1
|
Loccisano AE, Freeman E, Doi A, Frericks M, Fegert I, Fabian E, Riffle B. A new approach methodology using kinetically-derived maximum dose levels in risk assessment - A case study with afidopyropen. Regul Toxicol Pharmacol 2023:105429. [PMID: 37277056 DOI: 10.1016/j.yrtph.2023.105429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
We present a case study for afidopyropen (AF; insecticide) to characterize chronic dietary human health risk using a Risk 21-based approach. Our objective is to use a well-tested pesticidal active ingredient (AF) to show how a new approach methodology (NAM), using the kinetically-derived maximum dose (KMD) and with far less animal testing, can reliably identify a health-protective point of departure (PoD) for chronic dietary human health risk assessments (HHRA). Chronic dietary HHRA involves evaluation of both hazard and exposure information to characterize risk. Although both are important, emphasis has been placed on a checklist of required toxicological studies for hazard characterization, with human exposure information only considered after evaluation of hazard data. Most required studies are not used to define the human endpoint for HHRA. The information presented demonstrates a NAM that uses the KMD determined by saturation of a metabolic pathway, which can be used as an alternative POD. In these cases, the full toxicological database may not need to be generated. Demonstration that the compound is not genotoxic and that the KMD is protective of adverse effects in 90-day oral rat and reproductive/developmental studies is sufficient to support the use of the KMD as an alternative POD.
Collapse
Affiliation(s)
| | | | - Adriana Doi
- BASF Corporation Research Triangle Park, NC, 27709, USA
| | - Markus Frericks
- BASF SE Regulatory Toxicology Crop Protection, Limburgerhof, Germany
| | - Ivana Fegert
- BASF SE Regulatory Toxicology Crop Protection, Limburgerhof, Germany
| | - Eric Fabian
- BASF SE Experimental Toxicology and Ecology, Ludwigshafen, Germany
| | - Brandy Riffle
- BASF Corporation Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
2
|
Zhang X, Felter SP, Api AM, Joshi K, Selechnik D. A Cautionary tale for using read-across for cancer hazard classification: Case study of isoeugenol and methyl eugenol. Regul Toxicol Pharmacol 2022; 136:105280. [DOI: 10.1016/j.yrtph.2022.105280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/16/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
|
3
|
Hilton GM, Adcock C, Akerman G, Baldassari J, Battalora M, Casey W, Clippinger AJ, Cope R, Goetz A, Hayes AW, Papineni S, Peffer RC, Ramsingh D, Williamson Riffle B, Sanches da Rocha M, Ryan N, Scollon E, Visconti N, Wolf DC, Yan Z, Lowit A. Rethinking chronic toxicity and carcinogenicity assessment for agrochemicals project (ReCAAP): A reporting framework to support a weight of evidence safety assessment without long-term rodent bioassays. Regul Toxicol Pharmacol 2022; 131:105160. [PMID: 35311659 DOI: 10.1016/j.yrtph.2022.105160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022]
Abstract
Rodent cancer bioassays have been long-required studies for regulatory assessment of human cancer hazard and risk. These studies use hundreds of animals, are resource intensive, and certain aspects of these studies have limited human relevance. The past 10 years have seen an exponential growth of new technologies with the potential to effectively evaluate human cancer hazard and risk while reducing, refining, or replacing animal use. To streamline and facilitate uptake of new technologies, a workgroup comprised of scientists from government, academia, non-governmental organizations, and industry stakeholders developed a framework for waiver rationales of rodent cancer bioassays for consideration in agrochemical safety assessment. The workgroup used an iterative approach, incorporating regulatory agency feedback, and identifying critical information to be considered in a risk assessment-based weight of evidence determination of the need for rodent cancer bioassays. The reporting framework described herein was developed to support a chronic toxicity and carcinogenicity study waiver rationale, which includes information on use pattern(s), exposure scenario(s), pesticidal mode-of-action, physicochemical properties, metabolism, toxicokinetics, toxicological data including mechanistic data, and chemical read-across from similar registered pesticides. The framework could also be applied to endpoints other than chronic toxicity and carcinogenicity, and for chemicals other than agrochemicals.
