1
|
Mersch K, Sokoloski J, Nguyen B, Galletto R, Lohman T. "Helicase" Activity promoted through dynamic interactions between a ssDNA translocase and a diffusing SSB protein. Proc Natl Acad Sci U S A 2023; 120:e2216777120. [PMID: 37011199 PMCID: PMC10104510 DOI: 10.1073/pnas.2216777120] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/06/2023] [Indexed: 04/05/2023] Open
Abstract
Replication protein A (RPA) is a eukaryotic single-stranded (ss) DNA-binding (SSB) protein that is essential for all aspects of genome maintenance. RPA binds ssDNA with high affinity but can also diffuse along ssDNA. By itself, RPA is capable of transiently disrupting short regions of duplex DNA by diffusing from a ssDNA that flanks the duplex DNA. Using single-molecule total internal reflection fluorescence and optical trapping combined with fluorescence approaches, we show that S. cerevisiae Pif1 can use its ATP-dependent 5' to 3' translocase activity to chemomechanically push a single human RPA (hRPA) heterotrimer directionally along ssDNA at rates comparable to those of Pif1 translocation alone. We further show that using its translocation activity, Pif1 can push hRPA from a ssDNA loading site into a duplex DNA causing stable disruption of at least 9 bp of duplex DNA. These results highlight the dynamic nature of hRPA enabling it to be readily reorganized even when bound tightly to ssDNA and demonstrate a mechanism by which directional DNA unwinding can be achieved through the combined action of a ssDNA translocase that pushes an SSB protein. These results highlight the two basic requirements for any processive DNA helicase: transient DNA base pair melting (supplied by hRPA) and ATP-dependent directional ssDNA translocation (supplied by Pif1) and that these functions can be unlinked by using two separate proteins.
Collapse
Affiliation(s)
- Kacey N. Mersch
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
| | - Joshua E. Sokoloski
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
- Department of Chemistry, Salisbury University, Salisbury, MD21801
| | - Binh Nguyen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
| | - Timothy M. Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
| |
Collapse
|
2
|
Yang M, Sun R, Deng P, Yang Y, Wang W, Liu JJG, Chen C. Nonspecific interactions between SpCas9 and dsDNA sites located downstream of the PAM mediate facilitated diffusion to accelerate target search. Chem Sci 2021; 12:12776-12784. [PMID: 34703564 PMCID: PMC8494019 DOI: 10.1039/d1sc02633j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/19/2021] [Indexed: 12/27/2022] Open
Abstract
RNA-guided Streptococcus pyogenes Cas9 (SpCas9) is a sequence-specific DNA endonuclease that works as one of the most powerful genetic editing tools. However, how Cas9 locates its target among huge amounts of dsDNAs remains elusive. Here, combining biochemical and single-molecule fluorescence assays, we revealed that Cas9 uses both three-dimensional and one-dimensional diffusion to find its target with high efficiency. We further observed surprising apparent asymmetric target search regions flanking PAM sites on dsDNA under physiological salt conditions, which accelerates the target search efficiency of Cas9 by ∼10-fold. Illustrated by a cryo-EM structure of the Cas9/sgRNA/dsDNA dimer, non-specific interactions between DNA ∼8 bp downstream of the PAM site and lysines within residues 1151–1156 of Cas9, especially lys1153, are the key elements to mediate the one-dimensional diffusion of Cas9 and cause asymmetric target search regions flanking the PAM. Disrupting these non-specific interactions, such as mutating these lysines to alanines, diminishes the contribution of one-dimensional diffusion and reduces the target search rate by several times. In addition, low ionic concentrations or mutations on PAM recognition residues that modulate interactions between Cas9 and dsDNA alter apparent asymmetric target search behaviors. Together, our results reveal a unique searching mechanism of Cas9 under physiological salt conditions, and provide important guidance for both in vitro and in vivo applications of Cas9. Nonspecific interactions between DNA ∼8 bp downstream of the PAM and lysines within residues 1151–1156 of Cas9 mediate one-dimensional diffusion and cause asymmetric target search regions flanking the PAM.![]()
Collapse
Affiliation(s)
- Mengyi Yang
- School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua University Beijing China .,Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institutue, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health Beijing 100045 China
| | - Ruirui Sun
- School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua University Beijing China
| | - Pujuan Deng
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University Beijing China
| | - Yuzhuo Yang
- School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua University Beijing China
| | - Wenjuan Wang
- School of Life Sciences, Technology Center for Protein Sciences, Tsinghua University Beijing China
| | - Jun-Jie Gogo Liu
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University Beijing China
| | - Chunlai Chen
- School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua University Beijing China
| |
Collapse
|
3
|
Vo TD, Schneider AL, Poon GMK, Wilson WD. DNA-facilitated target search by nucleoproteins: Extension of a biosensor-surface plasmon resonance method. Anal Biochem 2021; 629:114298. [PMID: 34252439 PMCID: PMC8427768 DOI: 10.1016/j.ab.2021.114298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
To extend the value of biosensor-SPR in the characterization of DNA recognition by nucleoproteins, we report a comparative analysis of DNA-facilitated target search by two ETS-family transcription factors: Elk1 and ETV6. ETS domains represent an attractive system for developing biosensor-based techniques due to a broad range of physicochemical properties encoded within a highly conserved DNA-binding motif. Building on a biosensor approach in which the protein is quantitatively sequestered and presented to immobilized cognate DNA as nonspecific complexes, we assessed the impact of intrinsic cognate and nonspecific affinities on long-range (intersegmental) target search. The equilibrium constants of DNA-facilitated binding were sensitive to the intrinsic binding properties of the proteins such that their relative specificity for cognate DNA were reinforced when binding occurred by transfer vs. without nonspecific DNA. Direct measurement of association and dissociation kinetics revealed ionic features of the activated complex that evidenced DNA-facilitated dissociation, even though Elk1 and ETV6 harbor only a single DNA-binding surface. At salt concentrations that masked the effects of nonspecific pre-binding at equilibrium, the dissociation kinetics of cognate binding were nevertheless distinct from conditions under which nonspecific DNA was absent. These results further strengthen the significance of long-range DNA-facilitated translocation in the physiologic environment.
Collapse
Affiliation(s)
- Tam D Vo
- Department of Chemistry, Georgia State University, USA
| | | | - Gregory M K Poon
- Department of Chemistry, Georgia State University, USA; Center for Diagnostics and Therapeutics, Georgia State University, USA.
| | - W David Wilson
- Department of Chemistry, Georgia State University, USA; Center for Diagnostics and Therapeutics, Georgia State University, USA.
| |
Collapse
|
4
|
Bianco PR. The mechanism of action of the SSB interactome reveals it is the first OB-fold family of genome guardians in prokaryotes. Protein Sci 2021; 30:1757-1775. [PMID: 34089559 PMCID: PMC8376408 DOI: 10.1002/pro.4140] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/28/2022]
Abstract
The single-stranded DNA binding protein (SSB) is essential to all aspects of DNA metabolism in bacteria. This protein performs two distinct, but closely intertwined and indispensable functions in the cell. SSB binds to single-stranded DNA (ssDNA) and at least 20 partner proteins resulting in their regulation. These partners comprise a family of genome guardians known as the SSB interactome. Essential to interactome regulation is the linker/OB-fold network of interactions. This network of interactions forms when one or more PXXP motifs in the linker of SSB bind to an OB-fold in a partner, with interactome members involved in competitive binding between the linker and ssDNA to their OB-fold. Consequently, when linker-binding occurs to an OB-fold in an interactome partner, proteins are loaded onto the DNA. When linker/OB-fold interactions occur between SSB tetramers, cooperative ssDNA-binding results, producing a multi-tetrameric complex that rapidly protects the ssDNA. Within this SSB-ssDNA complex, there is an extensive and dynamic network of linker/OB-fold interactions that involves multiple tetramers bound contiguously along the ssDNA lattice. The dynamic behavior of these tetramers which includes binding mode changes, sliding as well as DNA wrapping/unwrapping events, are likely coupled to the formation and disruption of linker/OB-fold interactions. This behavior is essential to facilitating downstream DNA processing events. As OB-folds are critical to the essence of the linker/OB-fold network of interactions, and they are found in multiple interactome partners, the SSB interactome is classified as the first family of prokaryotic, oligosaccharide/oligonucleotide binding fold (OB-fold) genome guardians.
Collapse
MESH Headings
- Amino Acid Motifs
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Binding, Competitive
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Escherichia coli/chemistry
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression Regulation, Bacterial
- Gene Regulatory Networks
- Genome, Bacterial
- Klebsiella pneumoniae/chemistry
- Klebsiella pneumoniae/genetics
- Klebsiella pneumoniae/metabolism
- Models, Molecular
- Oligonucleotides/chemistry
- Oligonucleotides/metabolism
- Oligosaccharides/chemistry
- Oligosaccharides/metabolism
- Protein Binding
- Protein Conformation
- Protein Interaction Mapping
- Protein Multimerization
Collapse
Affiliation(s)
- Piero R. Bianco
- Department of Pharmaceutical Sciences, College of PharmacyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
5
|
Bianco PR, Lu Y. Single-molecule insight into stalled replication fork rescue in Escherichia coli. Nucleic Acids Res 2021; 49:4220-4238. [PMID: 33744948 PMCID: PMC8096234 DOI: 10.1093/nar/gkab142] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 01/05/2023] Open
Abstract
DNA replication forks stall at least once per cell cycle in Escherichia coli. DNA replication must be restarted if the cell is to survive. Restart is a multi-step process requiring the sequential action of several proteins whose actions are dictated by the nature of the impediment to fork progression. When fork progress is impeded, the sequential actions of SSB, RecG and the RuvABC complex are required for rescue. In contrast, when a template discontinuity results in the forked DNA breaking apart, the actions of the RecBCD pathway enzymes are required to resurrect the fork so that replication can resume. In this review, we focus primarily on the significant insight gained from single-molecule studies of individual proteins, protein complexes, and also, partially reconstituted regression and RecBCD pathways. This insight is related to the bulk-phase biochemical data to provide a comprehensive review of each protein or protein complex as it relates to stalled DNA replication fork rescue.
Collapse
Affiliation(s)
- Piero R Bianco
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Yue Lu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| |
Collapse
|
6
|
Smith NC, Wilkinson-White LE, Kwan AHY, Trewhella J, Matthews JM. Contrasting DNA-binding behaviour by ISL1 and LHX3 underpins differential gene targeting in neuronal cell specification. JOURNAL OF STRUCTURAL BIOLOGY-X 2021; 5:100043. [PMID: 33458649 PMCID: PMC7797366 DOI: 10.1016/j.yjsbx.2020.100043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 11/29/2022]
Abstract
The mechanisms by which ISL1 and LHX3 specify neuronal cell identity are unknown. EMSA/SPR data show ISL1 and LHX3 have markedly different DNA-binding behaviours. SAXS shows ISL1/LHX3:DNA complexes are flexible in nature. ISL1 binds DNA poorly but appears to modulate the DNA-binding specificity of LHX3.
