1
|
Ronquillo J, Nguyen MT, Rothi LY, Bui‐Tu T, Yang J, Halladay LR. Nature and nurture: Comparing mouse behavior in classic versus revised anxiety-like and social behavioral assays in genetically or environmentally defined groups. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12869. [PMID: 37872655 PMCID: PMC10733577 DOI: 10.1111/gbb.12869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
Widely used rodent anxiety assays like the elevated plus maze (EPM) and the open field test (OFT) are conflated with rodents' natural preference for dark over light environments or protected over open spaces. The EPM and OFT have been used for decades but are often criticized by behavioral scientists. Years ago, two revised anxiety assays were designed to improve upon the "classic" tests by excluding the possibility to avoid or escape aversion. The 3-D radial arm maze (3DR) and the 3-D open field test (3Doft) utilize continual motivational conflict to better model anxiety; each consist of an open space connected to ambiguous paths toward uncertain escape. Despite their utility, the revised assays have not caught on. This could be because no study yet has directly compared classic and revised assays in the same animals. To remedy this, we contrasted behavior from a battery of assays (EPM, OFT, 3DR, 3Doft and a sociability test) in mice defined genetically by isogenic strain, or environmentally by postnatal experience. One major motivation for this work is to inform future studies by offering a transparent look at individual outcomes on these assays, as there is no one-size-fits-all test to assess rodent anxiety-like behavior. Findings suggest that classic assays may sufficiently characterize differences across genetically defined groups, but the revised 3DR may be advantageous for investigating more nuanced behavioral differences such as those stemming from environmental factors. Finally, exposure to multiple assays significantly affected sociability, highlighting concerns for designing and interpreting batteries of rodent behavioral tests.
Collapse
Affiliation(s)
- Janet Ronquillo
- Department of PsychologySanta Clara UniversitySanta ClaraCaliforniaUSA
| | - Michael T. Nguyen
- Department of PsychologySanta Clara UniversitySanta ClaraCaliforniaUSA
| | - Linnea Y. Rothi
- Department of PsychologySanta Clara UniversitySanta ClaraCaliforniaUSA
| | - Trung‐Dan Bui‐Tu
- Department of PsychologySanta Clara UniversitySanta ClaraCaliforniaUSA
| | - Jocelyn Yang
- Department of PsychologySanta Clara UniversitySanta ClaraCaliforniaUSA
| | | |
Collapse
|
2
|
Influence of 5-HT 2A receptor function on anxiety-like behavior induced by a combination treatment with doxorubicin and cyclophosphamide in rats. Psychopharmacology (Berl) 2021; 238:3607-3614. [PMID: 34557945 DOI: 10.1007/s00213-021-05979-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Anxiety-like behavior induced by a combination of doxorubicin and cyclophosphamide may be mediated by serotonin (5-HT)2A receptor hyperactivity. The anxiolytic effects of fluoxetine may be inhibited by this combination. The present study examined the mechanisms underlying anxiety-like behavior induced by the combination doxorubicin and cyclophosphamide in rats. Anxiety-like behavior was induced during a light-dark test by the doxorubicin and cyclophosphamide treatment (once a week for 2 weeks). 5-HT2A receptor and 5-HT2A receptor-mediated extracellular signal-related kinase (ERK)1/2 levels were measured using Western blotting. 5-HT reuptake activity in fluoxetine-treated rats was also examined using microdialysis. ( ±)-1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane, a 5-HT2A receptor agonist, induced anxiety-like behavior. The fluoxetine treatment increased extracellular 5-HT concentrations in the hippocampus of vehicle- and doxorubicin and cyclophosphamide-treated rats. 5-HT transporter levels in the hippocampus were not affected by chemotherapy. The doxorubicin and cyclophosphamide treatment did not alter 5-HT2A receptor levels in the frontal cortex. However, chemotherapy increased 5-HT2A receptor-mediated ERK1/2 phosphorylation levels significantly more than the vehicle treatment. The present results suggest that anxiety-like behavior induced by the combination of doxorubicin and cyclophosphamide is mediated by 5-HT2A receptor hyperactivity without an increase in 5-HT2A receptor levels in rats.
