1
|
Chen Y, Liu T, Hu D, Hu T, Ye C, Mu W. Histology, fatty acid composition, antioxidant and glycolipid metabolism, and transcriptome analyses of the acute cold stress response in Phoxinus lagowskii. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101242. [PMID: 38729031 DOI: 10.1016/j.cbd.2024.101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Water temperature is a crucial environmental factor that significantly affects the physiological and biochemical processes of fish. Due to the occurrence of cold events in aquaculture, it is imperative to investigate how fish respond to cold stress. This study aims to uncover the mechanisms responds to acute cold stress by conducting a comprehensive analysis of the histomorphology, glycolipid metabolic and antioxidant enzymes, fatty acid composition and transcriptome at three temperatures (16 °C, 10 °C and 4 °C) in Phoxinus lagowskii. Our results showed that cold stress not damaged muscle microstructure but caused autophagy (at 10 °C). In addition, serum glucose (Glu) and triglycerides (TG) increased during cold stress. The activities of reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), fructose phosphokinase (PFK), hexokinase (HK), pyruvate kinase (PK), and malondialdehyde (MDA) content in muscle were measured and analyzed. During cold stress, superoxide dismutase and catalase activities increased, reactive oxygen species content decreased. No significant difference in Glutathione peroxidase (GPx) activity, malondialdehyde and total cholesterol (T-CHO) contents among groups. Phosphokinase and pyruvate kinase activities decreased, and HK activity increased during cold stress. Our study resulted in the identification of a total of 25,400 genes, with 2524 genes showing differential expression across different temperature treatments. Furthermore, KEGG pathway indicated that some pathways upregulated during light cold stress (at 10 °C, including autophagy, and AMP-activated protein kinase (AMPK) signaling pathway. Additionally, circadian rhythm is among the most enriched pathways in genes up-regulated during severe cold stress (at 4 °C). Our findings offer valuable insights into how cold-water fish respond to cold stress.
Collapse
Affiliation(s)
- Yingqiao Chen
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Tianmei Liu
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Deer Hu
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Tingting Hu
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Cunrun Ye
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Weijie Mu
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
2
|
Zhu G, Guan F, Li S, Zhang Q, Zhang X, Qin Y, Sun Z, Peng S, Cheng J, Li Y, Ren R, Fan T, Liu H. Glutaminase potentiates the glycolysis in esophageal squamous cell carcinoma by interacting with PDK1. Mol Carcinog 2024; 63:897-911. [PMID: 38353358 DOI: 10.1002/mc.23696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 01/24/2024] [Indexed: 04/13/2024]
Abstract
Increasing evidence has demonstrated that glutaminase (GLS) as a key mitochondrial enzyme plays a pivotal role in glutaminolysis, which widely participates in glutamine metabolism serving as main energy sources and building blocks for tumor growth. However, the roles and molecular mechanisms of GLS in esophageal squamous cell carcinoma (ESCC) remains unknown. Here, we found that GLS was highly expressed in ESCC tissues and cells. GLS inhibitor CB-839 significantly suppressed cell proliferation, colony formation, migration and invasion of ESCC cells, whereas GLS overexpression displayed the opposite effects. In addition, CB-839 markedly suppressed glucose consumption and lactate production, coupled with the downregulation of glycolysis-related proteins HK2, PFKM, PKM2 and LDHA, whereas GLS overexpression exhibited the adverse results. In vivo animal experiment revealed that CB-839 dramatically suppressed tumor growth, whereas GLS overexpression promoted tumor growth in ESCC cells xenografted nude mice. Mechanistically, GLS was localized in mitochondria of ESCC cells, which interacted with PDK1 protein. CB-839 attenuated the interaction of GLS and PDK1 in ESCC cells by suppressing PDK1 expression, which further evoked the downregulation of p-PDHA1 (s293), however, GLS overexpression markedly enhanced the level of p-PDHA1 (s293). These findings suggest that interaction of GLS with PDK1 accelerates the glycolysis of ESCC cells by inactivating PDH enzyme, and thus targeting GLS may be a novel therapeutic approach for ESCC patients.
Collapse
Affiliation(s)
- Guangzhao Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shenglei Li
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qing Zhang
- The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Translational Medicine Research Center Zhengzhou, Henan, China
| | - Xueying Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yue Qin
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhangzhan Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shaohua Peng
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiexing Cheng
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yiyang Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ruili Ren
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Tianli Fan
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Hongtao Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Popova D, Sun J, Chow HM, Hart RP. A critical review of ethanol effects on neuronal firing: A metabolic perspective. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:450-458. [PMID: 38217065 DOI: 10.1111/acer.15266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
Ethanol metabolism is relatively understudied in neurons, even though changes in neuronal metabolism are known to affect their activity. Recent work demonstrates that ethanol is preferentially metabolized over glucose as a source of carbon and energy, and it reprograms neurons to a state of reduced energy potential and diminished capacity to utilize glucose once ethanol is exhausted. Ethanol intake has been associated with changes in neuronal firing and specific brain activity (EEG) patterns have been linked with risk for alcohol use disorder (AUD). Furthermore, a haplotype of the inwardly rectifying potassium channel subunit, GIRK2, which plays a critical role in regulating excitability of neurons, has been linked with AUD and shown to be directly regulated by ethanol. At the same time, overexpression of GIRK2 prevents ethanol-induced metabolic changes. Based on the available evidence, we conclude that the mechanisms underlying the effects of ethanol on neuronal metabolism are a novel target for developing therapies for AUD.
Collapse
Affiliation(s)
- Dina Popova
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Jacquelyne Sun
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Hei-Man Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
4
|
Park SH, Kim G, Yang GE, Yun HJ, Shin TH, Kim ST, Lee K, Kim HS, Kim SH, Leem SH, Cho WS, Lee JH. Disruption of phosphofructokinase activity and aerobic glycolysis in human bronchial epithelial cells by atmospheric ultrafine particulate matter. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132966. [PMID: 37976851 DOI: 10.1016/j.jhazmat.2023.132966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Exposure to ambient ultrafine particulate matter (UPM) causes respiratory disorders; however, the underlying molecular mechanisms remain unclear. In this study, we synthesized simulated UPM (sUPM) with controlled physicochemical properties using the spark-discharge method. Subsequently, we investigated the biological effects of sUPM using BEAS-2B human bronchial epithelial cells (HBECs) and a mouse intratracheal instillation model. High throughput RNA-sequencing and bioinformatics analyses revealed that dysregulation of the glycolytic metabolism is involved in the inhibited proliferation and survival of HBECs by sUPM treatment. Furthermore, signaling pathway and enzymatic analyses showed that the treatment of BEAS-2B cells with sUPM induces the inactivation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB, also known as AKT), resulting in the downregulation of phosphofructokinase 2 (PFK2) S483 phosphorylation, PFK enzyme activity, and aerobic glycolysis in HBECs in an oxidative stress-independent manner. Additionally, intratracheal instillation of sUPM reduced the phosphorylation of ERK, AKT, and PFK2, decreased proliferation, and increased the apoptosis of bronchial epithelial cells in mice. The findings of this study imply that UPM induces pulmonary toxicity by disrupting aerobic glycolytic metabolism in lung epithelial cells, which can provide novel insights into the toxicity mechanisms of UPM and strategies to prevent their toxic effects.
