress, S-group, vs. Control, C-group). Brain was removed immediately after stress. Mitochondrial respiration and enzymatic activities (complex I, complex II, hexokinase) were measured. Changes in PTP opening were assessed by the Ca(2+) retention capacity. Cell signaling pathways relevant to the coupling between mitochondria and cell function (adenosine monophosphate-activated protein kinase, phosphatidylinositol 3-kinase, glycogen synthase kinase 3 beta, MAPK, and cGMP/NO) were measured. The effect of glucocorticoids was also assessed in vitro. Stress delayed (43%) the opening of PTP and resulted in a mild inhibition of complex I respiratory chain. This inhibition was associated with significant stress-induced changes in adenosine monophosphate-activated protein kinase signaling pathway without changes in brain cGMP level. In contrast, glucocorticoids did not modify PTP opening. These data suggest a rapid adaptive mechanism of brain mitochondria in stressed conditions, with a special focus on PTP regulation. In a rat model of acute restraint stress, we observed substantial changes in brain mitochondria functioning. Stress significantly (i) delays (43%) the opening of permeability transition pore (PTP) by the calcium (Ca(2+) ), its main inductor and (ii) results in an inhibition of complex I in electron transport chain associated with change in AMPK signaling pathway. These data suggest an adaptive mechanism of brain mitochondria in stressed condition, with a special focus on PTP regulation.
Collapse
Affiliation(s)
- Cécile Batandier
- Laboratoire de Bioénergétique Fondamentale et Appliquée, Université Joseph Fourier, Grenoble, France; U1055 - INSERM, Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Hernández JS, Barreto-Torres G, Kuznetsov AV, Khuchua Z, Javadov S. Crosstalk between AMPK activation and angiotensin II-induced hypertrophy in cardiomyocytes: the role of mitochondria. J Cell Mol Med 2014; 18:709-20. [PMID: 24444314 PMCID: PMC3981893 DOI: 10.1111/jcmm.12220] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/28/2013] [Indexed: 12/25/2022] Open
Abstract
AMP-kinase (AMPK) activation reduces cardiac hypertrophy, although underlying molecular mechanisms remain unclear. In this study, we elucidated the anti-hypertrophic action of metformin, specifically, the role of the AMPK/eNOS/p53 pathway. H9c2 rat cardiomyocytes were treated with angiotensin II (AngII) for 24 hrs in the presence or absence of metformin (AMPK agonist), losartan [AngII type 1 receptor (AT1R) blocker], Nω-nitro-L-arginine methyl ester (L-NAME, pan-NOS inhibitor), splitomicin (SIRT1 inhibitor) or pifithrin-α (p53 inhibitor). Results showed that treatment with metformin significantly attenuated AngII-induced cell hypertrophy and death. Metformin attenuated AngII-induced activation (cleavage) of caspase 3, Bcl-2 down-regulation and p53 up-regulation. It also reduced AngII-induced AT1R up-regulation by 30% (P < 0.05) and enhanced AMPK phosphorylation by 99% (P < 0.01) and P-eNOS levels by 3.3-fold (P < 0.01). Likewise, losartan reduced AT1R up-regulation and enhanced AMPK phosphorylation by 54% (P < 0.05). The AMPK inhibitor, compound C, prevented AT1R down-regulation, indicating that metformin mediated its effects via AMPK activation. Beneficial effects of metformin and losartan converged on mitochondria that demonstrated high membrane potential (Δψm) and low permeability transition pore opening. Thus, this study demonstrates that the anti-hypertrophic effects of metformin are associated with AMPK-induced AT1R down-regulation and prevention of mitochondrial dysfunction through the SIRT1/eNOS/p53 pathway.
Collapse
Affiliation(s)
- Jessica Soto Hernández
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR, USA
| | | | | | | | | |
Collapse
|
10
|
Ribeiro-Oliveira A, Marques MB, Vilas-Boas WW, Guimarães J, Coimbra CC, Anjos AP, Fóscolo RB, Santos R, Thomas JD, Igreja SM, Kola B, Grossman AB, Korbonits M. The effects of chronic candesartan treatment on cardiac and hepatic adenosine monophosphate-activated protein kinase in rats submitted to surgical stress. J Renin Angiotensin Aldosterone Syst 2013; 16:481-7. [PMID: 23950549 DOI: 10.1177/1470320313499199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/14/2013] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION adenosine monophosphate-activated protein kinase (AMPK) plays a prominent role as a metabolic stress sensor, and it has recently been suggested that the renin-angiotensin system, in addition to its role in stress regulation, may play a significant role in regulating the AMPK system. This study aimed to evaluate the effects of candesartan, an angiotensin II receptor blocker, on cardiac and hepatic AMPK activity basally as well as after surgical stress under general anesthesia. MATERIALS AND METHODS Male Wistar rats were treated with 5 mg/kg/day candesartan in their drinking water for two weeks. Levels of cardiac and hepatic AMPK activity were determined, using a kinase activity assay, basally and after surgical stress under general anesthesia. RESULTS Chronic administration of candesartan increased hepatic AMPK activity approximately 4 times (p<0.05) while no significant change was demonstrated in cardiac AMPK. Cardiac and hepatic AMPK activities were not significantly increased by surgical stress alone performed under anesthesia. However, chronic treatment with candesartan decreased AMPK activity in both liver and heart after surgical stress under anesthesia (p<0.01 for both comparisons). CONCLUSIONS While chronic candesartan treatment may stimulate AMPK activity in certain organs such as the liver, when combined with surgical stress under anesthesia it inhibits pathways regulating AMPK activity.
Collapse
Affiliation(s)
| | - Mirna B Marques
- Department of Internal Medicine, Federal University of Minas Gerais, Brazil Department of Endocrinology, Queen Mary University of London, UK
| | | | - Jonas Guimarães
- Department of Internal Medicine, Federal University of Minas Gerais, Brazil
| | - Cândido C Coimbra
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Brazil
| | - Allan P Anjos
- Department of Internal Medicine, Federal University of Minas Gerais, Brazil
| | - Rodrigo B Fóscolo
- Department of Internal Medicine, Federal University of Minas Gerais, Brazil
| | - Robson Santos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Brazil
| | - Julia D Thomas
- Department of Endocrinology, Queen Mary University of London, UK
| | - Suzana M Igreja
- Department of Endocrinology, Queen Mary University of London, UK
| | - Blerina Kola
- Department of Endocrinology, Queen Mary University of London, UK
| | - Ashley B Grossman
- Department of Endocrinology, Queen Mary University of London, UK Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, UK
| | - Márta Korbonits
- Department of Endocrinology, Queen Mary University of London, UK
| |
Collapse
|