Collapse
Affiliation(s)
- Gina M Hilton
- PETA Science Consortium International e.V., Stuttgart, Germany.
| | - Catherine Adcock
- Health Canada, Pest Management Regulatory Agency, Ottawa, Ontario, Canada
| | - Gregory Akerman
- United States Environmental Protection Agency, Office of Pesticide Programs, Washington DC, USA
| | | | | | - Warren Casey
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Rhian Cope
- Australian Pesticides and Veterinary Medicines Authority, Armidale, New South Wales, Australia
| | - Amber Goetz
- Syngenta Crop Protection, LLC, Greensboro, NC, USA
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA
| | | | | | - Deborah Ramsingh
- Health Canada, Pest Management Regulatory Agency, Ottawa, Ontario, Canada
| | | | | | - Natalia Ryan
- Syngenta Crop Protection, LLC, Greensboro, NC, USA
| | | | | | | | | | - Anna Lowit
- United States Environmental Protection Agency, Office of Pesticide Programs, Washington DC, USA
| |
Collapse
|
4
|
Rethinking agrochemical safety assessment: A perspective. Regul Toxicol Pharmacol 2021; 127:105068. [PMID: 34678328 DOI: 10.1016/j.yrtph.2021.105068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/09/2021] [Accepted: 10/18/2021] [Indexed: 11/20/2022]
Abstract
Agrochemical safety assessment has traditionally relied on the use of animals for toxicity testing, based on scientific understanding and test guidelines developed in the 1980s. However, since then, there have been significant advances in the toxicological sciences that have improved our understanding of mechanisms underpinning adverse human health effects. The time is ripe to 'rethink' approaches used for human safety assessments of agrochemicals to ensure they reflect current scientific understanding and increasingly embrace new opportunities to improve human relevance and predictivity, and to reduce the reliance on animals. Although the ultimate aim is to enable a paradigm shift and an overhaul of global regulatory data requirements, there is much that can be done now to ensure new opportunities and approaches are adopted and implemented within the current regulatory frameworks. This commentary reviews current initiatives and emerging opportunities to embrace new approaches to improve agrochemical safety assessment for humans, and considers various endpoints and initiatives (including acute toxicity, repeat dose toxicity studies, carcinogenicity, developmental and reproductive toxicity, exposure-driven approaches, inhalation toxicity, and data modelling). Realistic aspirations to improve safety assessment, incorporate new technologies and reduce reliance on animal testing without compromising protection goals are discussed.
Collapse
|
5
|
The 2-year rodent bioassay in drug and chemical carcinogenicity testing: Performance, utility, and configuration for cancer hazard identification. J Pharmacol Toxicol Methods 2021; 110:107070. [PMID: 33905862 DOI: 10.1016/j.vascn.2021.107070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
For several intended uses of chemicals, the 2-year rodent bioassay (RCB) has been the benchmark method to screen the carcinogenicity to humans of substances, according to the hazard identification sphere. Despite the ongoing controversy around this traditional testing, the RCB is in force and being used by stakeholders. After assembling the RCB's ability to forecast the carcinogenicity to humans of substances, the current review aimed to provide a discussion on the RCB's (1) sensitivity and specificity; (2) utility; (3) configuration, and (4) provisional role in the regulatory policy. In general, RCBs conducted at maximum tolerated doses (MTDs) exhibited a functional ability to (1) not missing the great majority of human carcinogens, and to (2) not responding to the large majority of human non-carcinogens. There is citable evidence supporting the use of MTDs to render RCBs as sensitive as possible, particularly provided the ethically-justified small samples used in RCBs. The literature shows that rodent-specific mechanisms of chemical carcinogenesis contribute significant unspecificity to RCBs. Nonetheless, the paradox between a functional sensitivity and a significant unspecificity can be predictively resolved through the application of Bayesian forecasting. In terms of performance to forecast the carcinogenicity to humans of either genotoxic or non-genotoxic substances, 2-species-RCBs added no value over the rat-RCB. Nevertheless, there is preliminary evidence cautioning that 15% of the rodent carcinogens probably carcinogenic to humans could be missed if mouse-RCBs are indiscriminately discontinued. More than thirteen RCB-related issues relevant to regulatory pharmacology and toxicology were discussed and summarized in this review.
Collapse
|
6
|
Ding F, Peng W, Peng YK, Liu BQ. Elucidating the potential neurotoxicity of chiral phenthoate: Molecular insight from experimental and computational studies. CHEMOSPHERE 2020; 255:127007. [PMID: 32416396 DOI: 10.1016/j.chemosphere.2020.127007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Chiral organophosphorus pollutants are existed ubiquitously in the ecological environment, but the enantioselective toxicities of these nerve agents to humans and their molecular bases have not been fully elucidated. Using experimental and computational approaches, this story was to explore the neurotoxic response process of the target acetylcholinesterase (AChE) to chiral phenthoate and further decipher the microscopic mechanism of such toxicological effect at the enantiomeric level. The results showed that the toxic reaction of AChE with chiral phenthoate exhibited significant enantioselectivity, and (R)-phenthoate (K=1.486 × 105 M-1) has a bioaffinity for the nerve enzyme nearly three times that of (S)-phenthoate (K=4.503 × 104 M-1). Dynamic research outcomes interpreted the wet experiments, and the inherent conformational flexibility of the target enzyme has a great influence on the enantioselective neurotoxicological action processes, especially reflected in the conformational changes of the three key loop regions (i.e. residues His-447, Gly-448, and Tyr-449; residues Gly-122, Phe-123, and Tyr-124; and residues Thr-75, Leu-76, and Tyr-77) around the reaction patch. This was supported by the quantitative results of conformational studies derived from circular dichroism spectroscopy (α-helix: 34.7%→30.2%/31.6%; β-sheet: 23.6%→19.5%/20.7%; turn: 19.2%→22.4%/21.9%; and random coil: 22.5%→27.9%/25.8%). Meanwhile, via analyzing the modes of toxic action and free energies, we can find that (R)-phenthoate has a strong inhibitory effect on the enzymatic activity of AChE, as compared with (S)-phenthoate, and electrostatic energy (-23.79/-17.77 kJ mol-1) played a critical role in toxicological reactions. These points were the underlying causes of chiral phenthoate displaying different degrees of enantioselective neurotoxicity.