Collapse
|
3
|
de Abreu MS, Giacomini ACVV, Demin KA, Galstyan DS, Zabegalov KN, Kolesnikova TO, Amstislavskaya TG, Strekalova T, Petersen EV, Kalueff AV. Unconventional anxiety pharmacology in zebrafish: Drugs beyond traditional anxiogenic and anxiolytic spectra. Pharmacol Biochem Behav 2021; 207:173205. [PMID: 33991579 DOI: 10.1016/j.pbb.2021.173205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022]
Abstract
Anxiety is the most prevalent brain disorder and a common cause of human disability. Animal models are critical for understanding anxiety pathogenesis and its pharmacotherapy. The zebrafish (Danio rerio) is increasingly utilized as a powerful model organism in anxiety research and anxiolytic drug screening. High similarity between human, rodent and zebrafish molecular targets implies shared signaling pathways involved in anxiety pathogenesis. However, mounting evidence shows that zebrafish behavior can be modulated by drugs beyond conventional anxiolytics or anxiogenics. Furthermore, these effects may differ from human and/or rodent responses, as such 'unconventional' drugs may affect zebrafish behavior despite having no such profiles (or exerting opposite effects) in humans or rodents. Here, we discuss the effects of several putative unconventional anxiotropic drugs (aspirin, lysergic acid diethylamide (LSD), nicotine, naloxone and naltrexone) and their potential mechanisms of action in zebrafish. Emphasizing the growing utility of zebrafish models in CNS drug discovery, such unconventional anxiety pharmacology may provide important, evolutionarily relevant insights into complex regulation of anxiety in biological systems. Albeit seemingly complicating direct translation from zebrafish into clinical phenotypes, this knowledge may instead foster the development of novel CNS drugs, eventually facilitating innovative treatment of patients based on novel 'unconventional' targets identified in fish models.
Collapse
Affiliation(s)
- Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA.
| | - Ana C V V Giacomini
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil; Postgraduate Program in Environmental Sciences, University of Passo Fundo, Passo Fundo, Brazil
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - David S Galstyan
- Institute of Experimental Medicine, Almazov Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Granov Scientific Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Konstantin N Zabegalov
- Ural Federal University, Ekaterinburg, Russia; Neurobiology Program, Sirius University, Sochi, Russia
| | - Tatyana O Kolesnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; School of Chemistry, Ural Federal University, Ekaterinburg, Russia; Neurobiology Program, Sirius University, Sochi, Russia
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov 1st Moscow State Medical University, Moscow, Russia; Institute of General Pathology and Pathophysiology, Moscow, Russia; Department of Preventive Medicine, Maastricht Medical Center Annadal, Maastricht, Netherlands
| | - Elena V Petersen
- Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; School of Chemistry, Ural Federal University, Ekaterinburg, Russia; Neurobiology Program, Sirius University, Sochi, Russia.
| |
Collapse
|
4
|
Odland AU, Sandahl R, Andreasen JT. Sequential reversal learning: a new touchscreen schedule for assessing cognitive flexibility in mice. Psychopharmacology (Berl) 2021; 238:383-397. [PMID: 33123820 DOI: 10.1007/s00213-020-05687-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/19/2020] [Indexed: 02/05/2023]
Abstract
RATIONALE The widespread deficits in cognitive flexibility observed across psychiatric disorders call for improved rodent tests to understand the biology of cognitive flexibility and development of better psychotherapeutics. Current reversal learning paradigms have a forced-choice setup that challenges the interpretation of results. OBJECTIVES We aimed at developing a free-choice reversal learning test, where images are presented sequentially and animals are free to move, to enable investigation of the cognitive sub-processes that occur during reversal. METHODS Behavior in female C57BL/6JOlaHsd mice was characterized using chronic fluoxetine as a reference compound. Additional tests were included to support the interpretation of results and exclude confounding pharmacological effects. Behaviors in vehicle-treated mice were furthermore analyzed for relatedness to deepen the understanding of parameters measured. RESULTS We found that exploitation of the previously rewarded image was independent of exploration and acquisition of the new reward contingency and could be differentially modulated by fluoxetine, supporting recent theories that these processes are not mutually exclusive. Specifically, fluoxetine reduced mistake rate, premature and perseverative responses, and promoted conservative strategies during reversal without affecting hit rate. These effects appeared to be most prominent during the late stage of reversal learning, where accuracy was above chance level. Analysis of behaviors in vehicle-treated mice suggested that exploitation was related to an impulsive-like deficit in response inhibition, while exploration was more related to motivation. CONCLUSIONS This new schedule was feasible, easy to implement, and can provide a deeper understanding of the cognitive sub-processes during reversal.
