1
|
Liu X, Liu L, Zhang B, Liu P, Huang RJ, Hildebrandt Ruiz L, Miao R, Chen Q, Wang X. Modeling the Global Impact of Chlorine Chemistry on Secondary Organic Aerosols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39692335 DOI: 10.1021/acs.est.4c05037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Simulation of secondary organic aerosol (SOA) in models has been an uncertain component in determining the impacts of atmospheric aerosols on air quality and climate. Recent studies have shown that reactive chlorine can rapidly oxidize volatile organic compounds (VOCs), trigger SOA formation, and alter other oxidants, thus having a potentially significant effect on SOA, which has not been thoroughly investigated at the global scale. Here, we developed a chlorine-SOA simulation within a global chemical transport model along with updated anthropogenic continental chlorine emissions. Our simulations demonstrate that chlorine chemistry increases the annual mean boundary layer SOA by 5-12% over most continents while decreasing SOA by 5-11% over northern Atlantic and Pacific oceans, which are in the right direction to narrow existing discrepancies between models and observations. Notably, sensitivity simulations in China with observed high chlorine levels capture the temporal variations of both observed fine Cl- and organic aerosol, showing an increase in SOA by more than 100%. Our study also reveals that polluted regions, which have ample emissions of both chlorine species and VOCs, exhibit potential chlorinated SOA, which are commonly toxic, contributing up to 15% to total SOA.
Collapse
Affiliation(s)
- Xi Liu
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Leyang Liu
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Bingqing Zhang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Pengfei Liu
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ru-Jin Huang
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Lea Hildebrandt Ruiz
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ruqian Miao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, BIC-ESAT and IJRC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Qi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, BIC-ESAT and IJRC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xuan Wang
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
- Low-Carbon and Climate Impact Research Centre, City University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
2
|
Sun J, Garg S, Waite TD. Utilizing an Integrated Flow Cathode-Membrane Filtration System for Effective and Continuous Electrochemical Hydrodechlorination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13131-13144. [PMID: 38986049 DOI: 10.1021/acs.est.4c03842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Pd-based electrodes are recognized to facilitate effective electrochemical hydrodechlorination (EHDC) as a result of their superior capacity for atomic hydrogen (H*) generation. However, challenges such as electrode stability, feasibility of treating complex matrices, and high cost associated with electrode synthesis hinder the application of Pd-based electrodes for EHDC. In this work, we investigated the feasibility of degrading 2,4-dichlorophenol (2,4-DCP) by EHDC employing Pd-loaded activated carbon particles, prepared via a simple wet-impregnation method, as a flow cathode (FC) suspension. Compared to other Pd-based EHDC studies, a much lower Pd loading (0.02-0.08 mg cm-2) was used. Because of the excellent mass transfer in the FC system, almost 100% 2,4-DCP was hydrodechlorinated to phenol within 1 h. The FC system also showed excellent performance in treating complex water matrices (including hardness ion-containing wastewater and various other chlorinated organics such as 2,4-dichlorobenzoic acid and trichloroacetic acid) with a relatively low energy consumption (0.26-1.56 kW h m-3 mg-1 of 2,4-DCP compared to 0.32-7.61 kW h m-3 mg-1 of 2,4-DCP reported by other studies). The FC synthesized here was stable over 36 h of continuous operation, indicating its potential suitability for real-world applications. Employing experimental investigations and mathematical modeling, we further show that hydrodechlorination of 2,4-DCP occurs via interaction with H*, with no role of direct electron transfer and/or HO•-mediated processes in the removal of 2,4-DCP.
Collapse
Affiliation(s)
- Jingyi Sun
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney 2052, NSW, Australia
| | - Shikha Garg
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney 2052, NSW, Australia
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney 2052, NSW, Australia
- UNSW Centre for Transformational Environmental Technologies, Yixing 214206, Jiangsu Province, P. R. China
| |
Collapse
|
3
|
Baruah K, Sarma B, Dolui SK. Aluminum Montmorillonite/Polyaniline Hybrid Composite-Based Organogels for the Expurgation of Carcinogenic Chlorophenols and Congo Red Dye from Defiled Water Sources. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:450-461. [PMID: 38100385 DOI: 10.1021/acs.langmuir.3c02687] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Chlorophenol and Congo Red dye being highly toxic are well known for their carcinogenic activity. This work focuses on preparing an organogel for the removal of both chlorophenol and Congo Red. PAni molecules were grafted in situ between the layers of montmorillonite (MMT) to form a PAni/MMT composite, which was further modified to form a gel structure. The composite was thoroughly characterized by high-resolution X-ray diffraction (HR-XRD), Fourier transform infrared (FT-IR) analysis, Brunauer-Emmett-Teller (BET) analysis, and thermogravimetric analysis (TGA). The gel was further analyzed by scanning electron microscopy (SEM) and by studying the rheological properties. The resulting gel exhibited an impressive solvent uptake, with a maximum of 2084% (20 times) for chlorophenol, while the dye adsorption capacity was 349.72 mg/g with 99.44% removal efficiency. The adsorption proceeded with the pseudo-second-order model followed by the Langmuir monolayer adsorption model and Weber's intraparticle diffusion model. The sorbent was found to be selective among cationic dyes while retaining 83% of dye even in the fifth cycle. The hybrid sorbent shows great promise for sustainable purposes, and the results of this study are certainly encouraging.
Collapse
Affiliation(s)
- Kankana Baruah
- Department of Chemical Sciences, Tezpur University, Napaam 784028, Assam, India
| | - Bipul Sarma
- Department of Chemical Sciences, Tezpur University, Napaam 784028, Assam, India
| | - Swapan Kumar Dolui
- Department of Chemical Sciences, Tezpur University, Napaam 784028, Assam, India
| |
Collapse
|
4
|
Prabhu K, Malode SJ, Shetti NP, Pandiaraj S, Alodhayb A, Muthuramamoorthy M. Electro-sensing layer constructed of a WO 3/CuO nanocomposite, for the electrochemical determination of 2-phenylphenol fungicide. ENVIRONMENTAL RESEARCH 2023; 236:116710. [PMID: 37479212 DOI: 10.1016/j.envres.2023.116710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023]
Abstract
The abstract highlights the development of an electroanalytical sensor for the detection of 2-phenylphenol (2-PPL) as a contaminant. The novelty of the experiment lies in the utilization of a 1-D nanostructured WO3/CuO nanocomposite integrated with a carbon paste electrode (CPE). The hydrothermal method was used to synthesize the WO3 NPs, which were then characterized using Scanning electron microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDS) techniques. Tungsten oxides (WO3) have been the subject of extensive study because of their many desirable characteristics, including their ease of preparation, tunable stoichiometry, crystal structure, particle morphology, 2.6 eV bandgap, excellent photocatalytic oxidation capacity, non-toxic nature, and widespread availability. The narrow band gap in CuO makes it an ideal sensing material. Copper oxide has applications in many different industries because it is a semiconductor metal with a narrow band gap in the spectrum of 1.2-1.9 eV and unique optical, electrical, and magnetic properties. Techniques like cyclic voltammetry (CV), and square wave voltammetry (SWV) were used. Real sample analysis was carried out in real-world samples like different types of soil, vegetables, and water. The electroanalytical sensor showed outstanding catalytic behavior by enhancing the peak current of the 2-phenylphenol with the potential shift to the less positive side compared to the unmodified carbon paste electrode in the presence of pH 7.0 phosphate buffer solution (PB). Throughout the experimental study, double distilled was used. Various electro-kinetic parameters like pH, accumulation time study, scan rate, concentration variation, standard heterogeneous rate constant, and participation of electrons, accumulation time, and transfer coefficient have been studied at WO3/CuO/CPE. The limit of detection was quantified together with the limit of quantification. Possible electrochemical oxidation mechanism of the toxic molecule was depicted. Overall, this research contributes to the field of electroanalytical sensing and offers potential applications in environmental monitoring.
Collapse
Affiliation(s)
- Keerthi Prabhu
- Department of Chemistry, K.L.E. Institute of Technology, Hubballi, 580027, Karnataka, India
| | - Shweta J Malode
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580031, Karnataka, India.
| | - Nagaraj P Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580031, Karnataka, India.
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Alodhayb
- Research Chair for Tribology, Surface, And Interface Sciences, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Muthumareeswaran Muthuramamoorthy
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
5
|
Araújo FD, Silva GLO, Silvério FO, Pinho GP. Development of methods based on low-temperature partitioning (LTP) for monitoring cresols and chlorophenols in sewage sludge, soil, and water in column leaching. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023:1-9. [PMID: 37465866 DOI: 10.1080/03601234.2023.2236915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Cresols and chlorophenols are chemical contaminants that are potentially toxic to humans and can be found in sewage sludge. These chemical contaminants can migrate into the sludge-soil-water system when sludge is used as a conditioner for agricultural soils. Thus, the objective of this study was to develop methodologies based on extraction with low-temperature partitioning (LTP) to determine cresols and chlorophenols in sewage sludge, soil, and water. The analysis was performed by gas chromatography coupled with mass spectrometry (GC-MS). The validated methods were applied to monitor cresols and chlorophenols in a column-leaching study of a sludge-soil-water system. Satisfactory results were achieved for selectivity, limit of quantification (LOQ), linearity, accuracy, and precision. In the column leaching study, only 2,4,6-trichlorophenol was quantified in sludge samples after 20 days of the experiment. None of the studied compounds were quantified in soil and leached water samples, due to the degradation promoted by the microorganisms present in the sewage sludge. Finally, validated methods were suitable for monitoring cresols and chlorophenols in the sludge-soil-water system.