Collapse
Affiliation(s)
- Fei Ding
- Department of Environmental Science and Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, No. 126 Yanta Road, Yanta District, Xi'an, 710054, China
| | - Wei Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Yu-Kui Peng
- Center for Food Quality Supervision, Inspection & Testing, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, 712100, China
| | - Bing-Qi Liu
- Department of Agricultural Chemistry, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
7
|
Suarez-Torres JD, Jimenez-Orozco FA, Ciangherotti CE. The 2-year rodent bioassay in drug and chemical carcinogenesis testing: Sensitivity, according to the framework of carcinogenic action. Toxicol Mech Methods 2020; 30:462-475. [PMID: 32338171 DOI: 10.1080/15376516.2020.1760986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The long-term rodent bioassay (RCB) has been the gold-standard for the pre-marketing prediction of chemical and drug carcinogenicity to humans. Nonetheless, the validity of this toxicity test has remained elusive for several decades. In the quest to uncover the performance of the RCB, its sensitivity (SEN) was charted as the first step. This appraisal was based on (a) chemicals with sufficient epidemiological evidence of carcinogenicity, and (b) other substances with limited epidemiological evidence, or remarkable classifications of carcinogenicity based on mechanistic or pharmacological data. In the present study, chemicals evaluated for their carcinogenicity to humans in IARC Monographs volumes 1-123, U.S. EPA IRIS Assessments, and U.S. NTP RoC were considered. This investigation gathered additional evidence supporting that, in hazard identification, the RCB is unwarranted for mutagenic or direct-acting genotoxicants. However, for purposes of risk assessment or management, the RCB might be justified whenever there is a lack of reliable and/or comprehensive epidemiological data. The RCB exhibited a significantly different SEN for threshold-based human carcinogens compared to non-threshold-based ones. With threshold-based chemicals, to increase the SEN of the testing from 80% (rat-RCB) to 90%, the 2-species RCB might be warranted. Nevertheless, the resolve would depend on the viewpoint, and on the future analysis of the overall performance of the RCB. In terms of SEN, and cancer hazard identification, the comparison between the RCB and alternative methods (e.g. rasH2 mouse, Tg.AC mouse) is now enabled.
Collapse
Affiliation(s)
- Jose D Suarez-Torres
- Department of Pharmacy, Universidad Nacional de Colombia, Bogotá, Colombia.,Department of Toxicology, Universidad Nacional de Colombia, Bogotá, Colombia.,Institute of Pharmaceutical Research, School of Pharmacy, Universidad Central de Venezuela, Caracas, Venezuela
| | - Fausto A Jimenez-Orozco
- Department of Pharmacology, Faculty of Medicine, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Carlos E Ciangherotti
- Institute of Pharmaceutical Research, School of Pharmacy, Universidad Central de Venezuela, Caracas, Venezuela.,Laboratory of Neuropeptides, School of Pharmacy, Universidad Central de Venezuela, Caracas, Venezuela
| |
Collapse
|
8
|
Felter SP, Llewelyn C, Navarro L, Zhang X. How the 62-year old Delaney Clause continues to thwart science: Case study of the flavor substance β-myrcene. Regul Toxicol Pharmacol 2020; 115:104708. [PMID: 32522581 DOI: 10.1016/j.yrtph.2020.104708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 10/24/2022]
Abstract
The Delaney Clause is a provision of the 1958 Food Additive Amendment to the Food, Drug and Cosmetic Act of 1938 which stipulates that if a substance is found by the Food and Drug Administration to be carcinogenic in any species of animal or in humans, then it cannot be used as a food additive. This paper presents a case study of β-myrcene, one of seven synthetic substances that was challenged under the Delaney Clause, ultimately resulting in revocation of its regulatory approval as a food additive despite a lack of safety concern. While it is listed as a synthetic flavor in 21 CFR 172.515, β-myrcene is also a substance naturally occurring in a number of dietary plants. The exposure level to naturally-occurring β-myrcene is orders of magnitude higher (estimated to be 16,500 times greater) than the exposure via β-myrcene added to food as a flavoring substance. The National Toxicology Program conducted genotoxicity testing (negative), a 13-week range-finding study, and a two-year cancer bioassay in B6C3F1 mice and F344/N rats. An increase in liver tumors was seen in male mice and kidney tumors in male rats, ultimately resulting in β-myrcene being classified by IARC as a Class 2B carcinogen and being listed on California Proposition 65; in contrast, β-myrcene is not classified as a carcinogen by any other regulatory authority. The doses administered in the NTP bioassay were five-six orders of magnitude higher than human exposures, and the FDA concluded after a thorough evaluation that there was no safety concern associated with the use of β-myrcene as a flavor substance at the current use level. The Delaney Clause, however, does not consider the exposure potential or the human health relevance of effects observed in animals. The lack of options available to the US FDA led to the 2018 decision to remove β-myrcene from the list of approved food additives. This revocation has contributed to the ongoing erosion of trust in regulatory agencies (and industry), which has both economic implications for food manufacturers and consumers alike, and implications for consumer perception of safety of the US food supply. It is time for us to reconsider the rationale behind any legislation that relies on classification alone, and whether there is, in fact, a reason to still classify nongenotoxic carcinogens at all.