The roles of ISL1 and LHX3 in the development of spinal motor neurons have been well established. Whereas LHX3 triggers differentiation into interneurons, the additional expression of ISL1 in developing neuronal cells is sufficient to redirect their developmental trajectory towards spinal motor neurons. However, the underlying mechanism of this action by these transcription factors is less well understood. Here, we used electrophoretic mobility shift assays (EMSAs) and surface plasmon resonance (SPR) to probe the different DNA-binding behaviours of these two proteins, both alone and in complexes mimicking those found in developing neurons, and found that ISL1 shows markedly different binding properties to LHX3. We used small angle X-ray scattering (SAXS) to structurally characterise DNA-bound species containing ISL1 and LHX3. Taken together, these results have allowed us to develop a model of how these two DNA-binding modules coordinate to regulate gene expression and direct development of spinal motor neurons.
Collapse
Affiliation(s)
- Ngaio C Smith
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | | | - Ann H Y Kwan
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute, University of Sydney, NSW 2006, Australia
| | - Jill Trewhella
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Jacqueline M Matthews
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| |
Collapse
|
7
|
Ferreira RM, Ware AD, Matozel E, Price AC. Salt concentration modulates the DNA target search strategy of NdeI. Biochem Biophys Res Commun 2020; 534:1059-1063. [PMID: 33121681 DOI: 10.1016/j.bbrc.2020.10.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/14/2020] [Indexed: 11/29/2022]
Abstract
DNA target search is a key step in cellular transactions that access genomic information. How DNA binding proteins combine 3D diffusion, sliding and hopping into an overall search strategy remains poorly understood. Here we report the use of a single molecule DNA tethering method to characterize the target search kinetics of the type II restriction endonuclease NdeI. The measured search rate depends strongly on DNA length as well as salt concentration. Using roadblocks, we show that there are significant changes in the DNA sliding length over the salt concentrations in our study. To explain our results, we propose a model including cycles of 3D and 1D search in which salt concentration modulates the strategy by varying the length of DNA probed per 1D scan. At low salt NdeI makes a single non-specific encounter with DNA followed by an effective and complete 1D scan. At higher salt, NdeI must execute multiple cycles of target search due to the reduced efficacy of 1D search.
Collapse
Affiliation(s)
- Raquel M Ferreira
- Department of Biology, Emmanuel College, 400 the Fenway, Boston, MA, 02115, United States
| | - Anna D Ware
- Department of Biology, Emmanuel College, 400 the Fenway, Boston, MA, 02115, United States
| | - Emily Matozel
- Department of Biology, Emmanuel College, 400 the Fenway, Boston, MA, 02115, United States
| | - Allen C Price
- Department of Chemistry and Physics, Emmanuel College, 400 the Fenway, Boston, MA, 02115, United States.
| |
Collapse
|
8
|
Thermodynamic study of the effect of ions on the interaction between dengue virus NS3 helicase and single stranded RNA. Sci Rep 2019; 9:10569. [PMID: 31332207 PMCID: PMC6646317 DOI: 10.1038/s41598-019-46741-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/25/2019] [Indexed: 01/13/2023] Open
Abstract
Dengue virus nonstructural protein 3 (NS3) fulfills multiple essential functions during the viral replication and constitutes a prominent drug target. NS3 is composed by a superfamily-2 RNA helicase domain joined to a serine protease domain. Quantitative fluorescence titrations employing a fluorescein-tagged RNA oligonucleotide were used to investigate the effect of salts on the interaction between NS3 and single stranded RNA (ssRNA). We found a strong dependence of the observed equilibrium binding constant, Kobs, with the salt concentration, decreasing at least 7-fold for a 1-fold increase on cation concentration. As a result of the effective neutralization of ~10 phosphate groups, binding of helicase domain of NS3 to ssRNA is accompanied by the release of 5 or 7 monovalent cations from an oligonucleotide or a polynucleotide, respectively and of 3 divalent cations from the same oligonucleotide. Such estimates are not affected by the type of cation, either monovalent (KCl, NaCl and RbCl) or divalent (MgCl2 and CaCl2), nor by the presence of the protease domain or the fluorescein label. Combined effect of mono and divalent cations was well described by a simple equilibrium binding model which allows to predict the values of Kobs at any concentration of cations.
Collapse
|
9
|
Wang X, Hao Z, Olsen TR, Zhang W, Lin Q. Measurements of aptamer-protein binding kinetics using graphene field-effect transistors. NANOSCALE 2019; 11:12573-12581. [PMID: 31219127 DOI: 10.1039/c9nr02797a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Quantifying interactions between biomolecules subject to various environmental conditions is essential for applications such as drug discovery and precision medicine. This paper presents an investigation of the kinetics of environmentally dependent biomolecular binding using an electrolyte-gated graphene field-effect transistor (GFET) nanosensor. In this approach, biomolecular binding occurring on and in the vicinity of a graphene surface induces a change in carrier concentration, whose resulting conductance change is measured. This allows a systematic study of the kinetic properties of the binding system. We apply this approach to the specific binding of human immunoglobulin E (IgE), an antibody involved in parasite immunity, with an aptamer at different ionic strengths (Na+ and Mg2+) and temperatures. Experimental results demonstrate increased-rate binding kinetics at higher salt-ion concentrations and temperatures. In particular, the divalent cation Mg2+ yields more pronounced changes in the conformational structure of the aptamer than the monovalent cation Na+. In addition, the dissociation of the aptamer-protein complex at room temperature is found to be characterized by large unfavorable changes in the activation enthalpy and entropy.
Collapse
Affiliation(s)
- Xuejun Wang
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA. and State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Zhuang Hao
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA.
| | - Timothy R Olsen
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA.
| | - Wenjun Zhang
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, S7N 5A9, Canada
| | - Qiao Lin
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
10
|
Piatt SC, Loparo JJ, Price AC. The Role of Noncognate Sites in the 1D Search Mechanism of EcoRI. Biophys J 2019; 116:2367-2377. [PMID: 31113551 PMCID: PMC6588823 DOI: 10.1016/j.bpj.2019.04.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/18/2019] [Accepted: 04/29/2019] [Indexed: 02/02/2023] Open
Abstract
A one-dimensional (1D) search is an essential step in DNA target recognition. Theoretical studies have suggested that the sequence dependence of 1D diffusion can help resolve the competing demands of a fast search and high target affinity, a conflict known as the speed-selectivity paradox. The resolution requires that the diffusion energy landscape is correlated with the underlying specific binding energies. In this work, we report observations of a 1D search by quantum dot-labeled EcoRI. Our data supports the view that proteins search DNA via rotation-coupled sliding over a corrugated energy landscape. We observed that whereas EcoRI primarily slides along DNA at low salt concentrations, at higher concentrations, its diffusion is a combination of sliding and hopping. We also observed long-lived pauses at genomic star sites, which differ by a single nucleotide from the target sequence. To reconcile these observations with prior biochemical and structural data, we propose a model of search in which the protein slides over a sequence-independent energy landscape during fast search but rapidly interconverts with a "hemispecific" binding mode in which a half site is probed. This half site interaction stabilizes the transition to a fully specific mode of binding, which can then lead to target recognition.
Collapse
Affiliation(s)
- Sadie C Piatt
- Department of Chemistry and Physics, Emmanuel College, Boston, Massachusetts
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts.
| | - Allen C Price
- Department of Chemistry and Physics, Emmanuel College, Boston, Massachusetts.
| |
Collapse
|
11
|
Disordered RNA chaperones can enhance nucleic acid folding via local charge screening. Nat Commun 2019; 10:2453. [PMID: 31165735 PMCID: PMC6549165 DOI: 10.1038/s41467-019-10356-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/06/2019] [Indexed: 01/14/2023] Open
Abstract
RNA chaperones are proteins that aid in the folding of nucleic acids, but remarkably, many of these proteins are intrinsically disordered. How can these proteins function without a well-defined three-dimensional structure? Here, we address this question by studying the hepatitis C virus core protein, a chaperone that promotes viral genome dimerization. Using single-molecule fluorescence spectroscopy, we find that this positively charged disordered protein facilitates the formation of compact nucleic acid conformations by acting as a flexible macromolecular counterion that locally screens repulsive electrostatic interactions with an efficiency equivalent to molar salt concentrations. The resulting compaction can bias unfolded nucleic acids towards folding, resulting in faster folding kinetics. This potentially widespread mechanism is supported by molecular simulations that rationalize the experimental findings by describing the chaperone as an unstructured polyelectrolyte. RNA chaperones, such as the hepatitic C virus (HCV) core protein, are proteins that aid in the folding of nucleic acids. Here authors use single‐molecule spectroscopy and simulation to show that the HCV core protein acts as a flexible macromolecular counterion which facilitates nucleic acid folding.
Collapse
|
12
|
Esadze A, Stivers JT. Facilitated Diffusion Mechanisms in DNA Base Excision Repair and Transcriptional Activation. Chem Rev 2018; 118:11298-11323. [PMID: 30379068 DOI: 10.1021/acs.chemrev.8b00513] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Preservation of the coding potential of the genome and highly regulated gene expression over the life span of a human are two fundamental requirements of life. These processes require the action of repair enzymes or transcription factors that efficiently recognize specific sites of DNA damage or transcriptional regulation within a restricted time frame of the cell cycle or metabolism. A failure of these systems to act results in accumulated mutations, metabolic dysfunction, and disease. Despite the multifactorial complexity of cellular DNA repair and transcriptional regulation, both processes share a fundamental physical requirement that the proteins must rapidly diffuse to their specific DNA-binding sites that are embedded within the context of a vastly greater number of nonspecific DNA-binding sites. Superimposed on the needle-in-the-haystack problem is the complex nature of the cellular environment, which contains such high concentrations of macromolecules that the time frame for diffusion is expected to be severely extended as compared to dilute solution. Here we critically review the mechanisms for how these proteins solve the needle-in-the-haystack problem and how the effects of cellular macromolecular crowding can enhance facilitated diffusion processes. We restrict the review to human proteins that use stochastic, thermally driven site-recognition mechanisms, and we specifically exclude systems involving energy cofactors or circular DNA clamps. Our scope includes ensemble and single-molecule studies of the past decade or so, with an emphasis on connecting experimental observations to biological function.