Collapse
Affiliation(s)
- Anna U Odland
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Rune Sandahl
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Jesper T Andreasen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
5
|
Payet JM, Burnie E, Sathananthan NJ, Russo AM, Lawther AJ, Kent S, Lowry CA, Hale MW. Exposure to Acute and Chronic Fluoxetine has Differential Effects on Sociability and Activity of Serotonergic Neurons in the Dorsal Raphe Nucleus of Juvenile Male BALB/c Mice. Neuroscience 2018; 386:1-15. [DOI: 10.1016/j.neuroscience.2018.06.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/05/2018] [Accepted: 06/16/2018] [Indexed: 12/15/2022]
|
6
|
Hase Y, Craggs L, Hase M, Stevenson W, Slade J, Chen A, Liang D, Ennaceur A, Oakley A, Ihara M, Horsburgh K, Kalaria RN. The effects of environmental enrichment on white matter pathology in a mouse model of chronic cerebral hypoperfusion. J Cereb Blood Flow Metab 2018; 38:151-165. [PMID: 28273725 PMCID: PMC5757440 DOI: 10.1177/0271678x17694904] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
White matter (WM) disintegration is common in the older population and is associated with vascular cognitive impairment (VCI). This study explored the effects of environmental enrichment (EE) on pathological sequelae in a mouse model of chronic cerebral hypoperfusion induced by bilateral common carotid artery stenosis (BCAS). Male C57BL/6 J mice underwent BCAS or sham surgery. One-week after surgery, mice were exposed to three different degrees of EE; either standard housing conditions (std), limited 3 h exposure to EE per day (3 h) or full-time exposure to EE (full) for 12 weeks. At 13 weeks after surgery, cognitive testing was performed using a three-dimensional 9-arm radial maze. At 16 weeks after surgery, nesting ability was assessed in each mouse immediately before euthanasia. Brains retrieved after perfusion fixation were examined for WM pathology. BCAS caused WM changes, as demonstrated by corpus callosum atrophy and greater WM disintegrity. BCAS also caused impaired nesting ability and cognitive function. These pathological changes and working memory deficits were attenuated, more so by limited rather than full-time exposure to EE regime. Our results suggest that limited exposure to EE delays the onset of WM degeneration. Therefore, the implementation of even limited EE may be beneficial for patients diagnosed with VCI.