Collapse
Affiliation(s)
- Susan P Felter
- Procter & Gamble, Central Product Safety, Mason, OH, USA.
| | - Craig Llewelyn
- Toxicology Regulatory Services, Charlottesville, VA, USA
| | | | - Xiaoling Zhang
- Procter & Gamble, Central Product Safety, Mason, OH, USA
| |
Collapse
|
9
|
Suarez‐Torres JD, Jimenez‐Orozco FA, Ciangherotti CE. Drug excipients, food additives, and cosmetic ingredients probably not carcinogenic to humans reveal a functional specificity for the 2‐year rodent bioassay. J Appl Toxicol 2020; 40:1113-1130. [DOI: 10.1002/jat.3971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/26/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Jose D. Suarez‐Torres
- Department of Toxicology, Department of PharmacyUniversidad Nacional de Colombia Bogotá Colombia
- Institute of Pharmaceutical Research, School of PharmacyUniversidad Central de Venezuela Caracas Venezuela
| | - Fausto A. Jimenez‐Orozco
- Department of Pharmacology, Faculty of MedicineUniversidad Nacional Autonoma de Mexico Ciudad de Mexico Mexico
| | - Carlos E. Ciangherotti
- Laboratory of Neuropeptides, School of PharmacyUniversidad Central de Venezuela Caracas Venezuela
| |
Collapse
|
10
|
Felter SP, Boobis AR, Botham PA, Brousse A, Greim H, Hollnagel HM, Sauer UG. Hazard identification, classification, and risk assessment of carcinogens: too much or too little? - Report of an ECETOC workshop. Crit Rev Toxicol 2020; 50:72-95. [PMID: 32133908 DOI: 10.1080/10408444.2020.1727843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) organized a workshop "Hazard Identification, Classification and Risk Assessment of Carcinogens: Too Much or Too Little?" to explore the scientific limitations of the current binary carcinogenicity classification scheme that classifies substances as either carcinogenic or not. Classification is often based upon the rodent 2-year bioassay, which has scientific limitations and is not necessary to predict whether substances are likely human carcinogens. By contrast, tiered testing strategies founded on new approach methodologies (NAMs) followed by subchronic toxicity testing, as necessary, are useful to determine if a substance is likely carcinogenic, by which mode-of-action effects would occur and, for non-genotoxic carcinogens, the dose levels below which the key events leading to carcinogenicity are not affected. Importantly, the objective is not for NAMs to mimic high-dose effects recorded in vivo, as these are not relevant to human risk assessment. Carcinogenicity testing at the "maximum tolerated dose" does not reflect human exposure conditions, but causes major disturbances of homeostasis, which are very unlikely to occur at relevant human exposure levels. The evaluation of findings should consider biological relevance and not just statistical significance. Using this approach, safe exposures to non-genotoxic substances can be established.