Collapse
Affiliation(s)
- Flávia D Araújo
- Institute of Agricultural Sciences, Universidade Federal de Minas Gerais, Montes Claros, Brazil
| | - Gleison L O Silva
- Institute of Agricultural Sciences, Universidade Federal de Minas Gerais, Montes Claros, Brazil
| | - Flaviano O Silvério
- Institute of Agricultural Sciences, Universidade Federal de Minas Gerais, Montes Claros, Brazil
| | - Gevany P Pinho
- Institute of Agricultural Sciences, Universidade Federal de Minas Gerais, Montes Claros, Brazil
| |
Collapse
|
6
|
Malode SJ, Prabhu K, Kalanur SS, Meghani N, Shetti NP. WO 3/rGO nanocomposite-based sensor for the detection and degradation of 4-Chlorophenol. CHEMOSPHERE 2023; 312:137302. [PMID: 36410498 DOI: 10.1016/j.chemosphere.2022.137302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/12/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Chlorinated organic compounds are useful chemicals or intermediates that are used extensively in both industry and agriculture. The 4-chlorophenol (4CP) in low concentration poses a serious environmental problem and causes many health issues, including cancer and liver disease. In this work, we demonstrated the detection of 4CP at carbon paste electrodes modified using tungsten oxide (WO3) nanorods and reduced graphene oxide (rGO) nanoparticles. The significance of pH on the voltammetric response of 4CP was investigated, and it was discovered that an alkaline pH is an optimal condition for detecting substituted phenols. Moreover, parameters like heterogeneous rate constant, accumulation time, temperature effect, Gibb's free energy, scan rate, enthalpy, activation energy, and entropy were studied. The excellent catalytic and bulk properties of tungsten oxide nanostructures make it an effective modifier in electrochemical sensors. The employment of nanostructured WO3 for the assay of 4CP offers excellent sensitivity, selectivity, and applicability. The WO3 nanostructures are obtained hydrothermally and characterized in detail to understand the crystalline, quantitative and chemical properties. The electrochemical behavior of 4CP was studied utilizing voltammetry techniques. The CV technique was used to optimize and affect many factors in the electrochemical behavior of 4CP. The scan rate investigation helps to examine the physicochemical characteristics of the electrode process, and the electrooxidation of 4CP included 2 electrons and 2 protons. With 4CP, the modified electrode displayed a broad range of linearity. The limit of detection was determined to be 0.102 nM, while the limit of quantification was 0.3433 nM. The concentration of 4CP ranged between 0.1 × 10-7 M and 3.5 × 10-7 M. The fabricated electrode was also used to detect 4CP in soil and water samples. Good recoveries were obtained from the soil and water samples. The proposed electrode was used for analytical applications, including 4CP detection with high selectivity, low detection limit, sensitivity, and rapid response.
Collapse
Affiliation(s)
- Shweta J Malode
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi-580031, Karnataka, India.
| | - Keerthi Prabhu
- Department of Chemistry, K.L.E. Institute of Technology, Hubballi-580027, Karnataka, India
| | - Shankara S Kalanur
- Institute for Hydrogen Research, Université du Québec à Trois-Rivières, Pavillon Tapan-K.-Bose, 3351, Boul. des Forges C.P.500 Trois-Rivières, Québec, G9A 5H7, Canada
| | | | - Nagaraj P Shetti
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi-580031, Karnataka, India; University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali- 140413, Panjab, India.
| |
Collapse
|
7
|
Liao M, Li S, Wu H, Gao Q, Shi S, Huang Y, Cao H. Transcriptomic analysis of Sitophilus zeamais in response to limonene fumigation. PEST MANAGEMENT SCIENCE 2022; 78:4774-4782. [PMID: 35900300 DOI: 10.1002/ps.7097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 07/04/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Frequent application of chemical fumigants has contributed to the development of resistance in stored-product pests. Essential oils provide a novel and environmentally friendly alternative to conventional chemical pesticides. In this work, the fumigant activity of Taxodium 'zhongshansha' essential oil (TZEO) and main active components against Sitophilus zeamais were evaluated. In addition, the molecular mechanisms mediating the fumigant activity of limonene were assessed. RESULTS TZEO showed strong fumigant activity against Sitophilus zeamais, with a 50% lethal concentration (LC50 ) of 22.90 μL L-1 air in 24 h. The main components of TZEO were identified using gas chromatography-mass spectrometry, the main active ingredient (limonene) showed an LC50 of 9.93 μL L-1 air in 24 h which had a serious dose-time-effect. The LC50 value of the positive control (aluminum phosphide) was 1.91 μL L-1 . In total, 3982 up-regulated and 3067 down-regulated genes were sequenced in limonene-fumigated Sitophilus zeamais, the genes related to metabolic detoxification were significantly enriched. The mortality rate of 7 day-old Sitophilus zeamais adult mediated with knockdown of SzCYP6MS5 and SzCYP6MS6 raised up to 65.67% and 67.65% after fumigation with limonene in 24 h, respectively. The results showed that SzCYP6MS5 and SzCYP6MS6 are closely involved to the detoxification of limonene. CONCLUSION In this study, candidate genes affected by limonene treatment in Sitophilus zeamais were identified. These findings provided insights into the systemic metabolic response of Sitophilus zeamais to limonene and established a basis for the development of limonene as a botanical pesticide for the control of stored-product pests. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Liao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Shengnan Li
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Hailong Wu
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Quan Gao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Su Shi
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yong Huang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Haiqun Cao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
8
|
Maheshwari N, Khan AA, Ali A, Mahmood R. Oral administration of pentachlorophenol impairs antioxidant system, inhibits enzymes of brush border membrane, causes DNA damage and histological changes in rat intestine. Toxicol Res (Camb) 2022; 11:616-627. [PMID: 36051662 PMCID: PMC9424705 DOI: 10.1093/toxres/tfac035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 10/28/2023] Open
Abstract
Pentachlorophenol (PCP) is a broad spectrum biocide that has many domestic and industrial applications. PCP enters the environment due to its wide use, especially as a wood preservative. Human exposure to PCP is through contaminated water and adulterated food products. PCP is highly toxic and is classified as class 2B or probable human carcinogen. In this study, we explored the effect of PCP on rat intestine. Adult rats were orally given different doses of PCP (25-150-mg/kg body weight/day) in corn oil for 5 days, whereas controls were given similar amount of corn oil. The rats were sacrificed 24 h after the last treatment. A marked increase in lipid peroxidation, carbonyl content, and hydrogen peroxide level was seen. The glutathione and sulfhydryl group content was decreased in all PCP treated groups. This strongly suggests the generation of reactive oxygen species (ROS) in the intestine. PCP administration suppressed carbohydrate metabolism, inhibited enzymes of brush border membrane (BBM), and antioxidant defense system. It also led to increase in DNA damage, which was evident from comet assay, DNA-protein cross-linking, and DNA fragmentation. Histological studies supported the biochemical results showing marked dose-dependent tissue damage in intestines from PCP treated animals. This study reports for the first time that oral administration of PCP induces ROS, impairs the antioxidant system, damages DNA, and alters the enzyme activities of BBM and metabolic pathways in rat intestine.
Collapse
Affiliation(s)
- Nikhil Maheshwari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Aijaz Ahmed Khan
- Departments of Anatomy, J. N. Medical College and Hospital, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Asif Ali
- Departments of Biochemistry, J. N. Medical College and Hospital, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| |
Collapse
|
9
|
Sarkar S, Gill SS, Das Gupta G, Kumar Verma S. Water toxicants: a comprehension on their health concerns, detection, and remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:53934-53953. [PMID: 35624361 DOI: 10.1007/s11356-022-20384-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Water is an essential moiety for the human use since a long time. Availability of good-quality water is very essential, as it is used in almost all the industrial, agricultural, and household activities. However, several factors such as increased urbanization and industrialization, extensive use of chemicals, natural weathering of rocks, and human ignorance led to incorporation of enormous toxicants into the water. The water toxicants are broadly classified as inorganic, organic, and radiological toxicants. Inorganic toxicants include heavy metals (As, Cr, Cd, Hg, Ni, Pb) and metalloids, ammonia, nitrate, and fluoride. Uranium is included in radiological toxicants which also causes chemical toxicity. Organic pollutants include polycyclic aromatic hydrocarbons, polychlorinated biphenyls, phenolic compounds, phthalate esters, pesticides, pharmaceutical and personal care products, perchlorates, and flame retardants. These toxicants are harmful for the ecosystem as well as for the human beings causing different types of health complications like lung cancer, nasal cancer, gingivitis, severe vomiting and abdominal pain, hormonal imbalance, skeletal damage, neurotoxicity like Alzheimer and Parkinson disease, renal toxicity, nephrotoxicity, etc. The USEPA and WHO specified the permissible concentration of these pollutants in the drinking water. Determination techniques having high sensitivity, low cost, rapid onsite, and real-time detection of traces of water pollutants are discussed. This review also covers in depth about the remediation techniques, for the control of water toxicants, such as chelation of the heavy metals, intoxication of pollutants using various plants, adsorption of toxicants using different sorbent medias, and photocatalytic breakdown of persistent organic pollutants (POPs).