Collapse
Affiliation(s)
- Su Hwan Park
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Gyuri Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Gi-Eun Yang
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Hye Jin Yun
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Tae Hwan Shin
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Hyuk Soon Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Seok-Ho Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Sun-Hee Leem
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea.
| | - Wan-Seob Cho
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea.
| | - Jong-Ho Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
5
|
Grossamide attenuates inflammation by balancing macrophage polarization through metabolic reprogramming of macrophages in mice. Int Immunopharmacol 2022; 112:109190. [PMID: 36116152 DOI: 10.1016/j.intimp.2022.109190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022]
Abstract
Macrophages exhibited different phenotypes in response to environmental cues. To meet the needs of rapid response to stimuli, M1-activated macrophages preferred glycolysis to oxidative phosphorylation (OXPHOS) in mitochondria to quickly produce energy and obtain ample raw materials to support cell activation at the same time. Activated macrophages produced free radicals and cytokines to eradicate pathogens but also induced oxidative damage and enhanced inflammation. Grossamide (GSE), a lignanamide from Polygonum multiflorum Thunb., exhibited notable anti-inflammatory effects. In this study, the potential of GSE on macrophage polarization was explored. GSE significantly down-regulated the levels of M1 macrophage biomarkers (Cd32a, Cd80 and Cd86) while increased the levels of M2 indicators (Cd163, Mrc1 and Socs1), showing its potential to inhibit LPS-induced M1 polarization of macrophages. This ability has close a link to its effect on metabolic reprogramming of macrophage. GSE shunted nitric oxide (NO) production from arginine by up-regulation of arginase and down-regulation of inducible nitric oxide synthase, thus attenuated the inhibition of NO on OXPHOS. LPS created three breakpoints in the tricarboxylic acid cycle (TCA) cycle of macrophage as evidenced by down-regulated isocitrate dehydrogenase, accumulation of succinate and the inhibited SDH activity, significantly decreased level of oxoglutarate dehydrogenase expression and its substrate α-ketoglutarate. Thus GSE reduced oxidative stress and amended fragmented TCA cycle. As a result, GSE maintained redox (NAD+/NADH) and energy (ATP/ADP) state, reduced extracellular acidification rate and enhanced the oxygen consumption rate. In addition, GSE decreased the release of inflammatory cytokines by inhibiting the activation of the LPS/TLR4/NF-κB pathway. These findings highlighted the central role of immunometabolism of macrophages in its functional plasticity, which invited future study of mode of action of anti-inflammatory drugs from viewpoint of metabolic reprogramming.
Collapse
|
6
|
Jiang N, Xie B, Xiao W, Fan M, Xu S, Duan Y, Hamsafar Y, Evans AC, Huang J, Zhou W, Lin X, Ye N, Wanggou S, Chen W, Jing D, Fragoso RC, Dugger BN, Wilson PF, Coleman MA, Xia S, Li X, Sun LQ, Monjazeb AM, Wang A, Murphy WJ, Kung HJ, Lam KS, Chen HW, Li JJ. Fatty acid oxidation fuels glioblastoma radioresistance with CD47-mediated immune evasion. Nat Commun 2022; 13:1511. [PMID: 35314680 PMCID: PMC8938495 DOI: 10.1038/s41467-022-29137-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) remains the top challenge to radiotherapy with only 25% one-year survival after diagnosis. Here, we reveal that co-enhancement of mitochondrial fatty acid oxidation (FAO) enzymes (CPT1A, CPT2 and ACAD9) and immune checkpoint CD47 is dominant in recurrent GBM patients with poor prognosis. A glycolysis-to-FAO metabolic rewiring is associated with CD47 anti-phagocytosis in radioresistant GBM cells and regrown GBM after radiation in syngeneic mice. Inhibition of FAO by CPT1 inhibitor etomoxir or CRISPR-generated CPT1A-/-, CPT2-/-, ACAD9-/- cells demonstrate that FAO-derived acetyl-CoA upregulates CD47 transcription via NF-κB/RelA acetylation. Blocking FAO impairs tumor growth and reduces CD47 anti-phagocytosis. Etomoxir combined with anti-CD47 antibody synergizes radiation control of regrown tumors with boosted macrophage phagocytosis. These results demonstrate that enhanced fat acid metabolism promotes aggressive growth of GBM with CD47-mediated immune evasion. The FAO-CD47 axis may be targeted to improve GBM control by eliminating the radioresistant phagocytosis-proofing tumor cells in GBM radioimmunotherapy.
Collapse
Affiliation(s)
- Nian Jiang
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA ,grid.216417.70000 0001 0379 7164Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China
| | - Bowen Xie
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA ,grid.12527.330000 0001 0662 3178Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084 PR China
| | - Wenwu Xiao
- grid.27860.3b0000 0004 1936 9684Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817 USA
| | - Ming Fan
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Shanxiu Xu
- grid.27860.3b0000 0004 1936 9684Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817 USA
| | - Yixin Duan
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Yamah Hamsafar
- grid.27860.3b0000 0004 1936 9684Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA 95817 USA
| | - Angela C. Evans
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Jie Huang
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Weibing Zhou
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA ,grid.216417.70000 0001 0379 7164Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China
| | - Xuelei Lin
- grid.216417.70000 0001 0379 7164Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China
| | - Ningrong Ye
- grid.216417.70000 0001 0379 7164Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China
| | - Siyi Wanggou
- grid.216417.70000 0001 0379 7164Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China
| | - Wen Chen
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA ,grid.216417.70000 0001 0379 7164Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China
| | - Di Jing
- grid.27860.3b0000 0004 1936 9684Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817 USA ,grid.216417.70000 0001 0379 7164Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China
| | - Ruben C. Fragoso
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA ,grid.27860.3b0000 0004 1936 9684NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817 USA
| | - Brittany N. Dugger
- grid.27860.3b0000 0004 1936 9684Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA 95817 USA
| | - Paul F. Wilson
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA ,grid.27860.3b0000 0004 1936 9684NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817 USA
| | - Matthew A. Coleman
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA ,grid.27860.3b0000 0004 1936 9684NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817 USA
| | - Shuli Xia
- grid.21107.350000 0001 2171 9311Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Xuejun Li
- grid.216417.70000 0001 0379 7164Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China ,grid.216417.70000 0001 0379 7164Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China
| | - Lun-Quan Sun
- grid.216417.70000 0001 0379 7164Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China
| | - Arta M. Monjazeb
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA ,grid.27860.3b0000 0004 1936 9684NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817 USA
| | - Aijun Wang
- grid.27860.3b0000 0004 1936 9684Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817 USA
| | - William J. Murphy
- grid.27860.3b0000 0004 1936 9684NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817 USA ,grid.27860.3b0000 0004 1936 9684Departments of Dermatology and Internal Medicine, UC Davis School of Medicine, Sacramento, CA 95817 USA
| | - Hsing-Jien Kung
- grid.27860.3b0000 0004 1936 9684Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817 USA ,grid.412896.00000 0000 9337 0481TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 110 Taiwan
| | - Kit S. Lam
- grid.27860.3b0000 0004 1936 9684Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817 USA ,grid.27860.3b0000 0004 1936 9684NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817 USA
| | - Hong-Wu Chen
- grid.27860.3b0000 0004 1936 9684Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817 USA ,grid.27860.3b0000 0004 1936 9684NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817 USA ,grid.413933.f0000 0004 0419 2847Veterans Affairs Northern California Health Care System, Mather, CA95655 USA
| | - Jian Jian Li
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA, 95817, USA. .,NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
7
|
García-Gaytán AC, Hernández-Abrego A, Díaz-Muñoz M, Méndez I. Glutamatergic system components as potential biomarkers and therapeutic targets in cancer in non-neural organs. Front Endocrinol (Lausanne) 2022; 13:1029210. [PMID: 36457557 PMCID: PMC9705578 DOI: 10.3389/fendo.2022.1029210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Glutamate is one of the most abundant amino acids in the blood. Besides its role as a neurotransmitter in the brain, it is a key substrate in several metabolic pathways and a primary messenger that acts through its receptors outside the central nervous system (CNS). The two main types of glutamate receptors, ionotropic and metabotropic, are well characterized in CNS and have been recently analyzed for their roles in non-neural organs. Glutamate receptor expression may be particularly important for tumor growth in organs with high concentrations of glutamate and might also influence the propensity of such tumors to set metastases in glutamate-rich organs, such as the liver. The study of glutamate transporters has also acquired relevance in the physiology and pathologies outside the CNS, especially in the field of cancer research. In this review, we address the recent findings about the expression of glutamatergic system components, such as receptors and transporters, their role in the physiology and pathology of cancer in non-neural organs, and their possible use as biomarkers and therapeutic targets.