Collapse
Affiliation(s)
| | | | | | - Alice Brousse
- European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC), Brussels, Belgium
| | | | | | - Ursula G Sauer
- Scientific Consultancy - Animal Welfare, Neubiberg, Germany
| |
Collapse
|
11
|
FEMA GRAS assessment of natural flavor complexes: Citrus-derived flavoring ingredients. Food Chem Toxicol 2018; 124:192-218. [PMID: 30481573 DOI: 10.1016/j.fct.2018.11.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 01/06/2023]
Abstract
In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavoring ingredients. This publication is the first in a series and summarizes the evaluation of 54 Citrus-derived NFCs using the procedure outlined in Smith et al. (2005) and updated in Cohen et al. (2018) to evaluate the safety of naturally-occurring mixtures for their intended use as flavoring ingredients. The procedure relies on a complete chemical characterization of each NFC intended for commerce and organization of each NFC's chemical constituents into well-defined congeneric groups. The safety of the NFC is evaluated using the well-established and conservative threshold of toxicological concern (TTC) concept in addition to data on absorption, metabolism and toxicology of members of the congeneric groups and the NFC under evaluation. As a result of the application of the procedure, 54 natural flavor complexes derived from botanicals of the Citrus genus were affirmed as generally recognized as safe (GRAS) under their conditions of intended use as flavoring ingredients based on an evaluation of each NFC and the constituents and congeneric groups therein.
Collapse
|
12
|
Bastaki M, Aubanel M, Bauter M, Cachet T, Demyttenaere J, Diop MM, Harman CL, Hayashi SM, Krammer G, Li X, Llewellyn C, Mendes O, Renskers KJ, Schnabel J, Smith BP, Taylor SV. Absence of renal adverse effects from β-myrcene dietary administration in OECD guideline-compliant subchronic toxicity study. Food Chem Toxicol 2018; 120:222-229. [DOI: 10.1016/j.fct.2018.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/22/2018] [Accepted: 07/02/2018] [Indexed: 01/22/2023]
|
13
|
Goodman JI. Goodbye to the bioassay. Toxicol Res (Camb) 2018; 7:558-564. [PMID: 30090606 PMCID: PMC6062362 DOI: 10.1039/c8tx00004b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/31/2018] [Indexed: 12/30/2022] Open
Abstract
It is time to say goodbye to the standard two-year rodent bioassay. While a few, primarily genotoxic, compounds which are clearly associated with human cancer test positive in the bioassay, there is no science-based, sound foundation for presuming it provides either a valid broad (across different chemicals) capability for discerning potential human carcinogens or a valid starting point for making human risk assessment decisions. The two basic assumptions underlying the bioassay are: (1) rodent carcinogens are human carcinogens; and (2) results obtained at high doses are indicative of results that will occur at lower, environmentally relevant, doses. Both of these assumptions are not correct. Furthermore, a reevaluation of National Toxicology Program bioassay data has revealed that if the dose group size were increased from 50 to 200 rodents per group the number of bioassays deemed to be positive would increase from approximately 50% to very close to 100%. Thus, under the extreme conditions of the bioassay (e.g., high doses, lifetime exposure and, at times, a non-physiological route of administration) virtually all chemicals tested could be made into rodent carcinogens. In recent years there have been a number of proposals to move away from the standard bioassay. In particular, a recently formulated decision tree (Cohen, 2017), which places an emphasis on dose-response relationships and invites the use of MOA information, provides a sound basis for moving on from the bioassay and towards a rational approach to both identify chemicals which appear to have the potential to cause cancer in humans and take dose-response relationships into consideration in order to place the extent, if any, of the risk they might pose into proper perspective.
Collapse
Affiliation(s)
- Jay I Goodman
- Department of Pharmacology and Toxicology , Michigan State University , East Lansing , MI 48824 , USA . ; Tel: +1-517-353-9346
| |
Collapse
|
14
|
Braakhuis HM, Slob W, Olthof ED, Wolterink G, Zwart EP, Gremmer ER, Rorije E, van Benthem J, Woutersen R, van der Laan JW, Luijten M. Is current risk assessment of non-genotoxic carcinogens protective? Crit Rev Toxicol 2018; 48:500-511. [PMID: 29745287 DOI: 10.1080/10408444.2018.1458818] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Non-genotoxic carcinogens (NGTXCs) do not cause direct DNA damage but induce cancer via other mechanisms. In risk assessment of chemicals and pharmaceuticals, carcinogenic risks are determined using carcinogenicity studies in rodents. With the aim to reduce animal testing, REACH legislation states that carcinogenicity studies are only allowed when specific concerns are present; risk assessment of compounds that are potentially carcinogenic by a non-genotoxic mode of action is usually based on subchronic toxicity studies. Health-based guidance values (HBGVs) of NGTXCs may therefore be based on data from carcinogenicity or subchronic toxicity studies depending on the legal framework that applies. HBGVs are usually derived from No-Observed-Adverse-Effect-Levels (NOAELs). Here, we investigate whether current risk assessment of NGTXCs based on NOAELs is protective against cancer. To answer this question, we estimated Benchmark doses (BMDs) for carcinogenicity data of 44 known NGTXCs. These BMDs were compared to the NOAELs derived from the same carcinogenicity studies, as well as to the NOAELs derived from the associated subchronic studies. The results lead to two main conclusions. First, a NOAEL derived from a subchronic study is similar to a NOAEL based on cancer effects from a carcinogenicity study, supporting the current practice in REACH. Second, both the subchronic and cancer NOAELs are, on average, associated with a cancer risk of around 1% in rodents. This implies that for those chemicals that are potentially carcinogenic in humans, current risk assessment of NGTXCs may not be completely protective against cancer. Our results call for a broader discussion within the scientific community, followed by discussions among risk assessors, policy makers, and other stakeholders as to whether or not the potential cancer risk levels that appear to be associated with currently derived HBGVs of NGXTCs are acceptable.