Collapse
Affiliation(s)
- Saptarshy Sarkar
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, 142 001, Punjab, India
| | - Sukhbir Singh Gill
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, 142 001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, 142 001, Punjab, India
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142 001, Punjab, India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, 142 001, Punjab, India.
| |
Collapse
|
10
|
Ciallella HL, Russo DP, Sharma S, Li Y, Sloter E, Sweet L, Huang H, Zhu H. Predicting Prenatal Developmental Toxicity Based On the Combination of Chemical Structures and Biological Data. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5984-5998. [PMID: 35451820 PMCID: PMC9191745 DOI: 10.1021/acs.est.2c01040] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
For hazard identification, classification, and labeling purposes, animal testing guidelines are required by law to evaluate the developmental toxicity potential of new and existing chemical products. However, guideline developmental toxicity studies are costly, time-consuming, and require many laboratory animals. Computational modeling has emerged as a promising, animal-sparing, and cost-effective method for evaluating the developmental toxicity potential of chemicals, such as endocrine disruptors, without the use of animals. We aimed to develop a predictive and explainable computational model for developmental toxicants. To this end, a comprehensive dataset of 1244 chemicals with developmental toxicity classifications was curated from public repositories and literature sources. Data from 2140 toxicological high-throughput screening assays were extracted from PubChem and the ToxCast program for this dataset and combined with information about 834 chemical fragments to group assays based on their chemical-mechanistic relationships. This effort revealed two assay clusters containing 83 and 76 assays, respectively, with high positive predictive rates for developmental toxicants identified with animal testing guidelines (PPV = 72.4 and 77.3% during cross-validation). These two assay clusters can be used as developmental toxicity models and were applied to predict new chemicals for external validation. This study provides a new strategy for constructing alternative chemical developmental toxicity evaluations that can be replicated for other toxicity modeling studies.
Collapse
Affiliation(s)
- Heather L. Ciallella
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, 08103, USA
| | - Daniel P. Russo
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, 08103, USA
- Department of Chemistry, Rutgers University, Camden, NJ, 08102, USA
| | - Swati Sharma
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, 08103, USA
| | - Yafan Li
- The Lubrizol Corporation, Wickliffe, OH, 44092, USA
| | - Eddie Sloter
- The Lubrizol Corporation, Wickliffe, OH, 44092, USA
| | - Len Sweet
- The Lubrizol Corporation, Wickliffe, OH, 44092, USA
| | - Heng Huang
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Hao Zhu
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, 08103, USA
- Department of Chemistry, Rutgers University, Camden, NJ, 08102, USA
- Corresponding Author333 Hao Zhu, 201 South Broadway, Joint Health Sciences Center, Rutgers University, Camden, New Jersey 08103; Telephone: (856) 225-6781;
| |
Collapse
|
11
|
Moharramzadeh M, Ceylan Z, Atıcı Ö. Glutathione S-Transferase Activity in Wild Plants with 2,4-Dichlorophenol (2,4-DCP) Phytoremediation Potential. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2064484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Mohammad Moharramzadeh
- Department of Environmental Engineering, Faculty of Engineering, Atatürk University, Erzurum, Turkey
| | - Zeynep Ceylan
- Department of Environmental Engineering, Faculty of Engineering, Atatürk University, Erzurum, Turkey
| | - Ökkeş Atıcı
- Department of Biology, Science Faculty, Atatürk University, Erzurum, Turkey
| |
Collapse
|
12
|
Environment-Friendly Catalytic Mineralization of Phenol and Chlorophenols with Cu- and Fe- Tetrakis(4-aminophenyl)-porphyrin—Silica Hybrid Aerogels. Gels 2022; 8:gels8040202. [PMID: 35448103 PMCID: PMC9027457 DOI: 10.3390/gels8040202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Fenton reactions with metal complexes of substituted porphyrins and hydrogen peroxide are useful tools for the mineralization of environmentally dangerous substances. In the homogeneous phase, autooxidation of the prophyrin ring may also occur. Covalent binding of porphyrins to a solid support may increase the lifetime of the catalysts and might change its activity. In this study, highly water-insoluble copper and iron complexes of 5,10,15,20-tetrakis(4-aminophenyl)porphyrin were synthesized and bonded covalently to a very hydrophilic silica aerogel matrix prepared by co-gelation of the propyl triethoxysilyl-functionalized porphyrin complex precursors with tetramethoxysilane, followed by a supercritical carbon dioxide drying. In contrast to the insoluble nature of the porphyrin complexes, the as-prepared aerogel catalysts were highly compatible with the aqueous phase. Their catalytic activities were tested in the mineralization reaction of phenol, 3-chlorophenol, and 2,4-dichlorophenol with hydrogen peroxide. The results show that both aerogels catalyzed the oxidation of phenol and chlorophenols to harmless short-chained carboxylic acids under neutral conditions. In batch experiments, and also in a miniature continuous-flow tubular reactor, the aerogel catalysts gradually reduced their activity, due to the slow oxidation of the porphyrin ring. However, the rate and extent of the degradation was moderate and did not exclude the possibility that the as-prepared catalysts, as well as their more stable derivatives, might find practical applications in environment protection.
Collapse
|
13
|
Tang B, Zou J, Wang X, Li B, Fu D, Thapa S, Sun X, Qi H. Theoretical insights into the gas/heterogeneous phase reactions of hydroxyl radicals with chlorophenols: Mechanism, kinetic and toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150974. [PMID: 34656601 DOI: 10.1016/j.scitotenv.2021.150974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/16/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Emission of 2-chlorophenols (2-CPs) can cause serious air pollution and health problems. Here, the reaction kinetics and products of key radicals in 2-CPs photo-oxidation are explored in both gaseous and heterogeneous reactions. Quantum chemical calculations show that •OH-addition pathways are more preferable than H-abstraction pathways in gas phase, while that is opposite in heterogeneous phase. At 298 K, the overall rate coefficients of the title reactions in gas and heterogeneous phases are 3.48 × 10-13 and 2.37 × 10-13 cm3 molecule-1 s-1 with half-lives of 55.3 h and 81.2 h, respectively. The strong H-bonds between linear Si3O2(OH)8 and 2-CPs change the energy barriers of initial •OH-addition and H-abstraction reactions, resulting in the competition between heterogeneous reactions and gas phase reactions. The products in heterogeneous reactions are chloroquinone and HONO, which can cause atmospheric acid deposition and eco-toxicity. In gas phase, self-cyclization of alkoxy radical (RO•) leads to formation of •HO2 and highly‑oxygenated molecules, which cause formation of secondary organic aerosol. It is emphasized that oxidation of 2-CPs by •OH leads to formation of more toxic products for aquatic organisms. Therefore, more attention should be focused on the products originated from •OH-initiated reactions of (2-)CPs in gaseous and heterogeneous reactions.
Collapse
Affiliation(s)
- Bo Tang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jinlong Zou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150090, China
| | - Xueyu Wang
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Jinan 250100, China
| | - Bo Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Donglei Fu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Samit Thapa
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiazhong Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong Qi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; Key Laboratory of Polar Environment and Ecosystem, Heilongjiang Province, Harbin 150090, China.
| |
Collapse
|
14
|
Seo MY, Choi MH, Hong Y, Kim SH, Park MJ. Association of urinary chlorophenols with central obesity in Korean girls. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1966-1972. [PMID: 32862346 DOI: 10.1007/s11356-020-10628-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to assess the association between urinary concentrations of chlorophenols and childhood central obesity. The study subjects were 165 girls (91 with central obesity and 74 with non-central obesity) aged 7-8 years who visited a hospital for regular health check-ups. The urinary concentrations of chlorophenols including 2,4-dichlorophenol (2,4-DCP), 2,5-dichlorophenol (2,5-DCP), 2,4,5-trichlorophenol (2,4,5-TCP), and 2,4,6-trichlorophenol (2,4,6-TCP) were analyzed using liquid chromatography-tandem mass spectrometry. The central obesity group showed significantly higher urinary concentrations of 2,5-DCP (0.56 vs. 0.28 ng/mL) and 2,4,5-TCP (0.06 vs. 0.03 ng/mL) than the non-central obesity group. The sum of molar concentrations of urinary chlorophenols was also significantly higher in the central obesity group than in the non-central obesity group (9.83 vs. 5.26 nmol/L). Girls in the highest quartile of the molar sum of chlorophenols showed significantly higher body mass index (BMI), waist circumference (WC), and waist-to-height ratio (WHtR) compared with the lowest quartile after adjusting for covariates. WC and WHtR, but not BMI, were significantly associated with higher quartiles of the molar sum of chlorophenols (P-for-trend = 0.025 and 0.028, respectively). We found a positive association between chlorophenol exposure and central obesity in Korean girls. Large-scale prospective studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Moon Young Seo
- Department of Pediatrics, Inje University Sanggye Paik Hospital, 1342, Dongil-ro, Nowon-gu, Seoul, 01757, Korea
| | - Man Ho Choi
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Youngmin Hong
- R&D Center, Shimadzu Scientific Korea Corp., Seoul, 08506, Korea
| | - Shin-Hye Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, 1342, Dongil-ro, Nowon-gu, Seoul, 01757, Korea.
| | - Mi Jung Park
- Department of Pediatrics, Inje University Sanggye Paik Hospital, 1342, Dongil-ro, Nowon-gu, Seoul, 01757, Korea.
| |
Collapse
|
15
|
Paul S, Deka RC, Gour NK, Singh A. Ring-opening pathway of 2, 4, 6-trichlorophenol initiated by OH radical: an insight from first principle study. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1779364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Subrata Paul
- Department of Chemical Sciences, Tezpur University Tezpur, Assam, India
| | | | - Nand Kishor Gour
- Department of Chemical Sciences, Tezpur University Tezpur, Assam, India
| | - Abhishek Singh
- Department of Chemistry, Udai Pratap College Varanasi, Uttar Pradesh, India
| |
Collapse
|
16
|
Laccase immobilized on chitosan-coated Fe3O4 nanoparticles as reusable biocatalyst for degradation of chlorophenol. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128769] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Chloroanisoles and Chlorophenols Explain Mold Odor but Their Impact on the Swedish Population Is Attributed to Dampness and Mold. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17030930. [PMID: 32028595 PMCID: PMC7037649 DOI: 10.3390/ijerph17030930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 12/31/2022]
Abstract
We recently reported that mold odor may be explained by chloroanisoles (CAs) formed by microbial biotransformation of chlorophenols (CPs) in legacy wood preservatives. Here we examine psychophysical aspects of CAs and trace their historic origins in buildings. Our exposure of healthy volunteers shows that 2,4,6-triCA is often perceived as unpleasant, characterized as musty or moldy and is detected at 13 ng/m3 or lower. Similar concentrations are reported in buildings with odor complaints. Scrutiny of written records reveal that new building construction methods were introduced in the 1950s, namely crawlspaces and concrete slabs on the ground. These constructions were prone to dampness and attack from wood decay fungi, prompting chemical companies and authorities to advocate preservatives against rot. Simultaneously, CPs became household chemicals used for example in indoor paints. When large-scale odor problems evolved, the authorities that once approved the preservatives attributed the odor to hidden mold, with no evidence that substantial microbial biomass was necessary for odor formation. Thereby the public remained unaware of problematic exposure to CPs and CAs. We conclude that the introduction of inappropriate designs of house foundations and CP-based preservatives once ignited and still provide impetus for indoor air research on "dampness and mold".