Collapse
Affiliation(s)
- Alexandre Esadze
- Department of Pharmacology and Molecular Sciences , Johns Hopkins University School of Medicine , 725 North Wolfe Street , WBSB 314, Baltimore , Maryland 21205 , United States
| | - James T Stivers
- Department of Pharmacology and Molecular Sciences , Johns Hopkins University School of Medicine , 725 North Wolfe Street , WBSB 314, Baltimore , Maryland 21205 , United States
| |
Collapse
|
13
|
Fuentes D, Muñoz NM, Guo C, Polak U, Minhaj AA, Allen WJ, Gustin MC, Cressman ENK. A molecular dynamics approach towards evaluating osmotic and thermal stress in the extracellular environment. Int J Hyperthermia 2018; 35:559-567. [PMID: 30303437 DOI: 10.1080/02656736.2018.1512161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/13/2018] [Accepted: 08/12/2018] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE A molecular dynamics approach to understanding fundamental mechanisms of combined thermal and osmotic stress induced by thermochemical ablation (TCA) is presented. METHODS Structural models of fibronectin and fibronectin bound to its integrin receptor provide idealized models for the effects of thermal and osmotic stress in the extracellular matrix. Fibronectin binding to integrin is known to facilitate cell survival. The extracellular environment produced by TCA at the lesion boundary was modelled at 37 °C and 43 °C with added sodium chloride (NaCl) concentrations (0, 40, 80, 160, and 320 mM). Atomistic simulations of solvated proteins were performed using the GROMOS96 force field and TIP3P water model. Computational results were compared with the results of viability studies of human hepatocellular carcinoma (HCC) cell lines HepG2 and Hep3B under matching thermal and osmotic experimental conditions. RESULTS Cell viability was inversely correlated with hyperthermal and hyperosmotic stresses. Added NaCl concentrations were correlated with a root mean square fluctuation increase of the fibronectin arginylglycylaspartic acid (RGD) binding domain. Computed interaction coefficients demonstrate preferential hydration of the protein model and are correlated with salt-induced strengthening of hydrophobic interactions. Under the combined hyperthermal and hyperosmotic stress conditions (43 °C and 320 mM added NaCl), the free energy change required for fibronectin binding to integrin was less favorable than that for binding under control conditions (37 °C and 0 mM added NaCl). CONCLUSION Results quantify multiple measures of structural changes as a function of temperature increase and addition of NaCl to the solution. Correlations between cell viability and stability measures suggest that protein aggregates, non-functional proteins, and less favorable cell attachment conditions have a role in TCA-induced cell stress.
Collapse
Affiliation(s)
- David Fuentes
- a Department of Imaging Physics , M. D. Anderson Cancer Center, The University of Texas , Houston , TX , USA
| | - Nina M Muñoz
- b Department of Interventional Radiology , M. D. Anderson Cancer Center, The University of Texas, Houston , TX , USA
| | - Chunxiao Guo
- b Department of Interventional Radiology , M. D. Anderson Cancer Center, The University of Texas, Houston , TX , USA
| | - Urzsula Polak
- b Department of Interventional Radiology , M. D. Anderson Cancer Center, The University of Texas, Houston , TX , USA
| | - Adeeb A Minhaj
- b Department of Interventional Radiology , M. D. Anderson Cancer Center, The University of Texas, Houston , TX , USA
| | - William J Allen
- c Texas Advanced Computing Center , The University of Texas at Austin , Austin , TX , USA
| | - Michael C Gustin
- d Department of Biosciences , Rice University , Houston , TX , USA
| | - Erik N K Cressman
- b Department of Interventional Radiology , M. D. Anderson Cancer Center, The University of Texas, Houston , TX , USA
| |
Collapse
|
14
|
Rydeen AE, Brustad EM, Pielak GJ. Osmolytes and Protein–Protein Interactions. J Am Chem Soc 2018; 140:7441-7444. [DOI: 10.1021/jacs.8b03903] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
Samatanga B, Cléry A, Barraud P, Allain FHT, Jelesarov I. Comparative analyses of the thermodynamic RNA binding signatures of different types of RNA recognition motifs. Nucleic Acids Res 2017; 45:6037-6050. [PMID: 28334819 PMCID: PMC5449602 DOI: 10.1093/nar/gkx136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 02/16/2017] [Indexed: 01/05/2023] Open
Abstract
RNA recognition motifs (RRMs) are structurally versatile domains important in regulation of alternative splicing. Structural mechanisms of sequence-specific recognition of single-stranded RNAs (ssRNAs) by RRMs are well understood. The thermodynamic strategies are however unclear. Therefore, we utilized microcalorimetry and semi-empirical analyses to comparatively analyze the cognate ssRNA binding thermodynamics of four different RRM domains, each with a different RNA binding mode. The different binding modes are: canonical binding to the β-sheet surface; canonical binding with involvement of N- and C-termini; binding to conserved loops; and binding to an α-helix. Our results identify enthalpy as the sole and general force driving association at physiological temperatures. Also, networks of weak interactions are a general feature regulating stability of the different RRM–ssRNA complexes. In agreement, non-polyelectrolyte effects contributed between ∼75 and 90% of the overall free energy of binding in the considered complexes. The various RNA binding modes also displayed enormous heat capacity differences, that upon dissection revealed large differential changes in hydration, conformations and dynamics upon binding RNA. Altogether, different modes employed by RRMs to bind cognate ssRNAs utilize various thermodynamics strategies during the association process.
Collapse
Affiliation(s)
- Brighton Samatanga
- Institute of Molecular Biology and Biophysics, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland.,Department of Biochemistry, University of Zürich, Wintherthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Antoine Cléry
- Institute of Molecular Biology and Biophysics, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
| | - Pierre Barraud
- Institute of Molecular Biology and Biophysics, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
| | - Frédéric H-T Allain
- Institute of Molecular Biology and Biophysics, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
| | - Ilian Jelesarov
- Department of Biochemistry, University of Zürich, Wintherthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
16
|
Vo T, Wang S, Poon GMK, Wilson WD. Electrostatic control of DNA intersegmental translocation by the ETS transcription factor ETV6. J Biol Chem 2017; 292:13187-13196. [PMID: 28592487 PMCID: PMC5555182 DOI: 10.1074/jbc.m117.792887] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/06/2017] [Indexed: 01/22/2023] Open
Abstract
To find their DNA target sites in complex solution environments containing excess heterogeneous DNA, sequence-specific DNA-binding proteins execute various translocation mechanisms known collectively as facilitated diffusion. For proteins harboring a single DNA contact surface, long-range translocation occurs by jumping between widely spaced DNA segments. We have configured biosensor-based surface plasmon resonance to directly measure the affinity and kinetics of this intersegmental jumping by the ETS-family transcription factor ETS variant 6 (ETV6). To isolate intersegmental target binding in a functionally defined manner, we pre-equilibrated ETV6 with excess salmon sperm DNA, a heterogeneous polymer, before exposing the nonspecifically bound protein to immobilized oligomeric DNA harboring a high-affinity ETV6 site. In this way, the mechanism of ETV6-target association could be toggled electrostatically through varying NaCl concentration in the bulk solution. Direct measurements of association and dissociation kinetics of the site-specific complex indicated that 1) freely diffusive binding by ETV6 proceeds through a nonspecific-like intermediate, 2) intersegmental jumping is rate-limited by dissociation from the nonspecific polymer, and 3) dissociation of the specific complex is independent of the history of complex formation. These results show that target searches by proteins with an ETS domain, such as ETV6, whose single DNA-binding domain cannot contact both source and destination sites simultaneously, are nonetheless strongly modulated by intersegmental jumping in heterogeneous site environments. Our findings establish biosensors as a general technique for directly and specifically measuring target site search by DNA-binding proteins via intersegmental translocation.
Collapse
Affiliation(s)
- Tam Vo
- From the Department of Chemistry and
| | - Shuo Wang
- From the Department of Chemistry and
| | - Gregory M K Poon
- From the Department of Chemistry and
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303
| | - W David Wilson
- From the Department of Chemistry and
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
17
|
Kinetic and thermodynamic studies of the interaction between activating and inhibitory Ly49 natural killer receptors and MHC class I molecules. Biochem J 2017; 474:179-194. [PMID: 27831490 DOI: 10.1042/bcj20160876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/01/2016] [Accepted: 11/09/2016] [Indexed: 11/17/2022]
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system that eliminate virally infected or malignantly transformed cells. NK cell function is regulated by diverse surface receptors that are both activating and inhibitory. Among them, the homodimeric Ly49 receptors control NK cell cytotoxicity by sensing major histocompatibility complex class I molecules (MHC-I) on target cells. Although crystal structures have been reported for Ly49/MHC-I complexes, the underlying binding mechanism has not been elucidated. Accordingly, we carried out thermodynamic and kinetic experiments on the interaction of four NK Ly49 receptors (Ly49G, Ly49H, Ly49I and Ly49P) with two MHC-I ligands (H-2Dd and H-2Dk). These Ly49s embrace the structural and functional diversity of the highly polymorphic Ly49 family. Combining surface plasmon resonance, fluorescence anisotropy and far-UV circular dichroism (CD), we determined that the best model to describe both inhibitory and activating Ly49/MHC-I interactions is one in which the two MHC-I binding sites of the Ly49 homodimer present similar binding constants for the two sites (∼106 M-1) with a slightly positive co-operativity in some cases, and without far-UV CD observable conformational changes. Furthermore, Ly49/MHC-I interactions are diffusion-controlled and enthalpy-driven. These features stand in marked contrast with the activation-controlled and entropy-driven interaction of Ly49s with the viral immunoevasin m157, which is characterized by strong positive co-operativity and conformational selection. These differences are explained by the distinct structures of Ly49/MHC-I and Ly49/m157 complexes. Moreover, they reflect the opposing roles of NK cells to rapidly scan for virally infected cells and of viruses to escape detection using immunoevasins such as m157.