Collapse
Affiliation(s)
- Hedwig M Braakhuis
- a Centre for Health Protection , National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| | - Wout Slob
- b Centre for Nutrition, Prevention and Health services , National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| | - Evelyn D Olthof
- a Centre for Health Protection , National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| | - Gerrit Wolterink
- b Centre for Nutrition, Prevention and Health services , National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| | - Edwin P Zwart
- a Centre for Health Protection , National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| | - Eric R Gremmer
- a Centre for Health Protection , National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| | - Emiel Rorije
- c Centre for Safety of Substances and Products , National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| | - Jan van Benthem
- a Centre for Health Protection , National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| | - Ruud Woutersen
- d Netherlands Organization for Applied Scientific Research (TNO) , Zeist , The Netherlands
| | | | - Mirjam Luijten
- a Centre for Health Protection , National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| |
Collapse
|
15
|
Kratchman J, Wang B, Gray G. Which is most sensitive? Assessing responses of mice and rats in toxicity bioassays. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:173-183. [PMID: 29405849 DOI: 10.1080/15287394.2018.1423799] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Rodent species are commonly used in traditional toxicology testing guidelines to predict human health toxicity outcomes. The use of a consistent species in test guidelines is important for maintaining consistency and comparability between tests and testing guidelines. This recommendation was operationalized for this study as the implicit assumption of uniform species and species-sex sensitivities. This investigation analyzed the uniformity assumption using data from National Toxicology Program Technical Reports (and where applicable Toxicity Reports), which provide data from both short-term and chronic rodent toxicity tests. These data were extracted and modeled using the Environmental Protection Agency's Benchmark Dose Software. Minimum best-fit benchmark doses (BMD) and benchmark dose lower limits (BMDL) were determined and a minimum best-fit BMD10 and BMDL10 estimated for every chemical and study duration. Endpoints of interest included non-neoplastic lesions, final mean body weights, and mean organ weights. The distribution of findings was then assessed to determine the most sensitive species and species-sex combinations associated with the minimum best-fit BMDL10. Data indicated that species and species-sex sensitivity for this group of chemicals is not uniform and that rats are significantly more sensitive than mice for non-cancerous outcomes observed, depending upon study duration. There are also indications that male rats may be more sensitive than other species-sex groups in certain situations.
Collapse
Affiliation(s)
- Jessica Kratchman
- a Department of Environmental and Occupational Health, Milken Institute School of Public Health , George Washington University , Washington , D.C. , USA
| | - Bing Wang
- b Department of Food Science and Technology , University of Nebraska , Lincoln , NE , USA
| | - George Gray
- a Department of Environmental and Occupational Health, Milken Institute School of Public Health , George Washington University , Washington , D.C. , USA
| |
Collapse
|
16
|
Woutersen RA, Soffers AE, Kroese ED, Krul CA, van der Laan JW, van Benthem J, Luijten M. Prediction of carcinogenic potential of chemicals using repeated-dose (13-week) toxicity data. Regul Toxicol Pharmacol 2016; 81:242-249. [DOI: 10.1016/j.yrtph.2016.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/30/2016] [Accepted: 09/05/2016] [Indexed: 12/11/2022]
|
17
|
van der Laan JW, Buitenhuis WHW, Wagenaar L, Soffers AEMF, van Someren EP, Krul CAM, Woutersen RA. Prediction of the Carcinogenic Potential of Human Pharmaceuticals Using Repeated Dose Toxicity Data and Their Pharmacological Properties. Front Med (Lausanne) 2016; 3:45. [PMID: 27790617 PMCID: PMC5063850 DOI: 10.3389/fmed.2016.00045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/20/2016] [Indexed: 01/06/2023] Open
Abstract