Collapse
|
18
|
Rahman MM, Karim MR, Alam MM, Zaman MB, Alharthi N, Alharbi H, Asiri AM. Facile and efficient 3-chlorophenol sensor development based on photolumenescent core-shell CdSe/ZnS quantum dots. Sci Rep 2020; 10:557. [PMID: 31953448 PMCID: PMC6969177 DOI: 10.1038/s41598-019-57091-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/09/2019] [Indexed: 12/29/2022] Open
Abstract
Quantum dots (QDs) are semiconducting inorganic nanoparticles, tiny molecules of 2-10 nm sizes to strength the quantum confinements of electrons. The QDs are good enough to emit light onto electrons for exciting and returning to the ground state. Here, CdSe/ZnS core/shell QDs have been prepared and applied for electrochemical sensor development in this approach. Flat glassy carbon electrode (GCE) was coated with CdSe/ZnS QDs as very thin uniform layer to result of the selective and efficient sensor of 3-CP (3-chlorophenol). The significant analytical parameters were calculated from the calibration plot such as sensitivity (3.6392 µA µM-1 cm-2) and detection limit (26.09 ± 1.30 pM) with CdSe/ZnS/GCE sensor probe by electrochemical approach. The calibration curve was fitted with the regression co-efficient r2 = 0.9906 in the range of 0.1 nM ∼ 0.1 mM concentration, which denoted as linear dynamic range (LDR). Besides these, it was performed the reproducibility in short response time and successfully validated the fabricated sensor for 3-CP in the real environmental and extracted samples. It is introduced as a noble route to detect the environmental phenolic contaminants using CdSe/ZnS QDs modified sensor by electrochemical method for the safety of healthcare and environmental fields at broad scales.
Collapse
Affiliation(s)
- Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Mohammad Rezaul Karim
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh 11421 & K.A.CARE Energy Research and Innovation Center, Riyadh, 11451, Saudi Arabia.
| | - M M Alam
- Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet, 3100, Bangladesh
| | - M Badruz Zaman
- Quality Engineering Test Establishment, Department of National Defence, Gatineau, QC, J8X 1C6, Canada
| | - Nabeel Alharthi
- Mechanical Engineering Department, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia
| | - Hamad Alharbi
- Mechanical Engineering Department, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research (CEAMR) & Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
19
|
Mehmanravesh S, Farhadi K, Torabian A, Hessam Hassani A. Fe 3 O 4 @GO on silica sand as an efficient and economical adsorbent; Typical application for removal of phenol and 2,4-dichlorophenol from water samples. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1509-1517. [PMID: 31099948 DOI: 10.1002/wer.1146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
In this research, the layer-by-layer coating of silica sand surface with monolayer of graphene oxide (GO) immobilized on magnetite nanoparticles (Fe3 O4 MNPs) sublayer was investigated as a novel, low-cost, effective, and green nanocomposite material for adsorption of phenol and 2,4-dichloro-phenol (DCP). Several characterization techniques such as FTIR spectroscopy, X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM) were used to confirm the successful synthesis of Fe3 O4 MNPs@GO on silica. The efficiency of Fe3 O4 MNPs@GO-coated silica (SiO2 ) for the removal of the target phenolic compounds from water samples was evaluated. The maximum removal of phenol (52%) and DCP (73%) was observed using 1.0 g adsorbent, initial concentration of 12.5 mg/dm3 (for phenol) and 15 mg/dm3 (for DCP), sample volume of 10 ml (for phenol) and 15 ml (for DCP), contact time of 20 min (for phenol) and 10 min (for DCP), and pH = 5. The adsorption isotherm models of Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich as well as kinetic and intraparticle diffusion models were also examined. Eventually, SiO2 /Fe3 O4 MNPs@GO was regenerated five times for removal of examined contaminants and their removal efficiency from the water inlet of a water treatment plant was assessed. PRACTITIONER POINTS: Immobilizing monolayer of GO nanosheets on silica sands surface for the first time has been achieved. GO monolayer anchors on silica sands through Fe3 O4 nanoparticles as sublayer without using very expensive tris(hydroxymethyl) aminomethane agent. Modified silica sands are introduced as a novel and economic pollutants adsorbent, which can be used in filter sands of water treatment industry. The SiO2 /Fe3 O4 MNPs@GO significantly reduces the amount of phenol and 2,4-dichloro-phenol (DCP) as model organic pollutants from water samples.
Collapse
Affiliation(s)
- Samira Mehmanravesh
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Khalil Farhadi
- Department of Analytical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Ali Torabian
- Faculty of Environment, University of Tehran, Tehran, Iran
| | - Amir Hessam Hassani
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
20
|
Mandal S, Adhikari S, Pu S, Wang X, Kim DH, Patel RK. Interactive Fe 2O 3/porous SiO 2 nanospheres for photocatalytic degradation of organic pollutants: Kinetic and mechanistic approach. CHEMOSPHERE 2019; 234:596-607. [PMID: 31229721 DOI: 10.1016/j.chemosphere.2019.06.092] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/28/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
A uniformly distributed mesoporous silica nanospheres has been successfully synthesized. Silica nanospheres have been loaded with different content of Fe2O3 nanoparticles synthesized by the sol-gel process followed by calcination to form the Fe2O3 supported on silica nanospheres composite. The as-synthesized photocatalyst has been characterized for crystal structure, morphology, stability, surface area and also surface composition was determined. The photocatalytic oxidation ability of the composite photocatalyst was evaluated by degrading aqueous solutions of Methylene Blue and Congo red dyes under visible light having intense absorption in the wavelength range between 550 and 560 nm. The prime significance of silica is to act as catalyst support for uniform distribution of hematite particles for enhanced catalytic reactivity. Highest degradation has been achieved with 20 wt % loading of hematite nanoparticles indicating the less agglomeration and availability of more catalytic sites. Furthermore, colorless organic pollutants 2-chlorophenol and 2, 4-dichlorophenol have been degraded with high efficiency in the presence of H2O2 oxidizer. The scavenger experiments confirmed that hydroxyl radicals are the majorly participating species in this catalytic system. The composite system also shows good recyclability of the materials and advocates the promising nature of the designed system for multiple hazardous environmental contaminants.
Collapse
Affiliation(s)
- Sandip Mandal
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, PR China; Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Sangeeta Adhikari
- School of Chemical Engineering, Chonnam National University, Gwangju, 61186, South Korea
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Xiaoke Wang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, PR China
| | - Do-Heyoung Kim
- School of Chemical Engineering, Chonnam National University, Gwangju, 61186, South Korea
| | - Raj Kishore Patel
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| |
Collapse
|
21
|
Karimi-Maleh H, Fakude CT, Mabuba N, Peleyeju GM, Arotiba OA. The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor. J Colloid Interface Sci 2019; 554:603-610. [DOI: 10.1016/j.jcis.2019.07.047] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/05/2019] [Accepted: 07/16/2019] [Indexed: 12/20/2022]
|
22
|
Ma D, Wei J, Zhang H, Zhou Y, Shen J, Wang L, Zhang P. Acute toxicity evolution during ozonation of mono-chlorophenols and initial identification of highly toxic intermediates. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1509-1518. [PMID: 31268092 DOI: 10.1039/c9em00225a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Acute toxicity changes during ozonation of 2-chlorophenol (2-CP), 3-chlorophenol (3-CP) and 4-chlorophenol (4-CP) under various conditions were studied using the luminescence inhibition test. Though the concentrations of mono-chlorophenols (CPs) and TOC decreased constantly, the acute toxicity evidently increased with reaction time until a maximum value was reached during ozonation of 2-CP at pH 3 to 7, 3-CP at pH 3 to 10, and 4-CP at pH 3 and 5. Principal component analysis (PCA) was applied to understand the relationships between acute toxicity and other physicochemical parameters. The intense interrelations between acute toxicity and SUVA280 were evident under all the pH conditions for 2-CP and 3-CP, and except at pH 12 for 4-CP, which implied that high-weight intermediates were formed and contributed to the increased toxicity. SUVA280 was a possible surrogate measure of acute toxicity during the ozonation of all three CPs. Profiling of acute toxicity in ozonated CPs was conducted using solid phase extraction with a series of different cartridges, high performance liquid chromatography (HPLC) fractionation and the luminescence inhibition bioassay. Considering the acute toxicity evolution under different conditions and profiles of acute toxicity in HPLC fractions, the highly toxic intermediates probably included same non-chlorine carboxylic acids though the three CPs had different substituent positions with higher polarity than their parent compounds. In this study, the acute toxicity evolution during ozonation of CPs and the forcing agents were thoroughly discussed. Therefore, ozonation is expected to be carefully operated and monitored, and toxicity tests should be used to evaluate whether effluent detoxification takes place.