Collapse
|
8
|
Mahajan S, Choudhary S, Kumar P, Tomar S. Antiviral strategies targeting host factors and mechanisms obliging +ssRNA viral pathogens. Bioorg Med Chem 2021; 46:116356. [PMID: 34416512 PMCID: PMC8349405 DOI: 10.1016/j.bmc.2021.116356] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/21/2022]
Abstract
The ongoing COVID-19 pandemic, periodic recurrence of viral infections, and the emergence of challenging variants has created an urgent need of alternative therapeutic approaches to combat the spread of viral infections, failing to which may pose a greater risk to mankind in future. Resilience against antiviral drugs or fast evolutionary rate of viruses is stressing the scientific community to identify new therapeutic approaches for timely control of disease. Host metabolic pathways are exquisite reservoir of energy to viruses and contribute a diverse array of functions for successful replication and pathogenesis of virus. Targeting the host factors rather than viral enzymes to cease viral infection, has emerged as an alternative antiviral strategy. This approach offers advantage in terms of increased threshold to viral resistance and can provide broad-spectrum antiviral action against different viruses. The article here provides substantial review of literature illuminating the host factors and molecular mechanisms involved in innate/adaptive responses to viral infection, hijacking of signalling pathways by viruses and the intracellular metabolic pathways required for viral replication. Host-targeted drugs acting on the pathways usurped by viruses are also addressed in this study. Host-directed antiviral therapeutics might prove to be a rewarding approach in controlling the unprecedented spread of viral infection, however the probability of cellular side effects or cytotoxicity on host cell should not be ignored at the time of clinical investigations.
Collapse
Affiliation(s)
- Supreeti Mahajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
9
|
Jeon SM, Lim JS, Park SH, Lee JH. Wnt signaling promotes tumor development in part through phosphofructokinase 1 platelet isoform upregulation. Oncol Rep 2021; 46:234. [PMID: 34515327 DOI: 10.3892/or.2021.8185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/21/2021] [Indexed: 11/06/2022] Open
Abstract
The activation of Wnt signaling has been detected in various types of human cancer and has been shown to be associated with cancer development. In the present study, it was revealed that Wnt signaling induced the expression of phosphofructokinase 1 platelet isoform (PFKP), which has been reported to catalyze a rate‑limiting reaction in glycolysis and is important for the Warburg effect, proliferation, colony formation and cancer cell migration. Moreover, it was demonstrated that Wnt3A induced PFKP expression in a β‑catenin‑independent manner, resulting in increased PFK enzyme activity. Wnt3A‑induced epidermal growth factor receptor transactivation activated PI3K/AKT, which stabilized PFKP through PFKP S386 phosphorylation and subsequent PFKP upregulation. Wnt3A‑induced PFKP S386 phosphorylation increased PFKP expression and promoted the Warburg effect, cell proliferation, colony formation and the migratory ability of cancer cells. On the whole, the findings of the present study underscore the potential role of PFKP in Wnt signaling‑induced tumor development.
Collapse
Affiliation(s)
- So Mi Jeon
- Department of Health Sciences, The Graduate School of Dong‑A University, Busan 49315, Republic of Korea
| | - Je Sun Lim
- Department of Health Sciences, The Graduate School of Dong‑A University, Busan 49315, Republic of Korea
| | - Su Hwan Park
- Department of Health Sciences, The Graduate School of Dong‑A University, Busan 49315, Republic of Korea
| | - Jong-Ho Lee
- Department of Health Sciences, The Graduate School of Dong‑A University, Busan 49315, Republic of Korea
| |
Collapse
|
10
|
Zheng W, Chen C, Yu J, Jin C, Han T. An energy metabolism-based eight-gene signature correlates with the clinical outcome of esophagus carcinoma. BMC Cancer 2021; 21:345. [PMID: 33794814 PMCID: PMC8015196 DOI: 10.1186/s12885-021-08030-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 03/14/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The essence of energy metabolism has spread to the field of esophageal cancer (ESC) cells. Herein, we tried to develop a prognostic prediction model for patients with ESC based on the expression profiles of energy metabolism associated genes. MATERIALS AND METHODS The overall survival (OS) predictive gene signature was developed, internally and externally validated based on ESC datasets including The Cancer Genome Atlas (TCGA), GSE54993 and GSE19417 datasets. Hub genes were identified in each energy metabolism related molecular subtypes by weighted gene correlation network analysis, and then enrolled for determination of prognostic genes. Univariate, LASSO and multivariate Cox regression analysis were applied to assess prognostic genes and build the prognostic gene signature. Kaplan-Meier curve, time-dependent receiver operating characteristic (ROC) curve, nomogram, decision curve analysis (DCA), and restricted mean survival time (EMST) were used to assess the performance of the gene signature. RESULTS A novel energy metabolism based eight-gene signature (including UBE2Z, AMTN, AK1, CDCA4, TLE1, FXN, ZBTB6 and APLN) was established, which could dichotomize patients with significantly different OS in ESC. The eight-gene signature demonstrated independent prognostication potential in patient with ESC. The prognostic nomogram constructed based on the gene signature showed excellent predictive performance, whose robustness and clinical usability were higher than three previous reported prognostic gene signatures. CONCLUSIONS Our study established a novel energy metabolism based eight-gene signature and nomogram to predict the OS of ESC, which may help in precise clinical management.
Collapse
Affiliation(s)
- Weifeng Zheng
- The department of Gastroenterology, the Forth Affiliated Hospital Zhejiang University School of Medicine, No. N1, Shangcheng Avenue, Yiwu City, 322000, Zhejiang Province, China.
| | - Chaoying Chen
- The department of Gastroenterology, the Forth Affiliated Hospital Zhejiang University School of Medicine, No. N1, Shangcheng Avenue, Yiwu City, 322000, Zhejiang Province, China
| | - Jianghao Yu
- The department of Cardio-Thoracic Surgery, the Forth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, China
| | - Chengfeng Jin
- The department of Gastroenterology, the Forth Affiliated Hospital Zhejiang University School of Medicine, No. N1, Shangcheng Avenue, Yiwu City, 322000, Zhejiang Province, China
| | - Tiemei Han
- The department of Gastroenterology, the Forth Affiliated Hospital Zhejiang University School of Medicine, No. N1, Shangcheng Avenue, Yiwu City, 322000, Zhejiang Province, China
| |
Collapse
|
11
|
Jeon SM, Lim JS, Kim HR, Lee JH. PFK activation is essential for the odontogenic differentiation of human dental pulp stem cells. Biochem Biophys Res Commun 2021; 544:52-59. [PMID: 33516882 DOI: 10.1016/j.bbrc.2021.01.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/19/2021] [Indexed: 01/25/2023]
Abstract
Dental pulp stem cells (DPSCs) can differentiate into diverse cell lineages, including odontogenic cells that are responsible for dentin formation, which is important in pulp repair and tooth regeneration. While glycolysis plays a central role in various cellular activities in both physiological and pathological conditions, its role and regulation in odontogenic differentiation are unknown. Here, we show that aerobic glycolysis is induced during odontoblastic differentiation from human DPSCs. Importantly, we demonstrate that during odontoblastic differentiation, protein expression levels of phosphofructokinase 1 muscle isoform (PFKM) and PFK2, but not other glycolytic enzymes, are mainly upregulated by AKT activation, resulting in increased total PFK enzyme activity. Increased PFK activity is essential to enhance aerobic glycolysis, which plays an important role in the odontoblastic differentiation of human DPSCs. These findings underscore that PFK activation-induced aerobic glycolysis accompanies, and participates in, human DPSCs differentiation into odontogenic lineage, and could play a role in the regulation of dental pulp repair.