Collapse
|
18
|
Poongavanam MV, Kisley L, Kourentzi K, Landes CF, Willson RC. Ensemble and single-molecule biophysical characterization of D17.4 DNA aptamer-IgE interactions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:154-64. [PMID: 26307469 DOI: 10.1016/j.bbapap.2015.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 08/09/2015] [Accepted: 08/18/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND The IgE-binding DNA aptamer 17.4 is known to inhibit the interaction of IgE with the high-affinity IgE Fc receptor FcεRI. While this and other aptamers have been widely used and studied, there has been relatively little investigation of the kinetics and energetics of their interactions with their targets, by either single-molecule or ensemble methods. METHODS The dissociation kinetics of the D17.4/IgE complex and the effects of temperature and ionic strength were studied using fluorescence anisotropy and single-molecule spectroscopy, and activation parameters calculated. RESULTS The dissociation of D17.4/IgE complex showed a strong dependence on temperature and salt concentration. The koff of D17.4/IgE complex was calculated to be (2.92±0.18)×10(-3) s(-1) at 50 mM NaCl, and (1.44±0.02)×10(-2) s(-1) at 300 mM NaCl, both in 1 mM MgCl2 and 25°C. The dissociation activation energy for the D17.4/IgE complex, Ea, was 16.0±1.9 kcal mol(-1) at 50 mM NaCl and 1 mM MgCl2. Interestingly, we found that the C19A mutant of D17.4 with stabilized stem structure showed slower dissociation kinetics compared to D17.4. Single-molecule observations of surface-immobilized D17.4/IgE showed much faster dissociation kinetics, and heterogeneity not observable by ensemble techniques. CONCLUSIONS The increasing koff value with increasing salt concentration is attributed to the electrostatic interactions between D17.4/IgE. We found that both the changes in activation enthalpy and activation entropy are insignificant with increasing NaCl concentration. The slower dissociation of the mutant C19A/IgE complex is likely due to the enhanced stability of the aptamer. GENERAL SIGNIFICANCE The activation parameters obtained by applying transition state analysis to kinetic data can provide details on mechanisms of molecular recognition and have applications in drug design. Single-molecule dissociation kinetics showed greater kinetic complexity than was observed in the ensemble in-solution systems, potentially reflecting conformational heterogeneity of the aptamer. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions.
Collapse
Affiliation(s)
| | - Lydia Kisley
- Department of Chemistry, Rice University, Houston, TX77005-1827, USA
| | - Katerina Kourentzi
- Department of Chemical and Biomolecular Engineering, University of Houston, TX 77204-4004, USA
| | - Christy F Landes
- Department of Chemistry, Rice University, Houston, TX77005-1827, USA; Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005-1827, USA.
| | - Richard C Willson
- Department of Biology and Biochemistry, University of Houston, TX 77204-5001, USA; Department of Chemical and Biomolecular Engineering, University of Houston, TX 77204-4004, USA; Houston Methodist Research Institute, Houston, TX 77030, USA; Centro de Biotecnología FEMSA, Departamento de Biotecnología e Ingeniería de Alimentos, Tecnológico de Monterrey, Monterrey 64849, Mexico.
| |
Collapse
|
19
|
Murata A, Ito Y, Kashima R, Kanbayashi S, Nanatani K, Igarashi C, Okumura M, Inaba K, Tokino T, Takahashi S, Kamagata K. One-Dimensional Sliding of p53 Along DNA Is Accelerated in the Presence of Ca2+ or Mg2+ at Millimolar Concentrations. J Mol Biol 2015; 427:2663-78. [DOI: 10.1016/j.jmb.2015.06.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/27/2015] [Accepted: 06/25/2015] [Indexed: 01/08/2023]
|
20
|
Vivas P, Velmurugu Y, Kuznetsov SV, Rice PA, Ansari A. Global analysis of ion dependence unveils hidden steps in DNA binding and bending by integration host factor. J Chem Phys 2014; 139:121927. [PMID: 24089739 DOI: 10.1063/1.4818596] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Proteins that recognize and bind to specific sites on DNA often distort the DNA at these sites. The rates at which these DNA distortions occur are considered to be important in the ability of these proteins to discriminate between specific and nonspecific sites. These rates have proven difficult to measure for most protein-DNA complexes in part because of the difficulty in separating the kinetics of unimolecular conformational rearrangements (DNA bending and kinking) from the kinetics of bimolecular complex association and dissociation. A notable exception is the Integration Host Factor (IHF), a eubacterial architectural protein involved in chromosomal compaction and DNA recombination, which binds with subnanomolar affinity to specific DNA sites and bends them into sharp U-turns. The unimolecular DNA bending kinetics has been resolved using both stopped-flow and laser temperature-jump perturbation. Here we expand our investigation by presenting a global analysis of the ionic strength dependence of specific binding affinity and relaxation kinetics of an IHF-DNA complex. This analysis enables us to obtain each of the underlying elementary rates (DNA bending/unbending and protein-DNA association/dissociation), and their ionic strength dependence, even under conditions where the two processes are coupled. Our analysis indicates interesting differences in the ionic strength dependence of the bi- versus unimolecular steps. At moderate [KCl] (100-500 mM), nearly all the ionic strength dependence to the overall equilibrium binding affinity appears in the bimolecular association/dissociation of an initial, presumably weakly bent, encounter complex, with a slope SK(bi) ≈ 8 describing the loglog-dependence of the equilibrium constant to form this complex on [KCl]. In contrast, the unimolecular equilibrium constant to form the fully wrapped specific complex from the initial complex is nearly independent of [KCl], with SK(uni) < 0.5. This result is counterintuitive because there are at least twice as many ionic protein-DNA contacts in the fully wrapped complex than in the weakly bent intermediate. The following picture emerges from this analysis: in the bimolecular step, the observed [KCl]-dependence is consistent with the number of DNA counterions expected to be released when IHF binds nonspecifically to DNA whereas in the unimolecular reorganization step, the weak [KCl]-dependence suggests that two effects cancel one another. On one hand, formation of additional protein-DNA contacts in the fully wrapped complex releases bound counterions into bulk solution, which is entropically favored by decreasing [salt]. On the other hand, formation of the fully wrapped complex also releases tightly bound water molecules, which is osmotically favored by increasing [salt]. More generally, our global analysis strategy is applicable to other protein-DNA complexes, and opens up the possibility of measuring DNA bending rates in complexes where the unimolecular and bimolecular steps are not easily separable.
Collapse
Affiliation(s)
- Paula Vivas
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | | | | | |
Collapse
|
21
|
Romasanta PN, Curto LM, Urtasun N, Sarratea MB, Chiappini S, Miranda MV, Delfino JM, Mariuzza RA, Fernández MM, Malchiodi EL. A positive cooperativity binding model between Ly49 natural killer cell receptors and the viral immunoevasin m157: kinetic and thermodynamic studies. J Biol Chem 2013; 289:5083-96. [PMID: 24379405 DOI: 10.1074/jbc.m113.532929] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Natural killer (NK) cells discriminate between healthy and virally infected or transformed cells using diverse surface receptors that are both activating and inhibitory. Among them, the homodimeric Ly49 NK receptors, which can adopt two distinct conformations (backfolded and extended), are of particular importance for detecting cells infected with mouse cytomegalovirus (CMV) via recognition of the viral immunoevasin m157. The interaction of m157 with activating (Ly49H) and inhibitory (Ly49I) receptors governs the spread of mouse CMV. We carried out kinetic and thermodynamic experiments to elucidate the Ly49/m157 binding mechanism. Combining surface plasmon resonance, fluorescence anisotropy, and circular dichroism (CD), we determined that the best model to describe both the Ly49H/m157 and Ly49I/m157 interactions is a conformational selection mechanism where only the extended conformation of Ly49 (Ly49*) is able to bind the first m157 ligand followed by binding of the Ly49*/m157 complex to the second m157. The interaction is characterized by strong positive cooperativity such that the second m157 binds the Ly49 homodimer with a 1000-fold higher sequential constant than the first m157 (∼10(8) versus ∼10(5) M(-1)). Using far-UV CD, we obtained evidence for a conformational change in Ly49 upon binding m157 that could explain the positive cooperativity. The rate-limiting step of the overall mechanism is a conformational transition in Ly49 from its backfolded to extended form. The global thermodynamic parameters from the initial state (backfolded Ly49 and m157) to the final state (Ly49*/(m157)2) are characterized by an unfavorable enthalpy that is compensated by a favorable entropy, making the interaction spontaneous.
Collapse
Affiliation(s)
- Pablo N Romasanta
- From the Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), Consejo Nacional de Investigaciones Científicas y técnicas - Universidad de Buenos Aires (CONICET-UBA) and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Multiple C-terminal tails within a single E. coli SSB homotetramer coordinate DNA replication and repair. J Mol Biol 2013; 425:4802-19. [PMID: 24021816 DOI: 10.1016/j.jmb.2013.08.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/01/2013] [Accepted: 08/16/2013] [Indexed: 11/21/2022]
Abstract
Escherichia coli single-stranded DNA binding protein (SSB) plays essential roles in DNA replication, recombination and repair. SSB functions as a homotetramer with each subunit possessing a DNA binding domain (OB-fold) and an intrinsically disordered C-terminus, of which the last nine amino acids provide the site for interaction with at least a dozen other proteins that function in DNA metabolism. To examine how many C-termini are needed for SSB function, we engineered covalently linked forms of SSB that possess only one or two C-termini within a four-OB-fold "tetramer". Whereas E. coli expressing SSB with only two tails can survive, expression of a single-tailed SSB is dominant lethal. E. coli expressing only the two-tailed SSB recovers faster from exposure to DNA damaging agents but accumulates more mutations. A single-tailed SSB shows defects in coupled leading and lagging strand DNA replication and does not support replication restart in vitro. These deficiencies in vitro provide a plausible explanation for the lethality observed in vivo. These results indicate that a single SSB tetramer must interact simultaneously with multiple protein partners during some essential roles in genome maintenance.
Collapse
|
23
|
Zucconi BE, Wilson GM. Assembly of functional ribonucleoprotein complexes by AU-rich element RNA-binding protein 1 (AUF1) requires base-dependent and -independent RNA contacts. J Biol Chem 2013; 288:28034-48. [PMID: 23940053 DOI: 10.1074/jbc.m113.489559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AU-rich element RNA-binding protein 1 (AUF1) regulates the stability and/or translational efficiency of diverse mRNA targets, including many encoding products controlling the cell cycle, apoptosis, and inflammation by associating with AU-rich elements residing in their 3'-untranslated regions. Previous biochemical studies showed that optimal AUF1 binding requires 33-34 nucleotides with a strong preference for U-rich RNA despite observations that few AUF1-associated cellular mRNAs contain such extended U-rich domains. Using the smallest AUF1 isoform (p37(AUF1)) as a model, we employed fluorescence anisotropy-based approaches to define thermodynamic parameters describing AUF1 ribonucleoprotein (RNP) complex formation across a panel of RNA substrates. These data demonstrated that 15 nucleotides of AU-rich sequence were sufficient to nucleate high affinity p37(AUF1) RNP complexes within a larger RNA context. In particular, p37(AUF1) binding to short AU-rich RNA targets was significantly stabilized by interactions with a 3'-purine residue and largely base-independent but non-ionic contacts 5' of the AU-rich site. RNP stabilization by the upstream RNA domain was associated with an enhanced negative change in heat capacity consistent with conformational changes in protein and/or RNA components, and fluorescence resonance energy transfer-based assays demonstrated that these contacts were required for p37(AUF1) to remodel local RNA structure. Finally, reporter mRNAs containing minimal high affinity p37(AUF1) target sequences associated with AUF1 and were destabilized in a p37(AUF1)-dependent manner in cells. These findings provide a mechanistic explanation for the diverse population of AUF1 target mRNAs but also suggest how AUF1 binding could regulate protein and/or microRNA binding events at adjacent sites.