Collapse
Affiliation(s)
- Dehua Ma
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Mei Y, Yang J, Lu Y, Hao F, Xu D, Pan H, Wang J. BP-ANN Model Coupled with Particle Swarm Optimization for the Efficient Prediction of 2-Chlorophenol Removal in an Electro-Oxidation System. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16142454. [PMID: 31295918 PMCID: PMC6679230 DOI: 10.3390/ijerph16142454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 11/16/2022]
Abstract
Electro-oxidation is an effective approach for the removal of 2-chlorophenol from wastewater. The modeling of the electrochemical process plays an important role in improving the efficiency of electrochemical treatment and increasing our understanding of electrochemical treatment without increasing the cost. The backpropagation artificial neural network (BP-ANN) model was applied to predict chemical oxygen demand (COD) removal efficiency and total energy consumption (TEC). Current density, pH, supporting electrolyte concentration, and oxidation-reduction potential (ORP) were used as input parameters in the 2-chlorophenol synthetic wastewater model. Prediction accuracy was increased by using particle swarm optimization coupled with BP-ANN to optimize weight and threshold values. The particle swarm optimization BP-ANN (PSO-BP-ANN) for the efficient prediction of COD removal efficiency and TEC for testing data showed high correlation coefficient of 0.99 and 0.9944 and a mean square error of 0.0015526 and 0.0023456. The weight matrix analysis indicated that the correlation of the five input parameters was a current density of 18.85%, an initial pH 21.11%, an electrolyte concentration 19.69%, an oxidation time of 21.30%, and an ORP of 19.05%. The analysis of removal kinetics indicated that oxidation-reduction potential (ORP) is closely correlated with the chemical oxygen demand (COD) and total energy consumption (TEC) of the electro-oxidation degradation of 2-chlorophenol in wastewater.
Collapse
Affiliation(s)
- Yu Mei
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310005, China
| | - Jiaqian Yang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yin Lu
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310005, China
| | - Feilin Hao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310005, China
| | - Dongmei Xu
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310005, China
| | - Hua Pan
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310005, China
| | - Jiade Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
24
|
Kheirjou S, Imanzadeh G, Rezaei H, Safari N. Acidity of the chlorinated phenols: DFT study and experiential affirmation. J Mol Model 2019; 25:201. [DOI: 10.1007/s00894-019-4096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
|
25
|
Synthesis, characterization, and application of chemically interconnected carbon nanotube monolithic sorbents by photopolymerization in polypropylene caps. Anal Bioanal Chem 2019; 411:3291-3299. [PMID: 30957204 DOI: 10.1007/s00216-019-01795-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/02/2019] [Accepted: 03/20/2019] [Indexed: 12/26/2022]
Abstract
A facile and convenient approach for the preparation of interconnected multiwalled carbon nanotube (MWCNT) monolithic sorbents in recycled plastic caps has been developed. The method, which was based on the photopolymerization of the individual MWCNTs via the formation of a W/O medium internal phase emulsion (40/60 w/w%), provides control over the size of pores, rigidity, and the mechanical stability of the final solid. Pluronic L121 was used as a surfactant containing the water phase inside it and, consequently, the organic and non-polar phase, in which the MWCNTs and the cross-linker were trapped, remained on the outside of the droplets. Optical microscopy and scanning electron microscopy (SEM) were employed to characterize the morphology of both the emulsions and the final solids, respectively. In addition, nitrogen intrusion porosimetry was performed in order to study how the specific surface area of the final monolithic solid changed (from 19.6 to 372.2 m2 g-1) with the variables involved in the polymerization step. To exemplify the great sorbent potential of the synthesized material, a colorimetric assay based on the retention of methylene blue within the interconnected MWCNT monolithic structure was carried out. Finally, following the positive results, the carbon nanotube-monolithic stirred caps were applied for the determination of chlorophenols in a biological matrix such as human urine, obtaining excellent recovery values (91-98%) and good precision (5.4-9.1%) under optimized extraction conditions. Graphical abstract.
Collapse
|
26
|
Preparation and characterization of palladium/polyaniline/foamed nickel composite electrode for electrocatalytic dechlorination. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.09.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Li E, Bolser DG, Kroll KJ, Brockmeier EK, Falciani F, Denslow ND. Comparative toxicity of three phenolic compounds on the embryo of fathead minnow, Pimephales promelas. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 201:66-72. [PMID: 29879596 DOI: 10.1016/j.aquatox.2018.05.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 06/08/2023]
Abstract
Phenols are classified as polar narcotics, which are thought to cause toxicity by non-specific mechanisms, possibly by disrupting membrane structure and function. Here we test three phenolic chemicals, phenol, 2,4-dichlorphenol and pentachlorophenol on embryo development, heartbeat rate and mitochondrial respiration in fathead minnow (Pimephales promelas). While these chemicals have been used on isolated mitochondria, they have not yet been used to verify respiration in intact embryos. Mitochondrial respiration in intact embryos was measured after optimizing the Seahorse XFe24 Extracellular Flux Analyzer. Heartbeat rate and mitochondrial respiration patterns of fathead minnow embryos at different developmental stages were also characterized. Exposures of embryos at developmental stage 20 occurred for 24 h with five concentrations of each phenolic compound ranging from 0.85 to 255 μM for phenol, 0.49 to 147 μM for 2,4-dichlorophenol and 0.3 to 90 μM for pentachlorophenol. Exposure to phenol at the concentrations tested had no effects on development, heartbeat or mitochondrial respiration. However, both 2,4-dichlorophenol and pentachlorophenol showed dose-dependent effects on development, heartbeat rate, and mitochondrial respiration, with the effects occurring at lower concentrations of pentachlorophenol, compared to 2,4-dichlorophenol, highlighting the higher toxicity of the more chlorinated phenols. Both 2,4-dichlorophenol and pentachlorophenol decreased basal mitochondrial respiration of embryos and ATP production. These results indicate that higher chlorinated phenolic chemicals cause developmental toxicity in fathead minnow embryos by decreasing mitochondrial respiration and heartbeat rate.
Collapse
Affiliation(s)
- Erchao Li
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA; College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Derek G Bolser
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Kevin J Kroll
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Erica K Brockmeier
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Francesco Falciani
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
28
|
Effect of dissolved oxygen/nZVI/persulfate process on the elimination of 4-chlorophenol from aqueous solution: Modeling and optimization study. KOREAN J CHEM ENG 2018. [DOI: 10.1007/s11814-018-0017-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
29
|
Kokushi E, Shintoyo A, Koyama J, Uno S. Evaluation of 2,4-dichlorophenol exposure of Japanese medaka, Oryzias latipes, using a metabolomics approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:27678-27686. [PMID: 27053050 DOI: 10.1007/s11356-016-6425-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/03/2016] [Indexed: 06/05/2023]
Abstract
In this study, the metabolic effects of waterborne exposure of medaka (Oryzias latipes) to nominal concentrations of 20 (L group) and 2000 μg/L (H group) 2,4-dichlorophenol (DCP) were examined using a gas chromatography/mass spectroscopy (GC/MS) metabolomics approach. A principal component analysis (PCA) separated the L, H, and control groups along PC1 to explain the toxic effects of DCP at 24 h of exposure. Furthermore, the L and H groups were separated along PC1 at 96 h on the PCA score plots. These results suggest that the effects of DCP depended on exposure concentration and time. Changes in tricarboxylic cycle metabolites suggested that fish exposed to 2,4-DCP require more energy to metabolize and eliminate DCP, particularly at 96 h of exposure. A time-dependent response in the fish exposed to DCP was observed in the GC/MS data, suggesting that the higher DCP concentration had greater effects at 24 h than those observed in response to the lower concentration. In addition, several essential amino acids (arginine, histidine, lysine, isoleucine, leucine, methionine, phenylalanine, threonine, tryptophan, and valine) decreased after DCP exposure in the H group, and starvation condition and high concentration exposure of DCP could consume excess energy from amino acids.
Collapse
Affiliation(s)
- Emiko Kokushi
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima, 890-0056, Japan.
| | - Aoi Shintoyo
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima, 890-0056, Japan
| | - Jiro Koyama
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima, 890-0056, Japan
| | - Seiichi Uno
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima, 890-0056, Japan
| |
Collapse
|
30
|
Adhikari S, Charanpahari AV, Madras G. Solar-Light-Driven Improved Photocatalytic Performance of Hierarchical ZnIn 2S 4 Architectures. ACS OMEGA 2017; 2:6926-6938. [PMID: 31457278 PMCID: PMC6645120 DOI: 10.1021/acsomega.7b01329] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/05/2017] [Indexed: 05/25/2023]
Abstract
In the quest for developing novel narrow band gap semiconductor materials, the research in metal chalcogenides has gained a strong attraction. In the present investigation, a surfactant-free hydrothermal route has been followed to design hierarchical self-assembled flower-like ZnIn2S4 structures through control over precursor concentration and hydrothermal processing parameters. Uniform hexagonal marigold flower-like ZnIn2S4 architectures (∼4 μm) were formed with self-assembly of petals (thickness ∼8-12 nm) forming rose-like structures and finally forming marigold flowers in 24 h duration. The hierarchical ZnIn2S4 flower structure has been used as photocatalysts for the degradation of dye and chlorinated phenols. Photodegradation demonstrates that the high surface area from the porous flower architecture (∼72 m2/g) with an enhanced visible light absorption giving low band gap energy (2.15 eV) is responsible for higher photocatalytic performance. Complete degradation of the organic pollutants has been observed within 90 min in the presence of natural sunlight. To understand the participating reactive species contributing to degradation, scavenger studies were performed for deducing the plausible photocatalytic degradation pathways. This study might open new insights into the design of novel hierarchical structures.