Collapse
Affiliation(s)
- Yoshiki Hase
- 1 Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Lucinda Craggs
- 1 Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Mai Hase
- 1 Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - William Stevenson
- 1 Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Janet Slade
- 1 Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Aiqing Chen
- 1 Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Di Liang
- 1 Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Abdel Ennaceur
- 2 Department of Pharmacy, Sunderland Pharmacy School, University of Sunderland, Sunderland, UK
| | - Arthur Oakley
- 1 Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Masafumi Ihara
- 3 Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Centre, Osaka, Japan
| | - Karen Horsburgh
- 4 Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK
| | - Raj N Kalaria
- 1 Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
7
|
Nashed MG, Ungard RG, Young K, Zacal NJ, Seidlitz EP, Fazzari J, Frey BN, Singh G. Behavioural Effects of Using Sulfasalazine to Inhibit Glutamate Released by Cancer Cells: A Novel target for Cancer-Induced Depression. Sci Rep 2017; 7:41382. [PMID: 28120908 PMCID: PMC5264609 DOI: 10.1038/srep41382] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/19/2016] [Indexed: 12/11/2022] Open
Abstract
Despite the lack of robust evidence of effectiveness, current treatment options for cancer-induced depression (CID) are limited to those developed for non-cancer related depression. Here, anhedonia-like and coping behaviours were assessed in female BALB/c mice inoculated with 4T1 mammary carcinoma cells. The behavioural effects of orally administered sulfasalazine (SSZ), a system xc− inhibitor, were compared with fluoxetine (FLX). FLX and SSZ prevented the development of anhedonia-like behaviour on the sucrose preference test (SPT) and passive coping behaviour on the forced swim test (FST). The SSZ metabolites 5-aminosalicylic acid (5-ASA) and sulfapyridine (SP) exerted an effect on the SPT but not on the FST. Although 5-ASA is a known anti-inflammatory agent, neither treatment with SSZ nor 5-ASA/SP prevented tumour-induced increases in serum levels of interleukin-1β (IL-1β) and IL-6, which are indicated in depressive disorders. Thus, the observed antidepressant-like effect of SSZ may primarily be attributable to the intact form of the drug, which inhibits system xc−. This study represents the first attempt at targeting cancer cells as a therapeutic strategy for CID, rather than targeting downstream effects of tumour burden on the central nervous system. In doing so, we have also begun to characterize the molecular pathways of CID.
Collapse
Affiliation(s)
- Mina G Nashed
- Department of Pathology &Molecular Medicine, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada
| | - Robert G Ungard
- Department of Pathology &Molecular Medicine, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada
| | - Kimberly Young
- Department of Pathology &Molecular Medicine, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada
| | - Natalie J Zacal
- Department of Pathology &Molecular Medicine, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada
| | - Eric P Seidlitz
- Department of Pathology &Molecular Medicine, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada
| | - Jennifer Fazzari
- Department of Pathology &Molecular Medicine, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada
| | - Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, L8N 3K7, Canada.,Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, ON, L8P 3K7, Canada
| | - Gurmit Singh
- Department of Pathology &Molecular Medicine, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
8
|
Abuhamdah R, Hussain M, Chazot P, Ennaceur A. Pre-training in a radial arm maze abolished anxiety and impaired habituation in C57BL6/J mice treated with dizocilpine. Physiol Behav 2016; 164:353-60. [DOI: 10.1016/j.physbeh.2016.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/11/2016] [Accepted: 06/14/2016] [Indexed: 01/28/2023]
|
9
|
Ennaceur A, Chazot PL. Preclinical animal anxiety research - flaws and prejudices. Pharmacol Res Perspect 2016; 4:e00223. [PMID: 27069634 PMCID: PMC4804324 DOI: 10.1002/prp2.223] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/16/2015] [Accepted: 01/20/2016] [Indexed: 12/22/2022] Open
Abstract
The current tests of anxiety in mice and rats used in preclinical research include the elevated plus-maze (EPM) or zero-maze (EZM), the light/dark box (LDB), and the open-field (OF). They are currently very popular, and despite their poor achievements, they continue to exert considerable constraints on the development of novel approaches. Hence, a novel anxiety test needs to be compared with these traditional tests, and assessed against various factors that were identified as a source of their inconsistent and contradictory results. These constraints are very costly, and they are in most cases useless as they originate from flawed methodologies. In the present report, we argue that the EPM or EZM, LDB, and OF do not provide unequivocal measures of anxiety; that there is no evidence of motivation conflict involved in these tests. They can be considered at best, tests of natural preference for unlit and/or enclosed spaces. We also argued that pharmacological validation of a behavioral test is an inappropriate approach; it stems from the confusion of animal models of human behavior with animal models of pathophysiology. A behavioral test is developed to detect not to produce symptoms, and a drug is used to validate an identified physiological target. In order to overcome the major methodological flaws in animal anxiety studies, we proposed an open space anxiety test, a 3D maze, which is described here with highlights of its various advantages over to the traditional tests.
Collapse
Affiliation(s)
| | - Paul L. Chazot
- School of Biological and Biomedical SciencesDurham UniversityDurhamUK
| |
Collapse
|