In an exercise designed to reduce animal use, we analyzed the results of rat subchronic toxicity studies from 289 pharmaceutical compounds with the aim to predict the tumor outcome of carcinogenicity studies in this species. The results were obtained from the assessment reports available at the Medicines Evaluation Board of the Netherlands for 289 pharmaceutical compounds that had been shown to be non-genotoxic. One hundred forty-three of the 239 compounds not inducing putative preneoplastic lesions in the subchronic study did not induce tumors in the carcinogenicity study [true negatives (TNs)], whereas 96 compounds were categorized as false negatives (FNs) because tumors were observed in the carcinogenicity study. Of the remaining 50 compounds, 31 showed preneoplastic lesions in the subchronic study and tumors in the carcinogenicity study [true positives (TPs)], and 19 only showed preneoplastic lesions in subchronic studies but no tumors in the carcinogenicity study [false positives (FPs)]. In addition, we then re-assessed the prediction of the tumor outcome by integrating the pharmacological properties of these compounds. These pharmacological properties were evaluated with respect to the presence or absence of a direct or indirect proliferative action. We found support for the absence of cellular proliferation for 204 compounds (TN). For 67 compounds, the presence of cellular hyperplasia as evidence for proliferative action could be found (TP). Therefore, this approach resulted in an ability to predict non-carcinogens at a success rate of 92% and the ability to detect carcinogens at 98%. The combined evaluation of pharmacological and histopathological endpoints eventually led to only 18 unknown outcomes (17 categorized as FN and 1 as FP), thereby enhancing both the negative and positive predictivity of an evaluation based upon histopathological evaluation only. The data show the added value of a consideration of the pharmacological properties of compounds in relation to potential class effects, both in the negative and positive direction. A high negative and a high positive predictivity will both result in waiving the need for conducting 2-year rat carcinogenicity studies, if this is accepted by Regulatory Authorities, which will save large numbers of animals and reduce drug development costs and time.
Collapse
Affiliation(s)
- Jan Willem van der Laan
- Medicines Evaluation Board, Utrecht, Netherlands
- Division of Toxicology, Leiden Academic Center for Drug Research, Leiden, Netherlands
| | | | | | - Ans E. M. F. Soffers
- Division of Toxicology, Wageningen University and Research Centre, Wageningen, Netherlands
| | | | | | - Ruud A. Woutersen
- Division of Toxicology, Wageningen University and Research Centre, Wageningen, Netherlands
- TNO Innovation for Life, Zeist, Netherlands
| |
Collapse
|
18
|
Hill T, Nelms MD, Edwards SW, Martin M, Judson R, Corton JC, Wood CE. Editor’s Highlight: Negative Predictors of Carcinogenicity for Environmental Chemicals. Toxicol Sci 2016; 155:157-169. [DOI: 10.1093/toxsci/kfw195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
19
|
Luijten M, Olthof ED, Hakkert BC, Rorije E, van der Laan JW, Woutersen RA, van Benthem J. An integrative test strategy for cancer hazard identification. Crit Rev Toxicol 2016; 46:615-39. [PMID: 27142259 DOI: 10.3109/10408444.2016.1171294] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Assessment of genotoxic and carcinogenic potential is considered one of the basic requirements when evaluating possible human health risks associated with exposure to chemicals. Test strategies currently in place focus primarily on identifying genotoxic potential due to the strong association between the accumulation of genetic damage and cancer. Using genotoxicity assays to predict carcinogenic potential has the significant drawback that risks from non-genotoxic carcinogens remain largely undetected unless carcinogenicity studies are performed. Furthermore, test systems already developed to reduce animal use are not easily accepted and implemented by either industries or regulators. This manuscript reviews the test methods for cancer hazard identification that have been adopted by the regulatory authorities, and discusses the most promising alternative methods that have been developed to date. Based on these findings, a generally applicable tiered test strategy is proposed that can be considered capable of detecting both genotoxic as well as non-genotoxic carcinogens and will improve understanding of the underlying mode of action. Finally, strengths and weaknesses of this new integrative test strategy for cancer hazard identification are presented.