Collapse
|
31
|
Castillo-Garit JA, Casañola-Martin GM, Barigye SJ, Pham-The H, Torrens F, Torreblanca A. Machine learning-based models to predict modes of toxic action of phenols to Tetrahymena pyriformis. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2017; 28:735-747. [PMID: 29022372 DOI: 10.1080/1062936x.2017.1376705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
The phenols are structurally heterogeneous pollutants and they present a variety of modes of toxic action (MOA), including polar narcotics, weak acid respiratory uncouplers, pro-electrophiles, and soft electrophiles. Because it is often difficult to determine correctly the mechanism of action of a compound, quantitative structure-activity relationship (QSAR) methods, which have proved their interest in toxicity prediction, can be used. In this work, several QSAR models for the prediction of MOA of 221 phenols to the ciliated protozoan Tetrahymena pyriformis, using Chemistry Development Kit descriptors, are reported. Four machine learning techniques (ML), k-nearest neighbours, support vector machine, classification trees, and artificial neural networks, have been used to develop several models with higher accuracies and predictive capabilities for distinguishing between four MOAs. They showed global accuracy values between 95.9% and 97.7% and area under Receiver Operator Curve values between 0.978 and 0.998; additionally, false alarm rate values were below 8.2% for training set. In order to validate our models, cross-validation (10-folds-out) and external test-set were performed with good behaviour in all cases. These models, obtained with ML techniques, were compared with others previously reported by other researchers, and the improvement was significant.
Collapse
Affiliation(s)
- J A Castillo-Garit
- a Unidad de Toxicología Experimental , Universidad de Ciencias Médicas de Villa Clara , Santa Clara , Villa Clara , Cuba
- b Departament de Biología Funcional i Antropología Física , Universitat de València , Burjassot , Spain
| | - G M Casañola-Martin
- c Departamento de Química Física, Facultad de FarmaciaUnidad de Investigación de Diseño de Fármacos y Conectividad Molecular , Universitat de València , Spain
| | - S J Barigye
- d Department of Chemistry , McGill University , Montréal , Québec , Canada
| | - H Pham-The
- e Hanoi University of Pharmacy , Hoan Kiem, Hanoi , Vietnam
| | - F Torrens
- f Institut Universitari de Ciència Molecular , Universitat de València, Edifici d'Instituts de Paterna , Valencia , Spain
| | - A Torreblanca
- b Departament de Biología Funcional i Antropología Física , Universitat de València , Burjassot , Spain
| |
Collapse
|
32
|
Cui Y, Liang L, Zhong Q, He Q, Shan X, Chen K, Huang F. The association of cancer risks with pentachlorophenol exposure: Focusing on community population in the areas along certain section of Yangtze River in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:729-738. [PMID: 28094052 DOI: 10.1016/j.envpol.2016.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 06/06/2023]
Abstract
Pentachlorophenol (PCP) was used in large quantities, and mainly for killing the intermediate host snails of schistosome in China, thereby resulting in ubiquitous PCP residue in the environment. However, studies considering the carcinogenicity of PCP for humans mainly focused on occupational workers, and the actual carcinogenicity of PCP for general population is uncertain. To investigate the association between cancer risks and PCP exposure in a community population, an ecological study was conducted in three contaminated areas along the Yangtze River. Standardized rate ratio (SRR) was calculated to represent the risk of cancer incidence, by using incidence in the low PCP exposure category as the reference group. A total of 15,962 cancer records were collected, and 76 water samples and 213 urine samples in three areas were examined. Our findings suggested that compared with the low PCP group, the high PCP group had significantly excessive incidences of various cancers related to different organs including lymph (SRR = 19.44, 95% CI = 15.00-25.19), blood (SRR = 17.24, 95% CI = 12.92-23.01), nasopharynx (SRR = 3.97, 95% CI = 3.75-4.21), gallbladder (SRR = 3.46, 95% CI = 3.09-3.87), pancreas (SRR = 3.41, 95% CI = 3.07-3.79), respiratory system (SRR = 3.41, 95% CI = 3.27-3.57) and liver (SRR = 3.31, 95% CI = 3.09-3.56). Taken together, our present study provides evidence that general community population exposed to high level of PCP exhibits a broader spectrum of increased cancer risks as compared to occupational groups.
Collapse
Affiliation(s)
- Yanjie Cui
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Anhui, 230032, China
| | - Ling Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Anhui, 230032, China
| | - Qi Zhong
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Anhui, 230032, China
| | - Qian He
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Anhui, 230032, China
| | - Xiaomei Shan
- Physical and Chemical Laboratory of Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui 230601, China
| | - Keyang Chen
- Department of Hygiene Inspection and Quarantine, School of Public Health, Anhui Medical University, Anhui, 230032, China
| | - Fen Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Anhui, 230032, China.
| |
Collapse
|
33
|
Rodriguez-Hernandez MC, García De la-Cruz RF, Leyva E, Navarro-Tovar G. Typha latifolia as potential phytoremediator of 2,4-dichlorophenol: Analysis of tolerance, uptake and possible transformation processes. CHEMOSPHERE 2017; 173:190-198. [PMID: 28110008 DOI: 10.1016/j.chemosphere.2016.12.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/17/2016] [Accepted: 12/09/2016] [Indexed: 06/06/2023]
Abstract
2,4-Dichlorophenol (2,4-DCP) is considered a priority pollutant due to its high toxicity. Therefore, it is urgent to develop technologies for the disposal of this pollutant. Various remediation processes have been proposed for the elimination of 2,4-DCP in contaminated water, however, most of them involve high costs of operation and maintenance. This study aimed to determine the capacity of remediation of 2,4-DCP in water by Typha latifolia L. wild plants. For that, the tolerance, removal, accumulation and biotransformation of 2,4-DCP by T. latifolia were investigated. The plants were exposed to 2,4-DCP solutions with a concentration range from 1.5 to 300 mgL-1 for 10 days. They exhibited a reduction in chlorophyll levels and growth rate when 2,4-DCP solutions were ≥30 mgL-1 and ≥50 mgL-1, respectively. The removal of contaminant was dose-depended, being 99.7% at 1.5-3 mgL-1, 59-70% at 10-70 mgL-1 and 35-42% at 100-300 mgL-1 of 2,4-DCP in the solution. Studies indicated that 2,4-DCP was mainly accumulated in root tissue rather than in shoot tissue. Acid hydrolysis of biomass extracts suggests 2,4-DCP bioconjugates formation in root tissue as a response mechanism. Additionally, an increment in glutathione S-transferase (GST) activity could indicate a 2,4-DCP conjugation with glutathione as a detoxification mechanism of T. latifolia.
Collapse
Affiliation(s)
- M C Rodriguez-Hernandez
- Plant Biochemistry Laboratory, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6 Zona Universitaria, 78210, San Luis Potosí, Mexico
| | - R F García De la-Cruz
- Plant Biochemistry Laboratory, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6 Zona Universitaria, 78210, San Luis Potosí, Mexico.
| | - E Leyva
- Organic Synthesis Laboratory, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6 Zona Universitaria, 78210, San Luis Potosí, Mexico
| | - G Navarro-Tovar
- Recombinant Biopharmaceuticals Laboratory, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6 Zona Universitaria, 78210, San Luis Potosí, Mexico
| |
Collapse
|
34
|
Zuehlke A, Zhang H. Elevated 5-hydroxymethycytosine and cell apoptosis induced by tetrachloro-1,4-benzoquinone in mouse embryonic stem cells. J Environ Sci (China) 2017; 51:1-4. [PMID: 28115119 DOI: 10.1016/j.jes.2016.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Albert Zuehlke
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Hongquan Zhang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
35
|
García-Valverde M, Lucena R, Cárdenas S, Valcárcel M. In-syringe dispersive micro-solid phase extraction using carbon fibres for the determination of chlorophenols in human urine by gas chromatography/mass spectrometry. J Chromatogr A 2016; 1464:42-9. [DOI: 10.1016/j.chroma.2016.08.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/29/2016] [Accepted: 08/15/2016] [Indexed: 12/27/2022]
|
36
|
Cai MQ, Su J, Hu JQ, Wang Q, Dong CY, Pan SD, Jin MC. Planar graphene oxide-based magnetic ionic liquid nanomaterial for extraction of chlorophenols from environmental water samples coupled with liquid chromatography-tandem mass spectrometry. J Chromatogr A 2016; 1459:38-46. [PMID: 27425762 DOI: 10.1016/j.chroma.2016.06.086] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 10/21/2022]
Abstract
A planar graphene oxide-based magnetic ionic liquid nanomaterial (PGO-MILN) was synthesized. The prepared PGO-MILN was characterized by transmission electronmicroscopy (TEM) and Fourier-transform infrared spectrometry (FTIR). The results of adsorption experiments showed that the PGO-MILN had great adsorption capacity for 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP) and pentachlorophenol (PCP). Based on the adsorption experimental data, a sensitive magnetic method for determination of the five CPs in environmental water samples was developed by an effective magnetic solid-phase extraction (MSPE) procedure coupled with high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). The effects of main MSPE parameters including the solution pH, extraction time, desorption time, and volume of desorption solution on the extraction efficiencies had been investigated in detail. The recoveries ranged from 85.3 to 99.3% with correlation coefficients (r) higher than 0.9994 and the linear ranges were between 10 and 500ngL(-1). The limits of detection (LODs) and limits of quantification (LOQs) of the five CPs ranged from 0.2 to 2.6ngL(-1) and 0.6 to 8.7ngL(-1), respectively. The intra- and inter- day relative standard deviations (RSDs) were in the range from 0.6% to 7.4% and from 0.7% to 8.4%, respectively. It was confirmed that the PGO-MILN was a kind of highly effective MSPE materials used for enrichment of trace CPs in the environmental water.