Collapse
Affiliation(s)
- Beth E Zucconi
- From the Department of Biochemistry and Molecular Biology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | | |
Collapse
|
24
|
RNA polymerase approaches its promoter without long-range sliding along DNA. Proc Natl Acad Sci U S A 2013; 110:9740-5. [PMID: 23720315 DOI: 10.1073/pnas.1300221110] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sequence-specific DNA binding proteins must quickly bind target sequences, despite the enormously larger amount of nontarget DNA present in cells. RNA polymerases (or associated general transcription factors) are hypothesized to reach promoter sequences by facilitated diffusion (FD). In FD, a protein first binds to nontarget DNA and then reaches the target by a 1D sliding search. We tested whether Escherichia coli σ(54)RNA polymerase reaches a promoter by FD using the colocalization single-molecule spectroscopy (CoSMoS) multiwavelength fluorescence microscopy technique. Experiments directly compared the rates of initial polymerase binding to and dissociation from promoter and nonpromoter DNAs measured in the same sample under identical conditions. Binding to a nonpromoter DNA was much slower than binding to a promoter-containing DNA of the same length, indicating that the detected nonspecific binding events are not on the pathway to promoter binding. Truncating one of the DNA segments flanking the promoter to a length as short as 7 bp or lengthening it to ~3,000 bp did not alter the promoter-specific binding rate. These results exclude FD over distances corresponding to the length of the promoter or longer from playing any significant role in accelerating promoter search. Instead, the data support a direct binding mechanism, in which σ(54)RNA polymerase reaches the local vicinity of promoters by 3D diffusion through solution, and suggest that binding may be accelerated by atypical structural or dynamic features of promoter DNA. Direct binding explains how polymerase can quickly reach a promoter, despite occupancy of promoter-flanking DNA by bound proteins that would impede FD.
Collapse
|
25
|
Abstract
The recognition of operator DNA by Tet repressor was analyzed by fluorescence stopped flow measurements. The main part of the fluorescence change observed for the reaction of the repressor with operator DNA reflects a second-order binding reaction including the expected concentration dependence. Global fitting of transients measured at different concentrations reveal at least one intramolecular step in addition to the bimolecular step. The rate constant for the bimolecular step is strongly salt dependent approaching the limit of diffusion control 2×10(8) M(-1) s(-1) at 50 mM NaCl and decreasing to 5×10(4) M(-1) s(-1) at 600 mM NaCl. These data are consistent with initial formation of a pre-equilibrium complex; electrostatic steering resulting from the high dipole moment of the repressor may contribute to the strong salt dependence. The rate constants of the intramolecular step are in the range of ~0.1 s(-1). Fluorescence quenching is salt dependent; the overall binding constant to operator O1 at 150 mM NaCl is 5×10(8) M(-1); binding constants at different salt concentrations indicate ~5 ion contacts for the specific complex of the Tet repressor dimer. The binding constant to operator O2 is higher than to O1 by a factor of ~2 at 400 mM NaCl.
Collapse
Affiliation(s)
- Christian Berens
- Department Biologie, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | | |
Collapse
|
26
|
Bordello J, Sánchez MI, Vázquez ME, Mascareñas JL, Al-Soufi W, Novo M. Single-Molecule Approach to DNA Minor-Groove Association Dynamics. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Bordello J, Sánchez MI, Vázquez ME, Mascareñas JL, Al-Soufi W, Novo M. Single-molecule approach to DNA minor-groove association dynamics. Angew Chem Int Ed Engl 2012; 51:7541-4. [PMID: 22700034 DOI: 10.1002/anie.201201099] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/26/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Jorge Bordello
- Departamento de Química Física, Universidade de Santiago de Compostela, Facultade de Ciencias, 27001 Lugo, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Fan HF. Real-time single-molecule tethered particle motion experiments reveal the kinetics and mechanisms of Cre-mediated site-specific recombination. Nucleic Acids Res 2012; 40:6208-22. [PMID: 22467208 PMCID: PMC3401459 DOI: 10.1093/nar/gks274] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tyrosine family recombinases (YRs) are widely utilized in genome engineering systems because they can easily direct DNA rearrangement. Cre recombinases, one of the most commonly used types of YRs, catalyze site-specific recombination between two loxP sites without the need for high-energy cofactors, other accessory proteins or a specific DNA target sequence between the loxP sites. Previous structural, analytical ultracentrifuge and electrophoretic analyses have provided details of the reaction kinetics and mechanisms of Cre recombinase activity; whether there are reaction intermediates or side pathways involved has been left unaddressed. Using tethered particle motion (TPM), the Cre-mediated site-specific recombination process has been delineated, from beginning to end, at the single-molecule level, including the formation of abortive complexes and wayward complexes blocking inactive nucleoprotein complexes from entering the recombination process. Reversibility in the strand-cleavage/-ligation process and the formation of a thermally stable Holliday junction intermediate were observed within the Cre-mediated site-specific recombination process. Rate constants for each elementary step, which explain the overall reaction outcomes under various conditions, were determined. Taking the findings of this study together, they demonstrate the potential of single-molecule methodology as an alternative approach for exploring reaction mechanisms in detail.
Collapse
Affiliation(s)
- Hsiu-Fang Fan
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, 112, Taiwan.
| |
Collapse
|
29
|
Yu H, Jiang B, Chaput JC. Aptamers can discriminate alkaline proteins with high specificity. Chembiochem 2011; 12:2659-66. [PMID: 22021204 PMCID: PMC3517100 DOI: 10.1002/cbic.201100252] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Indexed: 01/01/2023]
Abstract
Aptamers are single-stranded nucleic acids that fold into stable three-dimensional structures with ligand binding sites that are complementary in shape and charge to a desired target. Aptamers are generated by an iterative process known as in vitro selection, which permits their isolation from pools of random sequences. While aptamers have been selected to bind a wide range of targets, it is generally thought that these molecules are incapable of discriminating strongly alkaline proteins due to the attractive forces that govern oppositely charged polymers (e.g., polyelectrolyte effect). Histones, eukaryotic proteins that make up the core structure of nucleosomes are attractive targets for exploring the binding properties of aptamers because these proteins have positively charged surfaces that bind DNA through noncovalent sequence-independent interactions. Previous selections by our lab and others have yielded DNA aptamers with high affinity but low specificity to individual histone proteins. Whether this is a general limitation of aptamers is an interesting question with important practical implications in the future development of protein affinity reagents. Here we report the in vitro selection of a DNA aptamer that binds to histone H4 with a K(d) of 13 nM and distinguishes other core histone proteins with 100 to 480-fold selectivity, which corresponds to a ΔΔG of up to 3.4 kcal mol(-1) . This result extends our fundamental understanding of aptamers and their ability to fold into shapes that selectively bind alkaline proteins.
Collapse
Affiliation(s)
- Hanyang Yu
- Center for Evolutionary Medicine and Informatics, The Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, USA
| | | | | |
Collapse
|
30
|
The energetic contribution of induced electrostatic asymmetry to DNA bending by a site-specific protein. J Mol Biol 2010; 406:285-312. [PMID: 21167173 DOI: 10.1016/j.jmb.2010.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/30/2010] [Accepted: 12/04/2010] [Indexed: 11/21/2022]
Abstract
DNA bending can be promoted by reducing the net negative electrostatic potential around phosphates on one face of the DNA, such that electrostatic repulsion among phosphates on the opposite face drives bending toward the less negative surface. To provide the first assessment of energetic contribution to DNA bending when electrostatic asymmetry is induced by a site-specific DNA binding protein, we manipulated the electrostatics in the EcoRV endonuclease-DNA complex by mutation of cationic side chains that contact DNA phosphates and/or by replacement of a selected phosphate in each strand with uncharged methylphosphonate. Reducing the net negative charge at two symmetrically located phosphates on the concave DNA face contributes -2.3 kcal mol(-1) to -0.9 kcal mol(-1) (depending on position) to complex formation. In contrast, reducing negative charge on the opposing convex face produces a penalty of +1.3 kcal mol(-1). Förster resonance energy transfer experiments show that the extent of axial DNA bending (about 50°) is little affected in modified complexes, implying that modification affects the energetic cost but not the extent of DNA bending. Kinetic studies show that the favorable effects of induced electrostatic asymmetry on equilibrium binding derive primarily from a reduced rate of complex dissociation, suggesting stabilization of the specific complex between protein and markedly bent DNA. A smaller increase in the association rate may suggest that the DNA in the initial encounter complex is mildly bent. The data imply that protein-induced electrostatic asymmetry makes a significant contribution to DNA bending but is not itself sufficient to drive full bending in the specific EcoRV-DNA complex.
Collapse
|
31
|
Barceló F, Ortiz-Lombardía M, Martorell M, Oliver M, Méndez C, Salas JA, Portugal J. DNA binding characteristics of mithramycin and chromomycin analogues obtained by combinatorial biosynthesis. Biochemistry 2010; 49:10543-52. [PMID: 21067184 DOI: 10.1021/bi101398s] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The antitumor antibiotics mithramycin A and chromomycin A(3) bind reversibly to the minor groove of G/C-rich regions in DNA in the presence of dications such as Mg(2+), and their antiproliferative activity has been associated with their ability to block the binding of certain transcription factors to gene promoters. Despite their biological activity, their use as anticancer agents is limited by severe side effects. Therefore, in our pursuit of new structurally related molecules showing both lower toxicity and higher biological activity, we have examined the binding to DNA of six analogues that we have obtained by combinatorial biosynthetic procedures in the producing organisms. All these molecules bear a variety of changes in the side chain attached to C-3 of the chromophore. The spectroscopic characterization of their binding to DNA followed by the evaluation of binding parameters and associated thermodynamics revealed differences in their binding affinity. DNA binding was entropically driven, dominated by the hydrophobic transfer of every compound from solution into the minor groove of DNA. Among the analogues, mithramycin SDK and chromomycin SDK possessed the higher DNA binding affinities.