Collapse
Affiliation(s)
- So Mi Jeon
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Je Sun Lim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Hyung-Ryong Kim
- College of Dentistry, Dankook University, Cheonan, Republic of Korea.
| | - Jong-Ho Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea; Department of Biological Sciences, Dong-A University, Busan, 49315, Republic of Korea.
| |
Collapse
|
12
|
Qie S, Yoshida A, Parnham S, Oleinik N, Beeson GC, Beeson CC, Ogretmen B, Bass AJ, Wong KK, Rustgi AK, Diehl JA. Targeting glutamine-addiction and overcoming CDK4/6 inhibitor resistance in human esophageal squamous cell carcinoma. Nat Commun 2019; 10:1296. [PMID: 30899002 PMCID: PMC6428878 DOI: 10.1038/s41467-019-09179-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 02/20/2019] [Indexed: 02/08/2023] Open
Abstract
The dysregulation of Fbxo4-cyclin D1 axis occurs at high frequency in esophageal squamous cell carcinoma (ESCC), where it promotes ESCC development and progression. However, defining a therapeutic vulnerability that results from this dysregulation has remained elusive. Here we demonstrate that Rb and mTORC1 contribute to Gln-addiction upon the dysregulation of the Fbxo4-cyclin D1 axis, which leads to the reprogramming of cellular metabolism. This reprogramming is characterized by reduced energy production and increased sensitivity of ESCC cells to combined treatment with CB-839 (glutaminase 1 inhibitor) plus metformin/phenformin. Of additional importance, this combined treatment has potent efficacy in ESCC cells with acquired resistance to CDK4/6 inhibitors in vitro and in xenograft tumors. Our findings reveal a molecular basis for cancer therapy through targeting glutaminolysis and mitochondrial respiration in ESCC with dysregulated Fbxo4-cyclin D1 axis as well as cancers resistant to CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Shuo Qie
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Akihiro Yoshida
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Stuart Parnham
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Natalia Oleinik
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Gyda C Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Craig C Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Adam J Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kwok-Kin Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Anil K Rustgi
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - J Alan Diehl
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
13
|
Curcumin and its Potential for Systemic Targeting of Inflamm-Aging and Metabolic Reprogramming in Cancer. Int J Mol Sci 2019; 20:ijms20051180. [PMID: 30857125 PMCID: PMC6429141 DOI: 10.3390/ijms20051180] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/24/2022] Open
Abstract
Pleiotropic effects of curcumin have been the subject of intensive research. The interest in this molecule for preventive medicine may further increase because of its potential to modulate inflamm-aging. Although direct data related to its effect on inflamm-aging does not exist, there is a strong possibility that its well-known anti-inflammatory properties may be relevant to this phenomenon. Curcumin's binding to various proteins, which was shown to be dependent on cellular oxidative status, is yet another feature for exploration in depth. Finally, the binding of curcumin to various metabolic enzymes is crucial to curcumin's interference with powerful metabolic machinery, and can also be crucial for metabolic reprogramming of cancer cells. This review offers a synthesis and functional links that may better explain older data, some observational, in light of the most recent findings on curcumin. Our focus is on its modes of action that have the potential to alleviate specific morbidities of the 21st century.
Collapse
|
14
|
Liu Y, Huang Y, Zhang J, Pei C, Hu J, Lyu J, Shen Y. TIMMDC1 Knockdown Inhibits Growth and Metastasis of Gastric Cancer Cells through Metabolic Inhibition and AKT/GSK3β/β-Catenin Signaling Pathway. Int J Biol Sci 2018; 14:1256-1267. [PMID: 30123074 PMCID: PMC6097471 DOI: 10.7150/ijbs.27100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 06/21/2018] [Indexed: 02/02/2023] Open
Abstract
TIMMDC1 (C3orf1), a predicted 4-pass membrane protein, which locates in the mitochondrial inner membrane, has been demonstrated to have association with multiple member of mitochondrial complex I assembly factors and core mitochondrial complex I subunits. The expression level of TIMMDC1 in highly-metastatic tumor cells is higher than that in lowly- metastatic tumor cells. However, the role of TIMMDC1 in human gastric cancer progression is unclear. In this study, human gastric cancer cells SGC-7901 and BGC-823 cells were used, and TIMMDC1 was knockdown with small interfering RNA. The data showed that TIMMDC1 knockdown caused inhibitory effects on the cell proliferation in vitro and tumor progression in vivo. Knockdown of TIMMDC1 significantly and exclusively reduced the activity of mitochondrial complex I but not complex II~ IV, and caused an obvious inhibition in mitochondrial respiration and ATP-linked oxygen consumption. Besides, the glycolysis pathway was also attenuated by TIMMDC1 knockdown, and the ATP content in the group of shTIMMDC1 cells was significantly lower than that in the shCont cells. The expression levels of phosphoylated AKT(Ser473) and GSK-3β (Ser9), as well as the downstream protein β-catenin and c-Myc were also markedly reduced in the group of shTIMMDC1 cells. Taken together, these findings suggest that TIMMDC1 may play an important role in human gastric cancer development, and its underlying mechanism is not only associated with mitochondrial complex I inhibition and reduced mitochondrial respiration, but is also associated with reduced glycolysis activity and the AKT/GSK3β/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Yuan Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China, 325035
| | - Yuyan Huang
- Key Laboratory of Laboratory Medicine, Ministry of Education, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China, 325035
| | - Jingjing Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China, 325035
| | - Cao Pei
- Key Laboratory of Laboratory Medicine, Ministry of Education, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China, 325035
| | - Jiahui Hu
- Key Laboratory of Laboratory Medicine, Ministry of Education, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China, 325035
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China, 325035.,Laboratory Medicine College, Hangzhou Medical College, Hangzhou, Zhejiang 310053, P. R. China
| | - Yao Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China, 325035
| |
Collapse
|
15
|
Sun D, Chen J, Liu L, Zhao G, Dong P, Wu B, Wang J, Dong L. Establishment of a 12-gene expression signature to predict colon cancer prognosis. PeerJ 2018; 6:e4942. [PMID: 29915691 PMCID: PMC6004299 DOI: 10.7717/peerj.4942] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/21/2018] [Indexed: 12/27/2022] Open
Abstract
A robust and accurate gene expression signature is essential to assist oncologists to determine which subset of patients at similar Tumor-Lymph Node-Metastasis (TNM) stage has high recurrence risk and could benefit from adjuvant therapies. Here we applied a two-step supervised machine-learning method and established a 12-gene expression signature to precisely predict colon adenocarcinoma (COAD) prognosis by using COAD RNA-seq transcriptome data from The Cancer Genome Atlas (TCGA). The predictive performance of the 12-gene signature was validated with two independent gene expression microarray datasets: GSE39582 includes 566 COAD cases for the development of six molecular subtypes with distinct clinical, molecular and survival characteristics; GSE17538 is a dataset containing 232 colon cancer patients for the generation of a metastasis gene expression profile to predict recurrence and death in COAD patients. The signature could effectively separate the poor prognosis patients from good prognosis group (disease specific survival (DSS): Kaplan Meier (KM) Log Rank p = 0.0034; overall survival (OS): KM Log Rank p = 0.0336) in GSE17538. For patients with proficient mismatch repair system (pMMR) in GSE39582, the signature could also effectively distinguish high risk group from low risk group (OS: KM Log Rank p = 0.005; Relapse free survival (RFS): KM Log Rank p = 0.022). Interestingly, advanced stage patients were significantly enriched in high 12-gene score group (Fisher’s exact test p = 0.0003). After stage stratification, the signature could still distinguish poor prognosis patients in GSE17538 from good prognosis within stage II (Log Rank p = 0.01) and stage II & III (Log Rank p = 0.017) in the outcome of DFS. Within stage III or II/III pMMR patients treated with Adjuvant Chemotherapies (ACT) and patients with higher 12-gene score showed poorer prognosis (III, OS: KM Log Rank p = 0.046; III & II, OS: KM Log Rank p = 0.041). Among stage II/III pMMR patients with lower 12-gene scores in GSE39582, the subgroup receiving ACT showed significantly longer OS time compared with those who received no ACT (Log Rank p = 0.021), while there is no obvious difference between counterparts among patients with higher 12-gene scores (Log Rank p = 0.12). Besides COAD, our 12-gene signature is multifunctional in several other cancer types including kidney cancer, lung cancer, uveal and skin melanoma, brain cancer, and pancreatic cancer. Functional classification showed that seven of the twelve genes are involved in immune system function and regulation, so our 12-gene signature could potentially be used to guide decisions about adjuvant therapy for patients with stage II/III and pMMR COAD.