Collapse
Affiliation(s)
- Mei-Qiang Cai
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Jie Su
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jian-Qiang Hu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qian Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Chun-Ying Dong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Sheng-Dong Pan
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China; Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China
| | - Mi-Cong Jin
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China; Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China.
| |
Collapse
|
37
|
Sequestration of agrochemicals from aqueous media using cross-linked chitosan-based sorbents. ADSORPTION 2016. [DOI: 10.1007/s10450-016-9796-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
38
|
Zhang Y, Cheng Q, Zheng M, Liu X, Wu K. Iron oxyhydroxide nanorods with high electrochemical reactivity as a sensitive and rapid determination platform for 4-chlorophenol. JOURNAL OF HAZARDOUS MATERIALS 2016; 307:36-42. [PMID: 26775105 DOI: 10.1016/j.jhazmat.2015.12.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/02/2015] [Accepted: 12/30/2015] [Indexed: 06/05/2023]
Abstract
Iron oxyhydroxide (FeOOH) nanorods were prepared through solvothermal reaction, and characterized using Raman spectroscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron microscopy and scanning electron microscopy. Thereafter, the prepared FeOOH nanorods were used as sensing material to construct a novel detection platform for 4-chlorophenol (4-CP). The electrochemical behaviors of 4-CP were studied, and the oxidation peak currents increased greatly on the surface of FeOOH nanorods. The signal enhancement mechanism was studied for 4-CP, and it was found that the prepared FeOOH nanorods remarkably improved the electron transfer ability and surface adsorption efficiency of 4-CP. The influences of pH value, amount of FeOOH nanorods and accumulation time were examined. As a result, a highly-sensitive electrochemical method was developed for the rapid determination of 4-CP. The linear range was from 10 to 500nM, and the detection limit was 3.2nM. It was used in different water samples, and the results consisted with the values that obtained by high-performance liquid chromatography.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Britton Chance Center for Biomedical Photonics at Wuhan, National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qin Cheng
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Meng Zheng
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Liu
- Britton Chance Center for Biomedical Photonics at Wuhan, National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kangbing Wu
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
39
|
Removal of 4-Chlorophenol from Contaminated Water Using Activated Carbon from Dried Date Pits: Equilibrium, Kinetics, and Thermodynamics Analyses. MATERIALS 2016; 9:ma9040251. [PMID: 28773378 PMCID: PMC5502915 DOI: 10.3390/ma9040251] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/16/2016] [Accepted: 03/21/2016] [Indexed: 11/17/2022]
Abstract
Five different activated carbons (ACs) have been prepared from dried date pits using air and phosphoric acid as activating agents. The used phosphoric acid:date pit ratio dictated the characteristics of the prepared ACs; the equivalent BET-nitrogen surface area varied from 794 m2/g for a ratio of 5:1, to 1707 m2/g for a ratio of 2:1, whereas the micropore volume changed in value from 0.24 cm3/g for the 5:1 ratio to 0.59 cm3/g for the 2:1 ratio. The prepared ACs were tested to remove 4-chlorophenol (4-CP) from aqueous solutions by means of batch adsorption process. The prepared 2:1 AC exhibited the highest uptake with a maximum of 525 mg/g. Equilibrium pH studies showed that 4-CP removal was pH dependent; the maximum uptake occurred at an equilibrium pH value of 5.5. Dynamic studies showed that 4-CP uptake on 2:1 AC is rapid, with 80% of the maximum uptake achieved during the first 40 min. Both surface adsorption and intraparticle diffusion were identified to be effective adsorption mechanisms. Kinetic studies indicated a pseudo second-order reaction. Results of equilibrium adsorption experiments showed that the adsorption of the 4-CP on 2:1 AC is best described by the Langmuir model. The thermodynamics parameters of the adsorption (ΔG0, ΔH0, and ΔS0) were determined by studying the adsorption equilibrium at different temperatures. The values of these parameters indicated the spontaneous and endothermic nature of the adsorption phenomenon of 4-CP on the prepared ACs.
Collapse
|
40
|
Du P, Zhao H, Li H, Zhang D, Huang CH, Deng M, Liu C, Cao H. Transformation, products, and pathways of chlorophenols via electro-enzymatic catalysis: How to control toxic intermediate products. CHEMOSPHERE 2016; 144:1674-1681. [PMID: 26519798 DOI: 10.1016/j.chemosphere.2015.10.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 06/05/2023]
Abstract
Chlorophenols can be easily oxidized into chlorobenzoquinones (CBQs), which are highly toxic and have been linked to bladder cancer risk. Herein, we report the transformation, products, and pathways of 2,4-dichlorophenol (DCP) by horseradish peroxidase (HRP) and electro-generated hydrogen peroxide (H2O2) and suggest methods to control the formation of toxic intermediate products. After a 10-min electroenzymatic process, 99.7% DCP removal may be achieved under optimal conditions. A total of 16 reaction products, most of which are subsequently verified as DCP polymers and related quinone derivatives, are identified by using ultra-performance liquid chromatography-time-of-flight mass spectrometry (UPLC-TOF-MS). A five-step reaction pathway for DCP transformation, including HRP-driven substrate oxidation, substitution and radical coupling, quick redox equilibrium, nucleophilic reaction and precipitation from aqueous solution, is proposed. Current variations and the presence of CO2 could significantly affect these reaction pathways. In particular, higher currents enhance the hydroxylation process by promoting alkaline conditions and abundant H2O2 formation. As both OH(-) and H2O2 are strong nucleophiles, they easily react with CBQ products to form hydroxylated products, which can significantly reduce solution toxicity. An adequate supply of CO2 can provide favorable pH conditions and facilitate enzymatic steps, such as substrate oxidation and radical coupling, to generate precipitable polymerized products. All of the results suggest that toxic intermediate products can be effectively reduced and controlled during the electro-enzymatic process to remove DCP and other phenolic pollutants from wastewaters.
Collapse
Affiliation(s)
- Penghui Du
- Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - He Zhao
- Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Haitao Li
- Environmental Protection Institute of Light Industry, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Di Zhang
- Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| | - Manfeng Deng
- Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chenming Liu
- Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongbin Cao
- Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
41
|
Khandarkhaeva MS, Batoeva AA, Aseev DG, Sizykh MR. Photoactivation of the oxidation process of para-chlorophenol in aqueous solutions. RUSS J APPL CHEM+ 2016. [DOI: 10.1134/s1070427215100080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Chang W, Kim H, Lee GY, Ahn BJ. Catalytic hydrodechlorination reaction of chlorophenols by Pd nanoparticles supported on graphene. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-015-2368-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Yin D, Zhang L, Zhao X, Chen H, Zhai Q. Iron-glutamate-silicotungstate ternary complex as highly active heterogeneous Fenton-like catalyst for 4-chlorophenol degradation. CHINESE JOURNAL OF CATALYSIS 2015. [DOI: 10.1016/s1872-2067(15)61011-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Marković MD, Dojčinović BP, Obradović BM, Nešić J, Natić MM, Tosti TB, Kuraica MM, Manojlović DD. Degradation and detoxification of the 4-chlorophenol by non-thermal plasma-influence of homogeneous catalysts. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.09.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
45
|
Zelmer A, Zhang N, Komínková K, Nachtigallová D, Richnow HH, Klán P. Photochemistry of 4-chlorophenol in liquid and frozen aqueous media studied by chemical, compound-specific isotope, and DFT analyses. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10743-10750. [PMID: 26393475 DOI: 10.1021/acs.langmuir.5b02990] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The photochemistry of 4-chlorophenol in liquid and frozen aqueous solutions and on the surface of ice grains yields substantially different photoproducts. Several complementary experimental and theoretical methods, such as trace analyses of the photoproducts, trapping experiments, compound-specific isotope analyses, and quantum chemical calculations, were used to study the reaction mechanism differences. A similar carbon kinetic isotope effect determined for the photolysis of 4-chlorophenol samples in the temperature range of 20 to -40 °C and the results of trapping experiments suggest that heterogeneous cleavage of the C-Cl bond in the excited state is probably a common key step that leads to the formation of carbene and hydroxyphenyl cation intermediates. We conclude that the subsequent specific reactions of these species under various conditions are responsible for the formation of different final photoproducts.