Collapse
Affiliation(s)
- Francisca Barceló
- Departament de Biologia Fundamental i Ciencies de la Salut, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | | | | | | | | | | | | |
Collapse
|
32
|
de la Rosa MAD, Koslover EF, Mulligan PJ, Spakowitz AJ. Dynamic strategies for target-site search by DNA-binding proteins. Biophys J 2010; 98:2943-53. [PMID: 20550907 DOI: 10.1016/j.bpj.2010.02.055] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 02/01/2010] [Accepted: 02/12/2010] [Indexed: 10/19/2022] Open
Abstract
Gene regulatory proteins find their target sites on DNA remarkably quickly; the experimental binding rate for lac repressor is orders-of-magnitude higher than predicted by free diffusion alone. It has been proposed that nonspecific binding aids the search by allowing proteins to slide and hop along DNA. We develop a reaction-diffusion theory of protein translocation that accounts for transport both on and off the strand and incorporates the physical conformation of DNA. For linear DNA modeled as a wormlike chain, the distribution of hops available to a protein exhibits long, power-law tails that make the long-time displacement along the strand superdiffusive. Our analysis predicts effective superdiffusion coefficients for given nonspecific binding and unbinding rate parameters. Translocation rate exhibits a maximum at intermediate values of the binding rate constant, while search efficiency is optimized at larger binding rate constant values. Thus, our theory predicts a region of values of the nonspecific binding and unbinding rate parameters that balance the protein translocation rate and the efficiency of the search. Published data for several proteins falls within this predicted region of parameter values.
Collapse
|
33
|
Koval VV, Kuznetsov NA, Ishchenko AA, Saparbaev MK, Fedorova OS. Real-time studies of conformational dynamics of the repair enzyme E. coli formamidopyrimidine-DNA glycosylase and its DNA complexes during catalytic cycle. Mutat Res 2010; 685:3-10. [PMID: 19751748 DOI: 10.1016/j.mrfmmm.2009.08.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 08/20/2009] [Indexed: 05/28/2023]
Abstract
Fpg protein from Escherichia coli belongs to the class of DNA glycosylases/abasic site lyases excising several oxidatively damaged purines in the base excision repair pathway. In this review, we summarize the results of our studies of Fpg protein from E. coli, elucidating the intrinsic mechanism of recognition and excision of damaged bases in DNA.
Collapse
Affiliation(s)
- Vladimir V Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave. 8, Novosibirsk 630090, Russia
| | | | | | | | | |
Collapse
|
34
|
Abstract
The coalescence of basic biochemical reactions into compartments is a major hallmark of a living cell. Using surface-bound DNA and a transcription reaction, we investigate the conditions for boundary-free compartmentalization. The DNA self-organizes into a dense and ordered phase with coding sequences aligned at well-defined distances and orientation relative to the surface, imposing directionality on transcription. Unique to the surface in comparison to dilute homogeneous DNA solution, the reaction slows down early, is inhibited with increased DNA density, is favorable for surface-oriented promoters, and is robust against DNA condensation. We interpret these results to suggest that macromolecules (RNA polymerase and RNA), but not solutes (ions and nucleotides), are partitioned between immobilized DNA and the reservoir. Without any physical barrier, a nonequilibrium directional DNA transaction forms macromolecular gradients that define a compartment, thus offering a boundary-free approach to the assembly of a synthetic cell.
Collapse
|
35
|
Loverdo C, Bénichou O, Voituriez R, Biebricher A, Bonnet I, Desbiolles P. Quantifying hopping and jumping in facilitated diffusion of DNA-binding proteins. PHYSICAL REVIEW LETTERS 2009; 102:188101. [PMID: 19518914 DOI: 10.1103/physrevlett.102.188101] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Indexed: 05/27/2023]
Abstract
Facilitated diffusion of DNA-binding proteins is known to speed up target site location by combining three dimensional excursions and linear diffusion along the DNA. Here we explicitly calculate the distribution of the relocation lengths of such 3D excursions, and we quantify the short-range correlated excursions, also called hops, and the long-range uncorrelated jumps. Our results substantiate recent single-molecule experiments that reported sliding and 3D excursions of the restriction enzyme EcoRV on elongated DNA molecules. We extend our analysis to the case of anomalous 3D diffusion, likely to occur in a crowded cellular medium.
Collapse
Affiliation(s)
- C Loverdo
- Laboratoire de Physique Théorique de la Matière Condensée (UMR 7600), Université Pierre et Marie Curie, 4 Place Jussieu, 75255 Paris Cedex France
| | | | | | | | | | | |
Collapse
|
36
|
Hsieh J, Walker SC, Fierke CA, Engelke DR. Pre-tRNA turnover catalyzed by the yeast nuclear RNase P holoenzyme is limited by product release. RNA (NEW YORK, N.Y.) 2009; 15:224-234. [PMID: 19095620 PMCID: PMC2648709 DOI: 10.1261/rna.1309409] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 10/24/2008] [Indexed: 05/27/2023]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein that catalyzes the 5' maturation of precursor transfer RNA in the presence of magnesium ions. The bacterial RNase P holoenzyme consists of one catalytically active RNA component and a single essential but catalytically inactive protein. In contrast, yeast nuclear RNase P is more complex with one RNA subunit and nine protein subunits. We have devised an affinity purification protocol to gently and rapidly purify intact yeast nuclear RNase P holoenzyme for transient kinetic studies. In pre-steady-state kinetic studies under saturating substrate concentrations, we observed an initial burst of tRNA formation followed by a slower, linear, steady-state turnover, with the burst amplitude equal to the concentration of the holoenzyme used in the reaction. These data indicate that the rate-limiting step in turnover occurs after pre-tRNA cleavage, such as mature tRNA release. Additionally, the steady-state rate constants demonstrate a large dependence on temperature that results in nonlinear Arrhenius plots, suggesting that a kinetically important conformational change occurs during catalysis. Finally, deletion of the 3' trailer in pre-tRNA has little or no effect on the steady-state kinetic rate constants. These data suggest that, despite marked differences in subunit composition, the minimal kinetic mechanism for cleavage of pre-tRNA catalyzed by yeast nuclear RNase P holoenzyme is similar to that of the bacterial RNase P holoenzyme.
Collapse
Affiliation(s)
- John Hsieh
- Department of Chemistry, University of Michigan, Ann Arbor, 48109-0606, USA
| | | | | | | |
Collapse
|
37
|
Abstract
Many genetic processes depend on proteins interacting with specific sequences on DNA. Despite the large excess of nonspecific DNA in the cell, proteins can locate their targets rapidly. After initial nonspecific binding, they are believed to find the target site by 1D diffusion ("sliding") interspersed by 3D dissociation/reassociation, a process usually referred to as facilitated diffusion. The 3D events combine short intrasegmental "hops" along the DNA contour, intersegmental "jumps" between nearby DNA segments, and longer volume "excursions." The impact of DNA conformation on the search pathway is, however, still unknown. Here, we show direct evidence that DNA coiling influences the specific association rate of EcoRV restriction enzymes. Using optical tweezers together with a fast buffer exchange system, we obtained association times of EcoRV on single DNA molecules as a function of DNA extension, separating intersegmental jumping from other search pathways. Depending on salt concentration, targeting rates almost double when the DNA conformation is changed from fully extended to a coiled configuration. Quantitative analysis by an extended facilitated diffusion model reveals that only a fraction of enzymes are ready to bind to DNA. Generalizing our results to the crowded environment of the cell we predict a major impact of intersegmental jumps on target localization speed on DNA.
Collapse
|
38
|
Hopping of a processivity factor on DNA revealed by single-molecule assays of diffusion. Proc Natl Acad Sci U S A 2008; 105:10721-6. [PMID: 18658237 DOI: 10.1073/pnas.0802676105] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Many DNA-interacting proteins diffuse on DNA to perform their biochemical functions. Processivity factors diffuse on DNA to permit unimpeded elongation by their associated DNA polymerases, but little is known regarding their rates and mechanisms of diffusion. The processivity factor of herpes simplex virus DNA polymerase, UL42, unlike "sliding clamp" processivity factors that normally form rings around DNA, binds DNA directly and tightly as a monomer, but can still diffuse on DNA. To investigate the mechanism of UL42 diffusion on DNA, we examined the effects of salt concentration on diffusion coefficient. Ensemble studies, employing electrophoretic mobility shift assays on relatively short DNAs, showed that off-rates of UL42 from DNA depended on DNA length at higher but not lower salt concentrations, consistent with the diffusion coefficient being salt-dependent. Direct assays of the motion of single fluorescently labeled UL42 molecules along DNA revealed increased diffusion at higher salt concentrations. Remarkably, the diffusion coefficients observed in these assays were approximately 10(4)-fold higher than those calculated from ensemble experiments. Discrepancies between the single-molecule and ensemble results were resolved by the observation, in single-molecule experiments, that UL42 releases relatively slowly from the ends of DNA in a salt-dependent manner. The results indicate that UL42 "hops" rather than "slides," i.e., it microscopically dissociates from and reassociates with DNA as it diffuses rather than remaining so intimately associated with DNA that cation condensation on the phosphate backbone does not affect its motion. These findings may be relevant to mechanisms of other processivity factors and DNA-binding proteins.
Collapse
|
39
|
Abstract
Quantitative interpretation and prediction of Hofmeister ion effects on protein processes, including folding and crystallization, have been elusive goals of a century of research. Here, a quantitative thermodynamic analysis, developed to treat noncoulombic interactions of solutes with biopolymer surface and recently extended to analyze the effects of Hofmeister salts on the surface tension of water, is applied to literature solubility data for small hydrocarbons and model peptides. This analysis allows us to obtain a minimum estimate of the hydration b1 (H2O A(-2)), of hydrocarbon surface and partition coefficients Kp, characterizing the distribution of salts and salt ions between this hydration water and bulk water. Assuming that Na+ and SO4(2-) ions of Na2SO4 (the salt giving the largest reduction in hydrocarbon solubility as well as the largest increase in surface tension) are fully excluded from the hydration water at hydrocarbon surface, we obtain the same b1 as for air-water surface (approximately 0.18 H2O A(-2)). Rank orders of cation and anion partition coefficients for nonpolar surface follow the Hofmeister series for protein processes, but are strongly offset for cations in the direction of exclusion (preferential hydration). By applying a coarse-grained decomposition of water accessible surface area (ASA) into nonpolar, polar amide, and other polar surface and the same hydration b1 to interpret peptide solubility increments, we determine salt partition coefficients for amide surface. These partition coefficients are separated into single-ion contributions based on the observation that both Cl- and Na+ (also K+) occupy neutral positions in the middle of the anion and cation Hofmeister series for protein folding. Independent of this assignment, we find that all cations investigated are strongly accumulated at amide surface while most anions are excluded. Cation and anion effects are independent and additive, allowing successful prediction of Hofmeister salt effects on micelle formation and other processes from structural information (ASA).