Collapse
Affiliation(s)
- Dalong Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Chen
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Longzi Liu
- Department of Hepatic Surgery, Liver Cancer Institute, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guangxi Zhao
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Pingping Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bingrui Wu
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Wang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Lee JH, Liu R, Li J, Wang Y, Tan L, Li XJ, Qian X, Zhang C, Xia Y, Xu D, Guo W, Ding Z, Du L, Zheng Y, Chen Q, Lorenzi PL, Mills GB, Jiang T, Lu Z. EGFR-Phosphorylated Platelet Isoform of Phosphofructokinase 1 Promotes PI3K Activation. Mol Cell 2018; 70:197-210.e7. [PMID: 29677490 PMCID: PMC6114939 DOI: 10.1016/j.molcel.2018.03.018] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/26/2018] [Accepted: 03/15/2018] [Indexed: 02/05/2023]
Abstract
EGFR activates phosphatidylinositide 3-kinase (PI3K), but the mechanism underlying this activation is not completely understood. We demonstrated here that EGFR activation resulted in lysine acetyltransferase 5 (KAT5)-mediated K395 acetylation of the platelet isoform of phosphofructokinase 1 (PFKP) and subsequent translocation of PFKP to the plasma membrane, where the PFKP was phosphorylated at Y64 by EGFR. Phosphorylated PFKP binds to the N-terminal SH2 domain of p85α, which is distinct from binding of Gab1 to the C-terminal SH2 domain of p85α, and recruited p85α to the plasma membrane resulting in PI3K activation. PI3K-dependent AKT activation results in enhanced phosphofructokinase 2 (PFK2) phosphorylation and production of fructose-2,6-bisphosphate, which in turn promotes PFK1 activation. PFKP Y64 phosphorylation-enhanced PI3K/AKT-dependent PFK1 activation and GLUT1 expression promoted the Warburg effect, tumor cell proliferation, and brain tumorigenesis. These findings underscore the instrumental role of PFKP in PI3K activation and enhanced glycolysis through PI3K/AKT-dependent positive-feedback regulation.
Collapse
Affiliation(s)
- Jong-Ho Lee
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Rui Liu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing Li
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yugang Wang
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Lin Tan
- Department of Bioinformatics and Computational Biology and The Proteomics and Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Xin-Jian Li
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xu Qian
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Chuanbao Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Yan Xia
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Daqian Xu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Wei Guo
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Zhiyong Ding
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Linyong Du
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yanhua Zheng
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology and The Proteomics and Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Zhimin Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; Cancer Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas 77030, USA.
| |
Collapse
|
17
|
Shah S, Brock EJ, Ji K, Mattingly RR. Ras and Rap1: A tale of two GTPases. Semin Cancer Biol 2018; 54:29-39. [PMID: 29621614 DOI: 10.1016/j.semcancer.2018.03.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/16/2018] [Accepted: 03/29/2018] [Indexed: 02/07/2023]
Abstract
Ras oncoproteins play pivotal roles in both the development and maintenance of many tumor types. Unfortunately, these proteins are difficult to directly target using traditional pharmacological strategies, in part due to their lack of obvious binding pockets or allosteric sites. This obstacle has driven a considerable amount of research into pursuing alternative ways to effectively inhibit Ras, examples of which include inducing mislocalization to prevent Ras maturation and inactivating downstream proteins in Ras-driven signaling pathways. Ras proteins are archetypes of a superfamily of small GTPases that play specific roles in the regulation of many cellular processes, including vesicle trafficking, nuclear transport, cytoskeletal rearrangement, and cell cycle progression. Several other superfamily members have also been linked to the control of normal and cancer cell growth and survival. For example, Rap1 has high sequence similarity to Ras, has overlapping binding partners, and has been demonstrated to both oppose and mimic Ras-driven cancer phenotypes. Rap1 plays an important role in cell adhesion and integrin function in a variety of cell types. Mechanistically, Ras and Rap1 cooperate to initiate and sustain ERK signaling, which is activated in many malignancies and is the target of successful therapeutics. Here we review the role activated Rap1 in ERK signaling and other downstream pathways to promote invasion and cell migration and metastasis in various cancer types.
Collapse
Affiliation(s)
- Seema Shah
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ethan J Brock
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Kyungmin Ji
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Raymond R Mattingly
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
18
|
Ždralević M, Marchiq I, de Padua MMC, Parks SK, Pouysségur J. Metabolic Plasiticy in Cancers-Distinct Role of Glycolytic Enzymes GPI, LDHs or Membrane Transporters MCTs. Front Oncol 2017; 7:313. [PMID: 29326883 PMCID: PMC5742324 DOI: 10.3389/fonc.2017.00313] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/04/2017] [Indexed: 01/09/2023] Open
Abstract
Research on cancer metabolism has recently re-surfaced as a major focal point in cancer field with a reprogrammed metabolism no longer being considered as a mere consequence of oncogenic transformation, but as a hallmark of cancer. Reprogramming metabolic pathways and nutrient sensing is an elaborate way by which cancer cells respond to high bioenergetic and anabolic demands during tumorigenesis. Thus, inhibiting specific metabolic pathways at defined steps should provide potent ways of arresting tumor growth. However, both animal models and clinical observations have revealed that this approach is seriously limited by an extraordinary cellular metabolic plasticity. The classical example of cancer metabolic reprogramming is the preference for aerobic glycolysis, or Warburg effect, where cancers increase their glycolytic flux and produce lactate regardless of the presence of the oxygen. This allows cancer cells to meet the metabolic requirements for high rates of proliferation. Here, we discuss the benefits and limitations of disrupting fermentative glycolysis for impeding tumor growth at three levels of the pathway: (i) an upstream block at the level of the glucose-6-phosphate isomerase (GPI), (ii) a downstream block at the level of lactate dehydrogenases (LDH, isoforms A and B), and (iii) the endpoint block preventing lactic acid export (MCT1/4). Using these examples of genetic disruption targeting glycolysis studied in our lab, we will discuss the responses of different cancer cell lines in terms of metabolic rewiring, growth arrest, and tumor escape and compare it with the broader literature.
Collapse
Affiliation(s)
- Maša Ždralević
- Institute for Research on Cancer and Aging (IRCAN), CNRS, INSERM, Centre A. Lacassagne, University Côte d'Azur, Nice, France
| | - Ibtissam Marchiq
- Institute for Research on Cancer and Aging (IRCAN), CNRS, INSERM, Centre A. Lacassagne, University Côte d'Azur, Nice, France
| | - Monique M Cunha de Padua
- Institute for Research on Cancer and Aging (IRCAN), CNRS, INSERM, Centre A. Lacassagne, University Côte d'Azur, Nice, France
| | - Scott K Parks
- Medical Biology Department, Centre Scientifique de Monaco (CSM), Monaco, Monaco
| | - Jacques Pouysségur
- Institute for Research on Cancer and Aging (IRCAN), CNRS, INSERM, Centre A. Lacassagne, University Côte d'Azur, Nice, France.,Medical Biology Department, Centre Scientifique de Monaco (CSM), Monaco, Monaco
| |
Collapse
|
19
|
Oxidative stress regulates cellular bioenergetics in esophageal squamous cell carcinoma cell. Biosci Rep 2017; 37:BSR20171006. [PMID: 29026004 PMCID: PMC5725616 DOI: 10.1042/bsr20171006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/01/2017] [Accepted: 10/02/2017] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to explore the effects of oxidative stress induced by CoCl2 and H2O2 on the regulation of bioenergetics of esophageal squamous cell carcinoma (ESCC) cell line TE-1 and analyze its underlying mechanism. Western blot results showed that CoCl2 and H2O2 treatment of TE-1 cells led to significant reduction in mitochondrial respiratory chain complex subunits expression and increasing intracellular reactive oxygen species (ROS) production. We further found that TE-1 cells treated with CoCl2, a hypoxia-mimicking reagent, dramatically reduced the oxygen consumption rate (OCR) and increased the extracellular acidification rate (ECAR). However, H2O2 treatment decreased both the mitochondrial respiration and aerobic glycolysis significantly. Moreover, we found that H2O2 induces apoptosis in TE-1 cells through the activation of PARP, Caspase 3, and Caspase 9. Therefore, our findings indicate that CoCl2 and H2O2 could cause mitochondrial dysfunction by up-regulation of ROS and regulating the cellular bioenergy metabolism, thus affecting the survival of tumor cells.