Collapse
Affiliation(s)
- Mirjam Luijten
- a Centre for Health Protection, National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands
| | - Evelyn D Olthof
- a Centre for Health Protection, National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands
| | - Betty C Hakkert
- b Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands
| | - Emiel Rorije
- b Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands
| | | | - Ruud A Woutersen
- d Netherlands Organization for Applied Scientific Research (TNO) , Zeist , the Netherlands
| | - Jan van Benthem
- a Centre for Health Protection, National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands
| |
Collapse
|
20
|
Advancing the 3Rs in regulatory toxicology – Carcinogenicity testing: Scope for harmonisation and advancing the 3Rs in regulated sectors of the European Union. Regul Toxicol Pharmacol 2014; 69:234-42. [DOI: 10.1016/j.yrtph.2014.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/17/2014] [Accepted: 04/18/2014] [Indexed: 12/27/2022]
|
21
|
Approaches and considerations for the assessment of immunotoxicity for environmental chemicals: A workshop summary. Regul Toxicol Pharmacol 2014; 68:96-107. [DOI: 10.1016/j.yrtph.2013.11.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 11/14/2013] [Accepted: 11/17/2013] [Indexed: 12/31/2022]
|
22
|
Osimitz TG, Droege W, Boobis AR, Lake BG. Evaluation of the utility of the lifetime mouse bioassay in the identification of cancer hazards for humans. Food Chem Toxicol 2013; 60:550-62. [DOI: 10.1016/j.fct.2013.08.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/08/2013] [Accepted: 08/09/2013] [Indexed: 10/26/2022]
|
23
|
Pharmaceutical toxicology: Designing studies to reduce animal use, while maximizing human translation. Regul Toxicol Pharmacol 2013; 66:88-103. [DOI: 10.1016/j.yrtph.2013.03.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/28/2013] [Accepted: 03/02/2013] [Indexed: 01/29/2023]
|
24
|
Pellegatti M. Dogs and monkeys in preclinical drug development: the challenge of reducing and replacing. Expert Opin Drug Metab Toxicol 2013; 9:1171-80. [PMID: 23705836 DOI: 10.1517/17425255.2013.804061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Animal experimentation is a very contentious issue affecting reputation of drug industry. There are several reasons to forecast an increase in the number of dogs and monkeys used in safety and pharmacokinetic studies. This increase may trigger a strong reaction of the public opinion. There have been many proposals and initiatives to change the present approach to safety and metabolic studies. Tests based on new technologies, in vitro cell assays, stem cells, imaging, and computational systems, have the potential to anticipate effects in humans. Unfortunately, all these efforts and ideas have not changed standard approaches and regulatory expectations. AREAS COVERED This review looks at opportunities to reduce the number of dogs and monkeys currently used in pharmaceutical research. It also discusses present efforts and approaches, their strengths and potentials and the reasons why they may not fulfill expectations. EXPERT OPINION Unless the pharmaceutical industry gets more involved, an alternative paradigm of preclinical drug development is unlikely to be established in the foreseeable future. One can imagine a scenario where the political pressure against the use of dogs and monkeys in biomedical research becomes irresistible while alternative methods are not yet established. To avoid this situation, the pharmaceutical industry should take the lead and preclinical scientists at all levels need to influence decision makers and help develop new innovative approaches in drug safety evaluation.
Collapse
|
25
|
Scientific Opinion on Flavouring Group Evaluation 20, Revision 4 (FGE.20Rev4): Benzyl alcohols, benzaldehydes, a related acetal, benzoic acids, and related esters from chemical groups 23 and 30. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
26
|
Lack of human tissue-specific correlations for rodent pancreatic and colorectal carcinogens. Regul Toxicol Pharmacol 2012; 64:442-58. [PMID: 23069141 DOI: 10.1016/j.yrtph.2012.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 09/12/2012] [Accepted: 10/01/2012] [Indexed: 12/14/2022]
Abstract
To better understand the relationships between chemical exposures and human cancer causation, incidence data for human cancer types were identified and pancreatic and colorectal cancers were studied in-depth to assess whether data supporting the causation of pancreatic or colorectal tumors by chemicals in rodents is predictive of causation by the same chemicals of the same tumors in humans. A search of the Carcinogenic Potency Database, the National Toxicology Program (NTP) technical report database, and the published literature identified 38 and 39 chemicals reported to cause pancreatic and colorectal tumors, respectively, in mice or rats. For each of these chemicals, searches were conducted of the International Agency for Research on Cancer monographs, the NTP Report on Carcinogens, and the published literature for evidence of induction of the same tumors in humans. Based on this evaluation, no conclusive evidence was identified to suggest that chemicals reported to cause pancreatic or colorectal tumors in rodents also cause these tumors in humans. These findings suggest that pancreatic tumor data from mouse and rat bioassays are of limited utility with regard to predicting similar tumor induction in humans. For colorectal cancer, a lack of correlation was noted for the vast majority of chemicals.
Collapse
|
27
|
Creton S, Saghir SA, Bartels MJ, Billington R, Bus JS, Davies W, Dent MP, Hawksworth GM, Parry S, Travis KZ. Use of toxicokinetics to support chemical evaluation: Informing high dose selection and study interpretation. Regul Toxicol Pharmacol 2012; 62:241-7. [DOI: 10.1016/j.yrtph.2011.12.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 12/06/2011] [Accepted: 12/07/2011] [Indexed: 11/27/2022]
|
28
|
Statement of EFSA on the scientific evaluation of two studies related to the safety of artificial sweeteners. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
29
|
Plunkett LM, Kaplan AM, Becker RA. An enhanced tiered toxicity testing framework with triggers for assessing hazards and risks of commodity chemicals. Regul Toxicol Pharmacol 2010; 58:382-94. [DOI: 10.1016/j.yrtph.2010.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/01/2010] [Accepted: 08/09/2010] [Indexed: 01/12/2023]
|