Collapse
Affiliation(s)
- Laurel M Pegram
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
40
|
Vivas P, Kuznetsov SV, Ansari A. New insights into the transition pathway from nonspecific to specific complex of DNA with Escherichia coli integration host factor. J Phys Chem B 2008; 112:5997-6007. [PMID: 18461910 DOI: 10.1021/jp076042s] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To elucidate the nature of the transition-state ensemble along the reaction pathway from a nonspecific protein-DNA complex to the specific complex, we have carried out measurements of DNA bending/unbending dynamics on a cognate DNA substrate in complex with integration host factor (IHF), an architectural protein from E. coli that bends its cognate site by approximately 180 degrees . We use a laser temperature jump to perturb the IHF-DNA complex and monitor the relaxation kinetics with time-resolved FRET measurements on DNA substrates end-labeled with a FRET pair. Previously, we showed that spontaneous bending/kinking of DNA, from thermal disruption of base-pairing/-stacking interactions, may be the rate-limiting step in the formation of the specific complex (Kuznetsov, S. V.; Sugimura, S.; Vivas, P.; Crothers, D. M.; Ansari, A. Proc. Natl. Acad. Sci. USA 2006, 103, 18515). Here, we probe the effect of varying [KCl], which affects the stability of the complex, on this rate-limiting step. We find that below approximately 250 mM KCl, the observed relaxation kinetics are from the unimolecular bending/unbending of DNA, and the relaxation rate kr is independent of [KCl]. Above approximately 300 mM KCl, dissociation of the IHF-DNA complex becomes significant, and the observed relaxation process includes contributions from the association/dissociation step, with kr decreasing with increasing [KCl]. The DNA bending step occurs with a positive activation enthalpy, despite the large negative enthalpy change reported for the specific IHF-DNA complex (Holbrook, J. A.; Tsodikov, O. V.; Saecker, R. M.; Record, M. T., Jr. J. Mol. Biol. 2001, 310, 379). Our conclusion from these studies is that in the uphill climb to the transition state, the DNA is kinked, but with no release of ions, as indicated by the salt-independent behavior of k(r) at low [KCl]. Any release of ions in the unimolecular process, together with conformational changes in the protein-DNA complex that facilitate favorable interactions and that contribute to the negative enthalpy change, must occur as the system leaves the transition state, downhill to the final complex.
Collapse
Affiliation(s)
- Paula Vivas
- Department of Physics (M/C 273), and Department of Bioengineering (M/C 063), University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, USA
| | | | | |
Collapse
|
41
|
Bonnet I, Biebricher A, Porté PL, Loverdo C, Bénichou O, Voituriez R, Escudé C, Wende W, Pingoud A, Desbiolles P. Sliding and jumping of single EcoRV restriction enzymes on non-cognate DNA. Nucleic Acids Res 2008; 36:4118-27. [PMID: 18544605 PMCID: PMC2475641 DOI: 10.1093/nar/gkn376] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The restriction endonuclease EcoRV can rapidly locate a short recognition site within long non-cognate DNA using 'facilitated diffusion'. This process has long been attributed to a sliding mechanism, in which the enzyme first binds to the DNA via nonspecific interaction and then moves along the DNA by 1D diffusion. Recent studies, however, provided evidence that 3D translocations (hopping/jumping) also help EcoRV to locate its target site. Here we report the first direct observation of sliding and jumping of individual EcoRV molecules along nonspecific DNA. Using fluorescence microscopy, we could distinguish between a slow 1D diffusion of the enzyme and a fast translocation mechanism that was demonstrated to stem from 3D jumps. Salt effects on both sliding and jumping were investigated, and we developed numerical simulations to account for both the jump frequency and the jump length distribution. We deduced from our study the 1D diffusion coefficient of EcoRV, and we estimated the number of jumps occurring during an interaction event with nonspecific DNA. Our results substantiate that sliding alternates with hopping/jumping during the facilitated diffusion of EcoRV and, furthermore, set up a framework for the investigation of target site location by other DNA-binding proteins.
Collapse
Affiliation(s)
- Isabelle Bonnet
- Laboratoire Kastler Brossel, ENS, UPMC-Paris 6, CNRS UMR 8552, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Athawale MV, Sarupria S, Garde S. Enthalpy−Entropy Contributions to Salt and Osmolyte Effects on Molecular-Scale Hydrophobic Hydration and Interactions. J Phys Chem B 2008; 112:5661-70. [DOI: 10.1021/jp073485n] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Ghosh T, Kalra A, Garde S. On the salt-induced stabilization of pair and many-body hydrophobic interactions. J Phys Chem B 2007; 109:642-51. [PMID: 16851057 DOI: 10.1021/jp0475638] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Salting-out of hydrophobic solutes in aqueous salt solutions and their relevance to salt effects on biophysical phenomena are now well appreciated. Although salt effects on hydrophobic transfer have been well studied, to our knowledge, no quantitative molecular simulation study of salt-induced strengthening of hydrophobic interactions has yet been reported. Here we present quantitative characterization of salt-induced strengthening of hydrophobic interactions at the molecular and nanoscopic length scales through molecular dynamics simulations. Specifically, we quantify the effect of NaCl on the potential of mean force between molecular hydrophobic solutes (methanes) and on conformational equilibria of a 25-mer hydrophobic polymer that efficiently samples ensembles of compact and extended states in water. In both cases, we observe relative stabilization of compact conformations that is accompanied by a clear depletion of salt density (preferential exclusion) and a slight enhancement of water density (preferential hydration) in the solute vicinity. We show that the structural details of salt exclusion can be related to the salt-induced free energy changes using preferential interaction coefficients. We also test the applicability of surface-area-based models to describe the salt-induced free energy changes. These models provide a useful empirical description that can be used to predict the effects of salt on conformational equilibria of hydrophobic solutes. However, we find that the effective increase in the surface tension of the solute-aqueous solution interface depends on the type and concentration of salt as well as the length-scale (i.e., molecular vs nanoscopic) of the conformational change. These calculations underscore the utility of simulation studies to connect quantitatively structural details at the molecular level (described by preferential hydration/exclusion) to macroscopic solvation thermodynamics. The hydrophobic polymer also provides a useful model for studies of effect of thermodynamic variables (P, T, salt/additives) on many-body hydrophobic interactions at nanometer length scales.
Collapse
Affiliation(s)
- Tuhin Ghosh
- The Howard P. Isermann Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | |
Collapse
|
44
|
Barceló F, Scotta C, Ortiz-Lombardía M, Méndez C, Salas JA, Portugal J. Entropically-driven binding of mithramycin in the minor groove of C/G-rich DNA sequences. Nucleic Acids Res 2007; 35:2215-26. [PMID: 17369273 PMCID: PMC1874653 DOI: 10.1093/nar/gkm037] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The antitumour antibiotic mithramycin A (MTA) is a DNA minor-groove binding ligand. It binds to C/G-rich tracts as a dimer that forms in the presence of divalent cations such as Mg(2+). Differential scanning calorimetry, UV thermal denaturation, isothermal titration calorimetry and competition dialysis were used, together with computations of the hydrophobic free energy of binding, to determine the thermodynamic profile of MTA binding to DNA. The results were compared to those obtained in parallel using the structurally related mithramycin SK (MSK). The binding of MTA to salmon testes DNA determined by UV melting studies (K(obs) = 1.2 (+/-0.3) x 10(5) M(-1)) is tighter than that of MSK (2.9 (+/-1.0) x 10(4) M(-1)) at 25 degrees C. Competition dialysis studies showed a tighter MTA binding to both salmon testes DNA (42% C + G) and Micrococcus lysodeikticus DNA (72% C + G). The thermodynamic analysis of binding data at 25 degrees C shows that the binding of MTA and MSK to DNA is entropically driven, dominated by the hydrophobic transfer of the antibiotics from solution to the DNA-binding site. Direct molecular recognition between MTA or MSK and DNA through hydrogen bonding and van der Waals contacts may also contribute significantly to complex formation.
Collapse
Affiliation(s)
- Francisca Barceló
- Departament de Biologia Fundamental i Ciencies de la Salut, Universitat de les Illes Balears, Palma de Mallorca, Spain, Programa de Biologia Estructural y Biocomputacion, Centro Nacional de Investigaciones Oncologicas (CNIO), Madrid, Spain, Departamento de Biologia Funcional-Instituto Universitario de Oncologia del Principado de Asturias, Oviedo, Spain and Instituto de Biologia Molecular de Barcelona, CSIC, Parc Cientific de Barcelona, Barcelona, Spain
| | - Claudia Scotta
- Departament de Biologia Fundamental i Ciencies de la Salut, Universitat de les Illes Balears, Palma de Mallorca, Spain, Programa de Biologia Estructural y Biocomputacion, Centro Nacional de Investigaciones Oncologicas (CNIO), Madrid, Spain, Departamento de Biologia Funcional-Instituto Universitario de Oncologia del Principado de Asturias, Oviedo, Spain and Instituto de Biologia Molecular de Barcelona, CSIC, Parc Cientific de Barcelona, Barcelona, Spain
| | - Miguel Ortiz-Lombardía
- Departament de Biologia Fundamental i Ciencies de la Salut, Universitat de les Illes Balears, Palma de Mallorca, Spain, Programa de Biologia Estructural y Biocomputacion, Centro Nacional de Investigaciones Oncologicas (CNIO), Madrid, Spain, Departamento de Biologia Funcional-Instituto Universitario de Oncologia del Principado de Asturias, Oviedo, Spain and Instituto de Biologia Molecular de Barcelona, CSIC, Parc Cientific de Barcelona, Barcelona, Spain
| | - Carmen Méndez
- Departament de Biologia Fundamental i Ciencies de la Salut, Universitat de les Illes Balears, Palma de Mallorca, Spain, Programa de Biologia Estructural y Biocomputacion, Centro Nacional de Investigaciones Oncologicas (CNIO), Madrid, Spain, Departamento de Biologia Funcional-Instituto Universitario de Oncologia del Principado de Asturias, Oviedo, Spain and Instituto de Biologia Molecular de Barcelona, CSIC, Parc Cientific de Barcelona, Barcelona, Spain
| | - José A. Salas
- Departament de Biologia Fundamental i Ciencies de la Salut, Universitat de les Illes Balears, Palma de Mallorca, Spain, Programa de Biologia Estructural y Biocomputacion, Centro Nacional de Investigaciones Oncologicas (CNIO), Madrid, Spain, Departamento de Biologia Funcional-Instituto Universitario de Oncologia del Principado de Asturias, Oviedo, Spain and Instituto de Biologia Molecular de Barcelona, CSIC, Parc Cientific de Barcelona, Barcelona, Spain
| | - José Portugal
- Departament de Biologia Fundamental i Ciencies de la Salut, Universitat de les Illes Balears, Palma de Mallorca, Spain, Programa de Biologia Estructural y Biocomputacion, Centro Nacional de Investigaciones Oncologicas (CNIO), Madrid, Spain, Departamento de Biologia Funcional-Instituto Universitario de Oncologia del Principado de Asturias, Oviedo, Spain and Instituto de Biologia Molecular de Barcelona, CSIC, Parc Cientific de Barcelona, Barcelona, Spain
- *To whom correspondence should be addressed. +34 93 403 4959+34 93 403 4979
| |
Collapse
|
45
|
Burova TV, Grinberg NV, Grinberg VY, Usov AI, Tolstoguzov VB, Kruif CGD. Conformational Changes in ι- and κ-Carrageenans Induced by Complex Formation with Bovine β-Casein. Biomacromolecules 2006; 8:368-75. [PMID: 17291059 DOI: 10.1021/bm060761f] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The formation of electrostatic complexes between beta-casein and iota- and kappa-carrageenans is well-known. However, the molecular mechanism of the complexation has yet to be determined, particularly with respect to the conformational changes of the interacting macromolecules. High-sensitivity differential scanning calorimetry was used to study beta-casein/carrageenan mixtures at different pH values (3.0 to 7.5), ionic strengths (0.03 and 0.15 M), and various molar protein/polysaccharide ratios (3-400). The effects of these variables on the temperature, enthalpy, and width of the helix-coil transition of iota- and kappa-carrageenans were investigated. Neither pH nor the protein/polysaccharide ratio influenced the transition temperature of either carrageenan in the complexes. However, the transition enthalpy of both carrageenans in complexes with beta-casein decreased to zero with both decreasing pH and increasing protein/polysaccharide ratio. This may reflect an unwinding of the polysaccharide double helix induced by beta-casein, a conformational change which is fully reversible in conditions of sufficiently high ionic strength. The interaction of beta-casein with iota- and kappa-carrageenans was approximated in terms of the model of binding of large ligands to macromolecules, that provides the binding constants for these biopolymers.