Collapse
|
20
|
Chuang C, Prasanth KR, Nagy PD. The Glycolytic Pyruvate Kinase Is Recruited Directly into the Viral Replicase Complex to Generate ATP for RNA Synthesis. Cell Host Microbe 2017; 22:639-652.e7. [PMID: 29107644 DOI: 10.1016/j.chom.2017.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/24/2017] [Accepted: 10/03/2017] [Indexed: 01/17/2023]
Abstract
Viruses accomplish their replication by exploiting many cellular resources, including metabolites and energy. Similarly to other (+)RNA viruses, tomato bushy stunt virus (TBSV) induces major changes in infected cells. However, the source of energy required to fuel TBSV replication is unknown. We find that TBSV co-opts the cellular glycolytic ATP-generating pyruvate kinase (PK) directly into the viral replicase complex to boost progeny RNA synthesis. The co-opted PK generates high levels of ATP within the viral replication compartment at the expense of a reduction in cytosolic ATP pools. The ATP generated by the co-opted PK is used to promote the helicase activity of recruited cellular DEAD-box helicases, which are involved in the production of excess viral (+)RNA progeny. Altogether, recruitment of PK and local production of ATP within the replication compartment allow the virus replication machinery an access to plentiful ATP, facilitating robust virus replication.
Collapse
Affiliation(s)
- Chingkai Chuang
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY 40546, USA
| | - K Reddisiva Prasanth
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY 40546, USA
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY 40546, USA.
| |
Collapse
|
21
|
Lee JH, Liu R, Li J, Zhang C, Wang Y, Cai Q, Qian X, Xia Y, Zheng Y, Piao Y, Chen Q, de Groot JF, Jiang T, Lu Z. Stabilization of phosphofructokinase 1 platelet isoform by AKT promotes tumorigenesis. Nat Commun 2017; 8:949. [PMID: 29038421 PMCID: PMC5643558 DOI: 10.1038/s41467-017-00906-9] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/03/2017] [Indexed: 02/05/2023] Open
Abstract
Phosphofructokinase 1 (PFK1) plays a critical role in glycolysis; however, its role and regulation in tumorigenesis are not well understood. Here, we demonstrate that PFK1 platelet isoform (PFKP) is the predominant PFK1 isoform in human glioblastoma cells and its expression correlates with total PFK activity. We show that PFKP is overexpressed in human glioblastoma specimens due to an increased stability, which is induced by AKT activation resulting from phosphatase and tensin homologue (PTEN) loss and EGFR-dependent PI3K activation. AKT binds to and phosphorylates PFKP at S386, and this phosphorylation inhibits the binding of TRIM21 E3 ligase to PFKP and the subsequent TRIM21-mediated polyubiquitylation and degradation of PFKP. PFKP S386 phosphorylation increases PFKP expression and promotes aerobic glycolysis, cell proliferation, and brain tumor growth. In addition, S386 phosphorylation in human glioblastoma specimens positively correlates with PFKP expression, AKT S473 phosphorylation, and poor prognosis. These findings underscore the potential role and regulation of PFKP in human glioblastoma development.Phosphofructokinase 1 (PFK1) plays a critical role in glycolysis. Here the authors show that PFK1 platelet isoform is upregulated in Glioblastoma and is required for tumor growth mechanistically, such upregulation is due to an increased stability induced by AKT activation via phosphorylation on residue S386.
Collapse
Affiliation(s)
- Jong-Ho Lee
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rui Liu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jing Li
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chuanbao Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China
| | - Yugang Wang
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Qingsong Cai
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xu Qian
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yan Xia
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yanhua Zheng
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuji Piao
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - John F de Groot
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China
| | - Zhimin Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
22
|
Prasanth KR, Chuang C, Nagy PD. Co-opting ATP-generating glycolytic enzyme PGK1 phosphoglycerate kinase facilitates the assembly of viral replicase complexes. PLoS Pathog 2017; 13:e1006689. [PMID: 29059239 PMCID: PMC5695612 DOI: 10.1371/journal.ppat.1006689] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 11/02/2017] [Accepted: 10/10/2017] [Indexed: 11/19/2022] Open
Abstract
The intricate interactions between viruses and hosts include exploitation of host cells for viral replication by using many cellular resources, metabolites and energy. Tomato bushy stunt virus (TBSV), similar to other (+)RNA viruses, induces major changes in infected cells that lead to the formation of large replication compartments consisting of aggregated peroxisomal and ER membranes. Yet, it is not known how TBSV obtains the energy to fuel these energy-consuming processes. In the current work, the authors discovered that TBSV co-opts the glycolytic ATP-generating Pgk1 phosphoglycerate kinase to facilitate the assembly of new viral replicase complexes. The recruitment of Pgk1 into the viral replication compartment is through direct interaction with the viral replication proteins. Altogether, we provide evidence that the ATP generated locally within the replication compartment by the co-opted Pgk1 is used to fuel the ATP-requirement of the co-opted heat shock protein 70 (Hsp70) chaperone, which is essential for the assembly of new viral replicase complexes and the activation of functional viral RNA-dependent RNA polymerase. The advantage of direct recruitment of Pgk1 into the virus replication compartment could be that the virus replicase assembly does not need to intensively compete with cellular processes for access to ATP. In addition, local production of ATP within the replication compartment could greatly facilitate the efficiency of Hsp70-driven replicase assembly by providing high ATP concentration within the replication compartment.
Collapse
Affiliation(s)
- K. Reddisiva Prasanth
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY, United States of America
| | - Chingkai Chuang
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY, United States of America
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY, United States of America
| |
Collapse
|
23
|
Jackson LE, Kulkarni S, Wang H, Lu J, Dolezal JM, Bharathi SS, Ranganathan S, Patel MS, Deshpande R, Alencastro F, Wendell SG, Goetzman ES, Duncan AW, Prochownik EV. Genetic Dissociation of Glycolysis and the TCA Cycle Affects Neither Normal nor Neoplastic Proliferation. Cancer Res 2017; 77:5795-5807. [PMID: 28883002 DOI: 10.1158/0008-5472.can-17-1325] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/19/2017] [Accepted: 09/01/2017] [Indexed: 12/25/2022]
Abstract
Rapidly proliferating cells increase glycolysis at the expense of oxidative phosphorylation (oxphos) to generate sufficient levels of glycolytic intermediates for use as anabolic substrates. The pyruvate dehydrogenase complex (PDC) is a critical mitochondrial enzyme that catalyzes pyruvate's conversion to acetyl coenzyme A (AcCoA), thereby connecting these two pathways in response to complex energetic, enzymatic, and metabolic cues. Here we utilized a mouse model of hepatocyte-specific PDC inactivation to determine the need for this metabolic link during normal hepatocyte regeneration and malignant transformation. In PDC "knockout" (KO) animals, the long-term regenerative potential of hepatocytes was unimpaired, and growth of aggressive experimental hepatoblastomas was only modestly slowed in the face of 80%-90% reductions in AcCoA and significant alterations in the levels of key tricarboxylic acid (TCA) cycle intermediates and amino acids. Overall, oxphos activity in KO livers and hepatoblastoma was comparable with that of control counterparts, with evidence that metabolic substrate abnormalities were compensated for by increased mitochondrial mass. These findings demonstrate that the biochemical link between glycolysis and the TCA cycle can be completely severed without affecting normal or neoplastic proliferation, even under the most demanding circumstances. Cancer Res; 77(21); 5795-807. ©2017 AACR.