Collapse
Affiliation(s)
| | - Ning Zhang
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ , Permoserstrasse 15, 04318 Leipzig, Germany
| | | | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Hans Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ , Permoserstrasse 15, 04318 Leipzig, Germany
| | | |
Collapse
|
46
|
Chen HM, Lee YH, Wang YJ. ROS-triggered signaling pathways involved in the cytotoxicity and tumor promotion effects of pentachlorophenol and tetrachlorohydroquinone. Chem Res Toxicol 2015; 28:339-50. [PMID: 25608107 DOI: 10.1021/tx500487w] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Free radical-triggered tissue damage is believed to play an essential role in a variety of human diseases. Pentachlorophenol (PCP) is applied as a pesticide worldwide in both industries and homes. It is used extensively as a biocide and wood preservative. Tetrachlorohydroquinone (TCHQ) was proved as a major toxic metabolite of PCP, contributing the release of free radicals during PCP metabolism. PCP has been proposed as a tumor promoter; however, only limited knowledge is available regarding the mechanisms of tumor promotion induced by PCP and its metabolite, TCHQ. A growing amount of literature suggests that a link between reactive oxygen species (ROS) and tumor promotion could exist. Herein, we summarize the findings regarding the ROS-triggered signaling pathways involved in the cytotoxicity and tumor promotion effects of PCP and TCHQ. Some of the notable findings demonstrated that TCHQ can induce DNA lesions and glutathione depletion in mammalian cells; meanwhile, oxidative stress and apoptosis/necrosis can be found both in vivo and in vitro. Interestingly, PCP and TCHQ were proved as mild tumor promoters in two-stage tumorigenesis models, in which the possible mechanism could be through ROS generation and changed Bcl-2 gene expression. We also found significant effects of antioxidants in attenuating the oxidative stress, cyto- and genotoxicity, and apoptosis/necrosis induced by PCP and/or TCHQ. In addition, mitogen-activated protein kinase (MAPK) activation is involved in PCP/TCHQ-triggered cytotoxicity, as evidenced by the finding that higher doses of TCHQ could lead to necrosis of freshly isolated splenocytes through the production of a large amount of ROS and sustained ERK activation. These results could explain partly the underlying molecular mechanisms contributing to the tumorigenesis induced by PCP. However, the detailed mechanisms of free radicals in triggering PCP/TCHQ-mediated tumor promotion and toxicity are still not completely resolved and need to be investigated further.
Collapse
Affiliation(s)
- Hsiu-Min Chen
- Department of Environmental and Occupational Health, National Cheng Kung University , Tainan, Taiwan
| | | | | |
Collapse
|
47
|
Sharma S, Mukhopadhyay M, Murthy ZVP. Investigation of photo-assisted and crude peroxidase mediated transformations of chlorinated phenols (CPs) from spiked and industrial wastewaters: identification of reaction products. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 72:746-753. [PMID: 26287833 DOI: 10.2166/wst.2015.269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This work focused on photo-assisted crude peroxidase mediated transformations of chlorinated phenols (CPs) from spiked and industrial wastewaters and the identification of reaction products formed. Garden radish Raphanus sativus was the source of crude peroxidase. No chlorine bearing compounds were detected by gas chromatography-high resolution mass spectrometry analysis. Under identical test conditions, the concentrations of 4-chlorophenol and 2,4-dichlorophenol were demoted to zero from 514 mg/L, 652 mg/L and that of 2,4,6-trichlorophenol and pentachlorophenol were reduced to 18 mg/L and 37 mg/L from 790 mg/L and 1066 mg/L, respectively (high-pressure liquid chromatography analysis). Chloride ion release profiles also showed a progressively increasing trend. A neat chemical oxygen demand removal to the extent of 63-79% was achieved in the case of spiked wastewater sample and to the extent of 77% for industrial wastewaters. A hypothesis reaction scheme was also suggested to comprehend the mechanism of degradation reactions.
Collapse
Affiliation(s)
- Swati Sharma
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India E-mail: ; ; Department of Chemical Engineering, Sarvajanik College of Engineering and Technology, Surat 395001, Gujarat, India
| | - Mausumi Mukhopadhyay
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India E-mail: ;
| | - Z V P Murthy
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India E-mail: ;
| |
Collapse
|
48
|
Cheng P, Zhang Q, Shan X, Shen D, Wang B, Tang Z, Jin Y, Zhang C, Huang F. Cancer risks and long-term community-level exposure to pentachlorophenol in contaminated areas, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:1309-1317. [PMID: 25138560 DOI: 10.1007/s11356-014-3469-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/14/2014] [Indexed: 06/03/2023]
Abstract
Widespread use of pentachlorophenol (PCP) in schistosomiasis endemic areas had led to ubiquitous exposure to PCP and its residues. Numerous studies had revealed that occupational PCP exposure probably increased risk of cancers, but whether long-term community-level exposure to PCP generates the similarly carcinogenic effect, seldom studies focused on it. This study was to explore the cancer risks of long-term community-level PCP exposure from drinking water in a Chinese general population. Incident (2009-2012) cancer records were identified by local government national registry. And PCP concentration of raw drinking water samples in each district was measured by GC-MS/MS analysis for further division of three PCP exposure categories by interquartile range (high vs. medium vs. low). Internal comparisons were performed, and standard rate ratio was calculated to describe the relationship between PCP exposure and cancer risks by using low-exposure group as the reference group. PCP was detected in all 27 raw drinking water samples ranging from 11.21 to 684.00 ng/L. A total of 6,750 cases (4,409 male and 2,341 female cases) were identified, and age-standardized rate (world) was 154.95 per 100,000 person-years. The cancer incidence for the high-exposure group was remarkably high. Internal comparisons indicated that high PCP exposure might be positively associated with high cancer risks in the community population, particularly for leukemia (SRR = 5.93, 95 % CI = 5.24-6.71), maligant lymphoma (SRR = 2.27, 95 % CI = 2.10-2.54), and esophageal cancer (SRR = 2.42, 95 % CI = 2.35-2.50). Long-term community-level exposure to PCP was probably associated with hemolymph neoplasm, neurologic tumors, and digestive system neoplasm.
Collapse
Affiliation(s)
- Pan Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei, Anhui, 230032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Witham AA, Sharma P, Wetmore SD, Gabryelski W, Manderville RA. Chlorine substitution promotes phenyl radical loss from C8-phenoxy-2'-deoxyguanosine adducts: implications for biomarker identification from chlorophenol exposure. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:81-87. [PMID: 25601678 DOI: 10.1002/jms.3475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 08/21/2014] [Accepted: 08/21/2014] [Indexed: 06/04/2023]
Abstract
Chlorophenols are persistent organic pollutants, which undergo peroxidase-mediated oxidation to afford phenolic radical intermediates that react at the C8-site of 2'-deoxyguanosine (dG) to generate oxygen-linked C8-dG adducts. Such adducts are expected to contribute to chlorophenol toxicity and serve as effective dose biomarkers for chlorophenol exposure. Electrospray ionization mass spectrometry (ESI-MS) was employed to study collision induced dissociation (CID) for a family of such phenolic O-linked C8-dG adducts. Fragmentation of the deprotonated nucleosides demonstrates that an unexpected homolytic cleavage of the ether linkage to release phenyl radicals and a nucleoside distonic ion with m/z 281 competes effectively with commonly observed breakage of the glycosidic bond to release the deprotonated nucleobase. Increased chlorination of the phenyl ring enhances phenyl radical loss. Density functional theory calculations demonstrate that Cl-substitution decreases phenyl radical stability but promotes homolytic breakage of the C8-phenyl bond in the C8-dG adduct. The calculations suggest that phenyl radical loss is driven by destabilizing steric (electrostatic repulsion) interactions between the ether oxygen atom and ortho-chlorines on the phenyl ring. The distonic ion at m/z 281 represents a unique dissociation product for deprotonated O-linked C8-dG adducts and may prove useful for selective detection of relevant biomarkers for chlorophenol exposure by tandem mass spectrometry using selective reaction monitoring.
Collapse
Affiliation(s)
- Aaron A Witham
- Department of Chemistry and Toxicology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | | | | | | |
Collapse
|
50
|
Wang YQ, Tan CY, Zhuang SL, Zhai PZ, Cui Y, Zhou QH, Zhang HM, Fei Z. In vitro and in silico investigations of the binding interactions between chlorophenols and trypsin. JOURNAL OF HAZARDOUS MATERIALS 2014; 278:55-65. [PMID: 24953936 DOI: 10.1016/j.jhazmat.2014.05.092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 06/03/2023]
Abstract
Being the first-degree toxic pollutants, chlorophenols (CP) have potential carcinogenic and mutagenic activity and toxicity. Since there still lacks studies on molecular interactions of chlorophenols with trypsin, one major binding target of many exogenous environmental pollutants, the binding interactions between five chlorophenols, 2-CP, 2,6-DCP, 2,4,6-TCP, 2,4,6-TCP, 2,3,4,6-TCP and PCP and trypsin were characterized by the combination of multispectroscopic techniques and molecular modeling. The chlorophenols bind at the one main site of trypsin and the binding induces the changes of microenvironment and global conformations of trypsin. Different number of chloride atoms significantly affects the binding and the binding constants KA ranks as KA (2-CP) < KA (2,6-DCP) ≈ KA (2,4,6-TCP) < KA (2,3,4,6-TCP) < KA (PCP). These chlorophenols interacts with trypsin mainly through hydrophobic interactions and via hydrogen bonding interactions and aromatic-aromatic π-π stacking interaction. Our results offer insights into the binding mechanism of chlorophenols with trypsin and provide important information for possible toxicity risk of chlorophenols to human health.
Collapse
Affiliation(s)
- Yan-Qing Wang
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng City 224002, Jiangsu Province, People's Republic of China; Institute of Applied Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224002, Jiangsu Province, People's Republic of China.
| | - Chun-Yun Tan
- Institute of Applied Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224002, Jiangsu Province, People's Republic of China
| | - Shu-Lin Zhuang
- Institute of Environmental Science, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Peng-Zhan Zhai
- Institute of Applied Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224002, Jiangsu Province, People's Republic of China
| | - Yun Cui
- Institute of Applied Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224002, Jiangsu Province, People's Republic of China
| | - Qiu-Hua Zhou
- Institute of Applied Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224002, Jiangsu Province, People's Republic of China
| | - Hong-Mei Zhang
- Institute of Applied Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224002, Jiangsu Province, People's Republic of China
| | - Zhenghao Fei
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng City 224002, Jiangsu Province, People's Republic of China; Institute of Applied Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224002, Jiangsu Province, People's Republic of China
| |
Collapse
|