Collapse
Affiliation(s)
- Tatiana V Burova
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Vavilov St. 28, 119991, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
46
|
Cowan JA. Transition Metals as Probes of Metal Cofactors in Nucleic Acid Biochemistry. COMMENT INORG CHEM 2006. [DOI: 10.1080/02603599208048465] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- J. A. Cowan
- a Evans Laboratory of Chemistry , The Ohio State University , 120 West 18th Avenue, Columbus , Ohio , 43210
| |
Collapse
|
47
|
Roy S, Katayama D, Dong A, Kerwin BA, Randolph TW, Carpenter JF. Temperature Dependence of Benzyl Alcohol- and 8-Anilinonaphthalene-1-sulfonate-Induced Aggregation of Recombinant Human Interleukin-1 Receptor Antagonist†. Biochemistry 2006; 45:3898-911. [PMID: 16548517 DOI: 10.1021/bi052132g] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The critical role played by temperature in ligand-induced protein aggregation was investigated. Recombinant human interleukin-1 receptor antagonist (rhIL-1ra) and the ligands benzyl alcohol and 8-anilinonaphthalene-1-sulfonate (ANS) were used. We investigated aggregation kinetics and the conformation and cysteine reactivity of rhIL-1ra in buffer alone or in the presence of 0.9% (w/v) benzyl alcohol or 4.2 or 21 mM ANS at 25 and 37 degrees C. In buffer, protein aggregation was not detected at 25 degrees C but occurred at 37 degrees C. At 25 degrees C, neither benzyl alcohol nor 4.2 mM ANS enhanced aggregation. However, at 37 degrees C, both compounds greatly accelerated protein aggregation. With 21 mM ANS, rhIL-1ra aggregation was accelerated at both temperatures, but the effect was more pronounced at 37 degrees C than at 25 degrees C. Increasing the temperature from 25 to 37 degrees C caused a minor perturbation in the tertiary structure of rhIL-1ra in buffer but no detectable alteration in secondary structure. Benzyl alcohol enhanced the tertiary structural perturbation at 37 degrees C, but the secondary structure was not affected by the ligand. The reactivity of buried free cysteines of rhIL-1ra was enhanced by benzyl alcohol at 37 degrees C but not at 25 degrees C, consistent with the structural results. Isothermal titration calorimetry documented that the interaction of benzyl alcohol with rhIL-1ra was hydrophobic and that the degree of hydrophobic interactions increased with temperature. At 25 degrees C, the interaction of ANS with rhIL-1ra was electrostatic, but at 37 degrees C, both electrostatic and hydrophobic interactions were important. Taken together, our results support the conclusion that benzyl alcohol and ANS interact hydrophobically with partially unfolded aggregation-prone protein molecules, resulting in temperature-dependent increases in their levels and acceleration of protein aggregation.
Collapse
Affiliation(s)
- Shouvik Roy
- Center for Pharmaceutical Biotechnology, Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | |
Collapse
|
48
|
Gaussier H, Yang Q, Catalano CE. Building a virus from scratch: assembly of an infectious virus using purified components in a rigorously defined biochemical assay system. J Mol Biol 2006; 357:1154-66. [PMID: 16476446 DOI: 10.1016/j.jmb.2006.01.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 12/27/2005] [Accepted: 01/03/2006] [Indexed: 10/25/2022]
Abstract
The assembly of double-stranded DNA (dsDNA) viruses such as poxvirus, the herpesviruses and many bacteriophages is a complex process that requires the coordinated activities of numerous proteins of both viral and host origin. Here, we report the assembly of an infectious wild-type lambda virus using purified proteins and commercially available DNA, and optimization of the assembly reaction in a rigorously defined biochemical system. Seven proteins, purified procapsids and tails, and mature lambda DNA are necessary and sufficient for efficient virus assembly in vitro. Analysis of the reaction suggests that (i) virus assembly in vitro is optimal under conditions that faithfully mimic the intracellular environment within an Escherichia coli cell, (ii) concatemeric DNA is required for the successful completion of virus assembly, (iii) several of the protein components oligomerize concomitant with their step-wise addition to the nascent virus particle and (iv) tail addition is the rate-limiting step in virus assembly. Importantly, the assembled virus may enter either of the developmental pathways (lytic or lysogenic) expected of a lambda virion. Thus, we demonstrate for the first time that a wild-type, complex DNA virus may be assembled from purified components under defined biochemical conditions. This system provides a powerful tool to characterize, at the molecular level, the step-by-step processes required to assemble an infectious virus particle. Given the remarkable similarities between dsDNA bacteriophage and eukaryotic dsDNA viruses, characterization of the lambda system has broad biological implications in our understanding of virus development at a global level.
Collapse
Affiliation(s)
- Hélène Gaussier
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, 4200 East Ninth Avenue C238, Denver, CO 80262, USA
| | | | | |
Collapse
|
49
|
Talavera MA, De La Cruz EM. Equilibrium and kinetic analysis of nucleotide binding to the DEAD-box RNA helicase DbpA. Biochemistry 2005; 44:959-70. [PMID: 15654752 DOI: 10.1021/bi048253i] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Escherichia coli DEAD-box protein A (DbpA) is an RNA helicase that utilizes the energy from ATP binding and hydrolysis to facilitate structural rearrangements of rRNA. We have used the fluorescent nucleotide analogues, mantADP and mantATP, to measure the equilibrium binding affinity and kinetic mechanism of nucleotide binding to DbpA in the absence of RNA. Binding generates an enhancement in mant-nucleotide fluorescence and a corresponding reduction in intrinsic DbpA fluorescence, consistent with fluorescence resonance energy transfer (FRET) from DbpA tryptophan(s) to bound nucleotides. Fluorescent modification does not significantly interfere with the affinities and kinetics of nucleotide binding. Different energy transfer efficiencies between DbpA-mantATP and DbpA-mantADP complexes suggest that DbpA adopts nucleotide-dependent conformations. ADP binds (K(d) approximately 50 microM at 22 degrees C) 4-7 times more tightly than ATP (K(d) approximately 400 microM at 22 degrees C). Both nucleotides bind with relatively temperature-independent association rate constants (approximately 1-3 microM(-1) s(-1)) that are much lower than predicted for a diffusion-limited reaction. Differences in the binding affinities are dictated primarily by the dissociation rate constants. ADP binding occurs with a positive change in the heat capacity, presumably reflecting a nucleotide-induced conformational rearrangement of DbpA. At low temperatures (<22 degrees C), the binding free energies are dominated by favorable enthalpic and unfavorable entropic contributions. At physiological temperatures (>22 degrees C), ADP binding occurs with positive entropy changes. We favor a mechanism in which ADP binding increases the conformational flexibility and dynamics of DbpA.
Collapse
Affiliation(s)
- Miguel A Talavera
- Yale University, Department of Molecular Biophysics & Biochemistry, 260 Whitney Avenue, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
50
|
Coppey M, Bénichou O, Voituriez R, Moreau M. Kinetics of target site localization of a protein on DNA: a stochastic approach. Biophys J 2005; 87:1640-9. [PMID: 15345543 PMCID: PMC1304569 DOI: 10.1529/biophysj.104.045773] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is widely recognized that the cleaving rate of a restriction enzyme on target DNA sequences is several orders-of-magnitude faster than the maximal one calculated from the diffusion-limited theory. It was therefore commonly assumed that the target site interaction of a restriction enzyme with DNA has to occur via two steps: one-dimensional diffusion along a DNA segment, and long-range jumps coming from association-dissociation events. We propose here a stochastic model for this reaction which comprises a series of one-dimensional diffusions of a restriction enzyme on nonspecific DNA sequences interrupted by three-dimensional excursions in the solution until the target sequence is reached. This model provides an optimal finding strategy which explains the fast association rate. Modeling the excursions by uncorrelated random jumps, we recover the expression of the mean time required for target site association to occur given by Berg et al. in 1981, and we explicitly give several physical quantities describing the stochastic pathway of the enzyme. For competitive target sites we calculate two quantities: processivity and preference. By comparing these theoretical expressions to recent experimental data obtained for EcoRV-DNA interaction, we quantify: 1), the mean residence time per binding event of EcoRV on DNA for a representative one-dimensional diffusion coefficient; 2), the average lengths of DNA scanned during the one-dimensional diffusion (during one binding event and during the overall process); and 3), the mean time and the mean number of visits needed to go from one target site to the other. Further, we evaluate the dynamics of DNA cleavage with regard to the probability for the restriction enzyme to perform another one-dimensional diffusion on the same DNA substrate following a three-dimensional excursion.
Collapse
Affiliation(s)
- M Coppey
- Laboratoire de Physique Théorique des Liquides, Université Pierre et Marie Curie, Paris, France.
| | | | | | | |
Collapse
|