Collapse
Affiliation(s)
- Laura E Jackson
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Pittsburgh of The University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Sucheta Kulkarni
- Division of Hematology/Oncology, Department of Pediatrics, Children's Hospital of Pittsburgh of The University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Huabo Wang
- Division of Hematology/Oncology, Department of Pediatrics, Children's Hospital of Pittsburgh of The University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jie Lu
- Division of Hematology/Oncology, Department of Pediatrics, Children's Hospital of Pittsburgh of The University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - James M Dolezal
- Division of Hematology/Oncology, Department of Pediatrics, Children's Hospital of Pittsburgh of The University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Sivakama S Bharathi
- Division of Medical Genetics, Department of Pediatrics, Children's Hospital of Pittsburgh of The University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Sarangarajan Ranganathan
- Department of Pathology, Children's Hospital of Pittsburgh of The University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Mulchand S Patel
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Rahul Deshpande
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Frances Alencastro
- Department of Pathology, The McGowan Institute for Regenerative Medicine and The Pittsburgh Liver Research Center, The University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Stacy G Wendell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Eric S Goetzman
- Division of Medical Genetics, Department of Pediatrics, Children's Hospital of Pittsburgh of The University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Andrew W Duncan
- Department of Pathology, The McGowan Institute for Regenerative Medicine and The Pittsburgh Liver Research Center, The University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Edward V Prochownik
- Division of Hematology/Oncology, Department of Pediatrics, Children's Hospital of Pittsburgh of The University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania. .,Department of Microbiology and Molecular Genetics, The University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,The University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| |
Collapse
|
24
|
Goto K, Annan DA, Morita T, Li W, Muroyama R, Matsubara Y, Ito S, Nakagawa R, Tanoue Y, Jinushi M, Kato N. Novel chemoimmunotherapeutic strategy for hepatocellular carcinoma based on a genome-wide association study. Sci Rep 2016; 6:38407. [PMID: 27910927 PMCID: PMC5133582 DOI: 10.1038/srep38407] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/09/2016] [Indexed: 12/11/2022] Open
Abstract
Pharmacotherapeutic options are limited for hepatocellular carcinoma (HCC). Recently, we identified the anti-tumor ligand MHC class I polypeptide-related sequence A (MICA) gene as a susceptibility gene for hepatitis C virus-induced HCC in a genome-wide association study (GWAS). To prove the concept of HCC immunotherapy based on the results of a GWAS, in the present study, we searched for drugs that could restore MICA expression. A screen of the FDA-approved drug library identified the anti-cancer agent vorinostat as the strongest hit, suggesting histone deacetylase inhibitors (HDACis) as potent candidates. Indeed, the HDACi-induced expression of MICA specific to HCC cells enhanced natural killer (NK) cell-mediated cytotoxicity in co-culture, which was further reinforced by treatment with an inhibitor of MICA sheddase. Similarly augmented anti-tumor activity of NK cells via NK group 2D was observed in vivo. Metabolomics analysis revealed HDACi-mediated alterations in energy supply and stresses for MICA induction and HCC inhibition, providing a mechanism for the chemoimmunotherapeutic actions. These data are indicative of promising strategies for selective HCC innate immunotherapy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Cell Line, Tumor
- Coculture Techniques
- Combined Modality Therapy
- Cytotoxicity, Immunologic/drug effects
- Gene Expression Regulation, Neoplastic
- Genome-Wide Association Study
- Hep G2 Cells
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Histone Deacetylase Inhibitors/pharmacology
- Humans
- Hydroxamic Acids/pharmacology
- Immunotherapy/methods
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Metabolome/drug effects
- Metabolome/genetics
- Metabolome/immunology
- Mice
- Mice, Nude
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Peptide Hydrolases/pharmacology
- Small Molecule Libraries/pharmacology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
- Vorinostat
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Kaku Goto
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Japan Society for the Promotion of Science, Tokyo 102-8472, Japan
| | - Dorcas A. Annan
- Institute for Genetic Medicine, Hokkaido University, Hokkaido 060-0815, Japan
| | - Tomoko Morita
- Institute for Genetic Medicine, Hokkaido University, Hokkaido 060-0815, Japan
| | - Wenwen Li
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Ryosuke Muroyama
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yasuo Matsubara
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Sayaka Ito
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Ryo Nakagawa
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yasushi Tanoue
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Masahisa Jinushi
- Institute for Advanced Medical Research, Keio University Graduate School of Medicine, Tokyo 160-8582, Japan
| | - Naoya Kato
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
25
|
Abstract
High-risk human papillomaviruses (HPVs) are causative agents of anogenital cancers and a fraction of head and neck cancers. The mechanisms involved in the progression of HPV neoplasias to cancers remain largely unknown. Here, we report that O-linked GlcNAcylation (O-GlcNAc) and O-GlcNAc transferase (OGT) were markedly increased in HPV-caused cervical neoplasms relative to normal cervix, whereas O-GlcNAcase (OGA) levels were not altered. Transduction of HPV16 oncogene E6 or E6/E7 into mouse embryonic fibroblasts (MEFs) up-regulated OGT mRNA and protein, elevated the level of O-GlcNAc, and promoted cell proliferation while reducing cellular senescence. Conversely, in HPV-18-transformed HeLa cervical carcinoma cells, inhibition of O-GlcNAc with a low concentration of a chemical inhibitor impaired the transformed phenotypes in vitro. We showed that E6 elevated c-MYC via increased protein stability attributable to O-GlcNAcylation on Thr58. Reduction of HPV-mediated cell viability by a high concentration of O-GlcNAc inhibitor was partially rescued by elevated c-MYC. Finally, knockdown of OGT or O-GlcNAc inhibition in HeLa cells or in TC-1 cells, a mouse cell line transformed by HPV16 E6/E7 and activated K-RAS, reduced c-MYC and suppressed tumorigenesis and metastasis. Thus, we have uncovered a mechanism for HPV oncoprotein-mediated transformation. These findings may eventually aid in the development of effective therapeutics for HPV-associated malignancies by targeting aberrant O-GlcNAc.
Collapse
|
26
|
Altman BJ. Cancer Clocks Out for Lunch: Disruption of Circadian Rhythm and Metabolic Oscillation in Cancer. Front Cell Dev Biol 2016; 4:62. [PMID: 27500134 PMCID: PMC4971383 DOI: 10.3389/fcell.2016.00062] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/08/2016] [Indexed: 01/08/2023] Open
Abstract
Circadian rhythms are 24-h oscillations present in most eukaryotes and many prokaryotes that synchronize activity to the day-night cycle. They are an essential feature of organismal and cell physiology that coordinate many of the metabolic, biosynthetic, and signal transduction pathways studied in biology. The molecular mechanism of circadian rhythm is controlled both by signal transduction and gene transcription as well as by metabolic feedback. The role of circadian rhythm in cancer cell development and survival is still not well understood, but as will be discussed in this Review, accumulated research suggests that circadian rhythm may be altered or disrupted in many human cancers downstream of common oncogenic alterations. Thus, a complete understanding of the genetic and metabolic alterations in cancer must take potential circadian rhythm perturbations into account, as this disruption itself will influence how gene expression and metabolism are altered in the cancer cell compared to its non-transformed neighbor. It will be important to better understand these circadian changes in both normal and cancer cell physiology to potentially design treatment modalities to exploit this insight.
Collapse
Affiliation(s)
- Brian J Altman
- Abramson Family Cancer Research InstitutePhiladelphia, PA, USA; Abramson Cancer CenterPhiladelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of MedicinePhiladelphia, PA, USA
| |
Collapse
|
27
|
Abstract
The remarkable metabolic differences between cancer cells and normal cells result in the potential for targeted cancer therapy. The upregulation of glutaminolysis provides energetic advantages to cancer cells. The recently described link between glutaminolysis and autophagy, mediated by MTORC1, may constitute an attractive target for therapeutic strategies. A combination of therapies targeting simultane-ously cell signaling, cancer metabolism, and autophagy can solve therapy resistance and tumor relapse problems, commonly observed in patients treated with most of the current targeted therapies. In this review we summarize the mechanistic link between glutaminolysis and autophagy, and discuss the impacts of these processes on cancer progression and the potential for therapeutic intervention.
Collapse
|
28
|
Abstract
Cancer is a disease characterized by uncontrolled growth. Metabolic demands to sustain rapid proliferation must be compelling since aerobic glycolysis is the first as well as the most commonly shared characteristic of cancer. During the last decade, the significance of metabolic reprogramming of cancer has been at the center of attention. Nonetheless, despite all the knowledge gained on cancer biology, the field is not able to reach agreement on the issue of mitochondria: Are damaged mitochondria the cause for aerobic glycolysis in cancer? Warburg proposed the damaged mitochondria theory over 80 years ago; the field has been testing the theory equally long. In this review, we will discuss alterations in metabolic fluxes of cancer cells, and provide an opinion on the damaged mitochondria theory.
Collapse
Affiliation(s)
- Aekyong Kim
- School of Pharmacy, Catholic University of Daegu, Gyeongbuk, Korea
| |
Collapse
|
29
|
Abstract
The ability to inhibit the RAS oncogene has been the holy grail of oncology because of the critical role of this gene in a multitude of tumor types. In addition, RAS-mutant tumors are among the most aggressive and refractory to treatment. Although directly targeting the RAS oncogene has proven challenging, an alternative approach for treating RAS-driven cancers is to inhibit critical downstream events that are required for tumor maintenance. Indeed, much focus has been put on inhibiting signaling cascades downstream of RAS. Recent studies have shown that oncogenic RAS promotes a metabolic reprogramming of tumor cells, shifting them toward an anabolic metabolism necessary to produce biomass to support unconstrained proliferation. These cancers also use a diverse set of fuel sources to meet their metabolic needs and have even developed a variety of mechanisms to act as metabolic scavengers to obtain necessary metabolic substrates from both extracellular and intracellular sources. Collectively, these adaptations can create "metabolic bottlenecks" whereby tumor cells rely on particular pathways or rate-limiting metabolites. In this regard, inhibiting individual or combinations of these metabolic pathways can attenuate growth in preclinical models. Because these dependencies are tumor selective and downstream of oncogenic RAS, there is the opportunity for therapeutic intervention. Although targeting tumor metabolism is still in the early days of translation to patients, our continued advances in understanding critical metabolic adaptations in RAS-driven cancers, as well as the ability to study this altered metabolism in relevant tumor models, will accelerate the development of new therapeutic approaches. Clin Cancer Res; 21(8); 1828-34. ©2015 AACR. See all articles in this CCR Focus section, "Targeting RAS-Driven Cancers."
Collapse
Affiliation(s)
- Alec C Kimmelman
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
30
|
Mandai M, Amano Y, Yamaguchi K, Matsumura N, Baba T, Konishi I. Ovarian clear cell carcinoma meets metabolism; HNF-1β confers survival benefits through the Warburg effect and ROS reduction. Oncotarget 2015; 6:30704-14. [PMID: 26375553 PMCID: PMC4741562 DOI: 10.18632/oncotarget.5228] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/10/2015] [Indexed: 12/21/2022] Open
Abstract
Ovarian clear cell carcinoma (OCCC) constitutes one of the subtypes of ovarian cancers, but it has unique clinical, histological and biological characteristics, one of which is chemo-resistance. It is also known to develop from endometriotic cyst, a benign ovarian tumor, at relatively high frequency. Recently, it is becoming well known that most of OCCCs express HNF1β, a transcription factor, which is closely associated with the development of liver, pancreas and kidney, as well as occurrence of familial forms of type 2 diabetes. Expression of HNF1β is now regarded as a hallmark of this tumor. Nevertheless, exact biological function of this gene in OCCC has not been clarified. We have shown in previous studies that microenvironment in endometriotic cysts contains severe oxidative stress and OCCC develops under such stressful environment as stress-resistant tumor, which may lead to chemo-resistance. We also showed that increased expression of HNF1β facilitates glucose uptake and glycolysis, which is known as Warburg effect. In the previous issue of this journal, by using comprehensive metabolome analysis, we report that HNF1β actually reduces and protects themselves from internal oxidative stress by dramatically changing cellular metabolism. In this article, we review the relevance and significance of cancer-specific metabolism and how they are associated with biological characteristics of OCCC via expression of HNF1β, along with future clinical implications of targeting cancer-specific metabolism.
Collapse
Affiliation(s)
- Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Obstetrics and Gynecology, Kinki University Faculty of Medicine, Osaka-Sayama, Japan
| | - Yasuaki Amano
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Noriomi Matsumura
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tsukasa Baba
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ikuo Konishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
31
|
Abstract
Despite more than three decades of intensive effort, no effective pharmacological inhibitors of the RAS oncoproteins have reached the clinic, prompting the widely held perception that RAS proteins are 'undruggable'. However, recent data from the laboratory and the clinic have renewed our hope for the development of RAS-inhibitory molecules. In this Review, we summarize the progress and the promise of five key approaches. Firstly, we focus on the prospects of using direct inhibitors of RAS. Secondly, we address the issue of whether blocking RAS membrane association is a viable approach. Thirdly, we assess the status of targeting RAS downstream effector signalling, which is arguably the most favourable current approach. Fourthly, we address whether the search for synthetic lethal interactors of mutant RAS still holds promise. Finally, RAS-mediated changes in cell metabolism have recently been described and we discuss whether these changes could be exploited for new therapeutic directions. We conclude with perspectives on how additional complexities, which are not yet fully understood, may affect each of these approaches.
Collapse
|
32
|
DeLaBarre B, Hurov J, Cianchetta G, Murray S, Dang L. Action at a distance: allostery and the development of drugs to target cancer cell metabolism. CHEMISTRY & BIOLOGY 2014; 21:1143-61. [PMID: 25237859 DOI: 10.1016/j.chembiol.2014.08.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/03/2014] [Accepted: 08/12/2014] [Indexed: 01/14/2023]
Abstract
Cancer cells must carefully regulate their metabolism to maintain growth and division under varying nutrient and oxygen levels. Compelling data support the investigation of numerous enzymes as therapeutic targets to exploit metabolic vulnerabilities common to several cancer types. We discuss the rationale for developing such drugs and review three targets with central roles in metabolic pathways crucial for cancer cell growth: pyruvate kinase muscle isozyme splice variant 2 (PKM2) in glycolysis, glutaminase in glutaminolysis, and mutations in isocitrate dehydrogenase 1 and 2 isozymes (IDH1/2) in the tricarboxylic acid cycle. These targets exemplify the drugging approach to cancer metabolism, with allosteric modulation being the common theme. The first glutaminase and mutant IDH1/2 inhibitors have entered clinical testing, and early data are promising. Cancer metabolism provides a wealth of novel targets, and targeting allosteric sites promises to yield selective drugs with the potential to transform clinical outcomes across many cancer types.
Collapse
Affiliation(s)
- Byron DeLaBarre
- Agios Pharmaceuticals, Inc., 38 Sidney Street, Cambridge, MA 02139, USA
| | - Jonathan Hurov
- Agios Pharmaceuticals, Inc., 38 Sidney Street, Cambridge, MA 02139, USA
| | | | - Stuart Murray
- Agios Pharmaceuticals, Inc., 38 Sidney Street, Cambridge, MA 02139, USA
| | - Lenny Dang
- Agios Pharmaceuticals, Inc., 38 Sidney Street, Cambridge, MA 02139, USA.
| |
Collapse
|